
California AHMCT Program
University of California at Davis
California Department of Transportation

LITERATURE REVIEW OF NATIONAL DEVELOPMENTS
IN ATMS AND OPEN-SOURCE SOFTWARE*

Michael T. Darter, Kin S. Yen, Bahram Ravani, &

Ty A. Lasky, Principal Investigator

AHMCT Research Report
UCD-ARR-06-12-08-01

Interim Report of Contract IA 65A0210 - Task Order 06-22

December 8, 2006

Affiliations:
The authors are with the AHMCT Research Center, Department of Mechanical & Aeronautical
Engineering, University of California, Davis, CA 95616-5294

* This report has been prepared in cooperation with the State of California, Business and
Transportation Agency, Department of Transportation and is based on work supported by
Contract Number 65A0210 - Task Order 06-22 through the Advanced Highway Maintenance
and Construction Technology Research Center at the University of California at Davis.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

 i

Technical Documentation Page
1. Report No.

F/CA/RI-2006/10
2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

Literature Review of National Developments in ATMS and Open-
Source Software

5. Report Date
December 8, 2006

 6. Performing Organization Code

7. Author(s): Michael T. Darter, Kin S. Yen, Bahram Ravani, and
Ty A. Lasky

8. Performing Organization Report No.
UCD-ARR-06-12-08-01

9. Performing Organization Name and Address

AHMCT Research Center
10. Work Unit No. (TRAIS)

UCD Dept of Mechanical & Aeronautical Engineering
Davis, California 95616-5294

11. Contract or Grant

IA 65A0210 - Task Order 06-22
12. Sponsoring Agency Name and Address

California Department of Transportation
Division of Research and Innovation
1127 O Street

13. Type of Report and Period Covered

Interim Report
December 2006

Sacramento, CA 94273-0001 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Advanced Traffic Management Systems (ATMS) have successfully and impressively improved roadway traffic
safety, reduced congestion, and increased economic productivity. As ATMS build-out continues into lower-density
population areas, ATMS cost can become a serious obstacle, slowing implementation and negatively affecting safety,
congestion, and productivity. This report explores the feasibility of using open-source software and commodity
computer hardware to lower ATMS implementation costs. The objectives of this report are to:

• Summarize the history and current developments in ATMS software and hardware, and their relation to
open-source software and commodity multi-source x86 hardware,

• Summarize the history, strengths, and weaknesses of open-source software, and
• Summarize relevant ATMS hardware and software projects that use open source, or are open-source

projects themselves.
In preparing this report, the authors surveyed and analyzed relevant articles in research journals, reports, and

industry news sources. In addition, individuals were contacted from state DOTs and research institutions that were
involved with open-source ATMS projects. Based on the information that was collected and analyzed for this report,
the authors found that a number of ATMS and ITS applications have been developed and deployed using open-source
software. These systems have a broad range of features, capabilities, and significant operational use. Potential
benefits include low initial and recurring costs, customization ability, security, stability, and reduced lock-in. Benefits
provided by OSS and its unique development model must be balanced with a consideration of concerns such as
technical knowledge of personnel, compatibility with existing software, problems with multiple operating system
distributions, and documentation.
17. Key Words

Advanced Traffic Management Systems, Intelligent
Transportation System, Open-source Software, Open Source
Software, commodity hardware, OSS, FOSS, ATMS, ITS

18. Distribution Statement

No restrictions. This document is available to the
public through the National Technical Information
Service, Springfield, Virginia 22161.

20. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

132
22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
(PF V2.1, 6/30/92)

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 iii

ABSTRACT
Advanced Traffic Management Systems (ATMS) have successfully and impressively

improved roadway traffic safety, reduced congestion, and increased economic productivity. As
ATMS build-out continues into lower-density population areas, ATMS cost can become a
serious obstacle, slowing implementation and negatively affecting safety, congestion, and
productivity. This report explores the feasibility of using open-source software and commodity
computer hardware to lower ATMS implementation costs. The objectives of this report are to:

• Summarize the history and current developments in ATMS software and hardware,
and their relation to open-source software and commodity multi-source x86 hardware,

• Summarize the history, strengths, and weaknesses of open-source software, and

• Summarize relevant ATMS hardware and software projects that use open source, or
are open-source projects themselves.

In preparing this report, the authors surveyed and analyzed relevant articles in research
journals, reports, and industry news sources. In addition, individuals were contacted from state
DOTs and research institutions that were involved with open-source ATMS projects. Based on
the information that was collected and analyzed for this report, the authors found that a number
of ATMS and ITS applications have been developed and deployed using open-source software.
These systems have a broad range of features, capabilities, and significant operational use.
Potential benefits include low initial and recurring costs, customization ability, security, stability,
and reduced lock-in. Benefits provided by OSS and its unique development model must be
balanced with a consideration of concerns such as technical knowledge of personnel,
compatibility with existing software, problems with multiple operating system distributions, and
documentation.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 v

TABLE OF CONTENTS
Abstract ..iii
Table of Contents.. v
List of Figures .. ix
List of Tables ...xi
Disclaimer/Disclosure..xiii
List of Acronyms and Abbreviations .. xv
Acknowledgements..xix
Executive Summary ...xxi

Purpose ..xxi
What is Open-Source Software?..xxi
Current Developments in Open-Source Software ..xxii
How is Open-Source Software Different?..xxii
What are Open-Source Software Strengths? ...xxiii
What are Open-Source Software Concerns? .. xxv
What is ATMS?...xxvi
ATMS History ...xxvi
ITS Standards ...xxvii
ATMS Trends ...xxvii
Case Studies of ITS Software Projects Using Open-Source Software ...xxvii
Case Studies of ITS Open-Source Software Projects ... xxx
Case Studies of ITS Hardware Projects Using Open-Source Software...xxxi
Case Studies of ITS Open-Source Hardware Projects...xxxi
Conclusions ..xxxii

Section 1: Introduction.. 1
Section 2: How and Why Technology Markets Change... 3

Innovations Are Sustaining or Disruptive .. 4
Characteristics of Disruptive Products ... 4
The Product Lifecycle .. 5
Changes in Product Lifecycle... 6
Commoditization of the Computer Hardware Market .. 7

Section 3: History of Open-Source Software.. 9
Open-Source Software Growth .. 9
Definition of Open-Source Software .. 9
History of Open-Source Software .. 10
Recent Developments ... 12

Section 4: How Open-Source Software is Different ... 15
Software Engineering ... 15
Differentiating and Non-Differentiating Software ... 16
Types of Software Development .. 16
Software and Lock-in ... 17
The Open-Source Development Process .. 18
Innovation and Open-Source Software... 19
Typical Open-Source Development Environment.. 20

Section 5: Open-Source Software Strengths... 23
Reduced Lock-In .. 23
Reliability ... 23
Security... 24
Efficiency ... 26
Healthy ITS Markets .. 27

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 vi

Use of Standards... 27
Section 6: Open-Source Software Concerns ... 29

Enough Trained Staff.. 29
Inconsistent Quality.. 30
Support ... 30

Section 7: Historical Developments in ATMS ... 33
Birth of Intelligent Transportation Systems ... 33
ITS Standards ... 34
International ITS Efforts... 35
ATMS Goals and Benefits.. 35
ITS/ATMS Milestones ... 36
ATMS Trends ... 37

Section 8: Case Studies of ITS Software Projects Using Open-Source Software 39
Virginia Department of Transportation Web-based Congestion Monitoring ATMS............................. 39
Oklahoma Department of Transportation Statewide Distributed Low-Cost ITS 40
Oklahoma Department of Transportation SAFE-T Accident Analysis System 42
Oklahoma Department of Transportation ATIS System .. 42
Minnesota Department of Transportation IRIS Intelligent Roadway Information System....................43
FAA Real-time Enhanced Air Traffic Management System.. 44
U.S. DOT Weather-Related Road Hazards Assessment and Monitoring System.................................. 45
Pennsylvania State Hourly Mesonet... 46
Los Angeles County Regional ITS Integration Project .. 48
University of Maryland RITIS System... 49
Virginia Department of Transportation Incident Management System.. 52

Section 9: Case Studies of ITS Open-Source Software Projects .. 53
Massachusetts Institute of Technology MITSIMLab Traffic Simulator .. 53
Federal Highway Administration Next Generation Simulation ... 55
U.S. DOT Open-Source TEXAS Intersection Simulation Model .. 55
University of Washington Urban Simulation and Modeling Project..56
TRB IDEA Program Dynamic Timetable Generator ... 57
Oregon Tri-County Metropolitan Transportation District TimeTable Publisher 58

Section 10: Case Studies of ITS Hardware Projects Using Open-Source Software 61
Peek Traffic Inc. Linux-Based Commercial Traffic Data Recorder... 61
City of Valencia, Spain Video Streaming System for Urban Traffic Control .. 61

Section 11: Case Studies of ITS Open-Source Hardware Projects ... 63
U.S. DOT Advanced Transportation Controller... 63
European ERTICO Global System for Telematics Open System .. 64

Section 12: Conclusions.. 67
Summary... 67
Conclusion.. 67

References... 71
Appendix A: Lock-In: Why Does A Database Cost More Than An Operating System? 77
Appendix B: Partial Directory of Mainstream Open-Source Software Applications 79

Apache ActiveMQ Messaging Middleware ... 79
Apache HTTP Web Server ... 79
BSD Operating System... 80
Cygwin Unix-like Environment and X-Windows System ... 80
Drools/JBoss Rules Engine .. 80
Eclipse Development Platform... 80
EnterpriseDB Database... 80
GCC GNU Compiler Collection... 81

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 vii

JBoss J2EE Application Server .. 81
Jena Semantic Modeling Framework ... 81
Linux Operating System... 81
MapServer Internet Map Server ... 82
MediaWiki Collaboration Application ... 82
Mono .NET Application Framework.. 82
Mozilla Firefox Web Brower ... 83
Mozilla Thunderbird Email Application .. 83
MySQL Database ... 83
OpenSSH Communications Tools.. 83
OpenSSL Secure Sockets Layer Tools ... 83
Open Office Business Productivity Suite ... 83
Perl, Python, and PHP Software Development Languages .. 84
PostGIS GIS Database Extension... 84
PostgreSQL Database ... 84
Protégé Ontology Editor... 84
Rdesktop Remote Desktop Client... 85
Samba File and Print Services .. 85
VNC Remote Desktop Client and Server ... 85

Appendix C: Relevant Standards Organizations and Standards ... 87
Appendix D: Open-Source License Summaries ... 89

Apache License... 90
BSD License ... 90
Creative Commons Licenses .. 90
GPL License ... 90
LGPL License... 91
Mozilla Public License ... 91

Appendix E: Standardizing Data Formats Using Semantic Web and Modeling Standards........................ 93

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 ix

LIST OF FIGURES
Figure 1: ATMS trends, needs, solutions (simplified)...xxxiii
Figure 2: Total Wikipedia Encyclopedia articles in all languages [113] .. 3
Figure 3: HP Kittyhawk 1.3" micro drive and flash card.. 5
Figure 4: Product lifecycle.. 6
Figure 5: Lifecycle changes in the disk drive industry over time [11] ... 6
Figure 6: Sun Microsystems stock price, January 2000 to June 2006 .. 7
Figure 7: Data Center capacity growth 2002-12 [54] ... 8
Figure 8: Active web servers, 6/2000 to 4/2006 [61] ... 9
Figure 9: Software project success rates in 2004 [83] .. 16
Figure 10: Red Hat support workflow diagram [75]... 31
Figure 11: 1969 Astro concept car for “systems-controlled interstate highways of the future” [26,100] .. 33
Figure 12: Web-based congestion maps from Virginia ATMS [68]... 40
Figure 13: Architecture of Virginia ATMS Web-based Congestion Monitoring [68]................................ 40
Figure 14: Oklahoma ITS Distributed IP Network Architecture [33] .. 42
Figure 15: Oklahoma Web-based ATIS [101].. 43
Figure 16: Linux ARTS screenshot [7]... 45
Figure 17: WRRHAMS web application screen shot [112].. 46
Figure 18: Pennsylvania Mesonet weather station locations .. 47
Figure 19: Pennsylvania Mesonet real-time surface temperature analysis ... 47
Figure 20: RIITS maps at different zoom levels [50] ... 49
Figure 21: University of Maryland CATT Laboratory RITIS Data Distribution [64]................................ 50
Figure 22: University of Maryland CATT Laboratory RITIS Prototype Screen [64] 51
Figure 23: University of Maryland CATT Laboratory RITIS PDA Prototype Screens [64]...................... 51
Figure 24: MITSIMLab components [52] .. 54
Figure 25: MITSIMLab interface [8].. 54
Figure 26: UrbanSim open-source modeling analysis for Tel Aviv metropolitan area [25]....................... 57
Figure 27: Prototype Dynamic Timetable Generator Architecture [87] ... 58
Figure 28: TriMet's Transit TimeTable Publisher [88]... 59
Figure 29: Peak ADR-6000 Linux based automatic data recorder [69].. 61
Figure 30: System components of TMC, Valencia, Spain [23] .. 62
Figure 31: ATC software layered organization [35] ... 64
Figure 32: ERTICO GST Open System protocol stack [106]... 65
Figure 33: ATMS trends, needs, solutions (simplified).. 68
Figure 34: ATMS trends, needs, and solutions (detailed)... 70
Figure 35: Database demand inelasticity price curve [9].. 77
Figure 36: Supply/demand curve for a competitive market [9] .. 78
Figure 37: Semantic stack [6] ... 94
Figure 38: Sample UML class hierarchy .. 96

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 x
Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xi

LIST OF TABLES
Table 1: Sustaining and disruptive products [11] ... 4
Table 2: Motivation for Linux server adoption [34] ... 12
Table 3: Partial list of open-source projects from Appendix B .. 13
Table 4: Retail versus open-source software development models [70]... 17
Table 5: COTS and potential OSS product counterparts .. 21
Table 6: OSS strengths for DoD, reported by Mitre Inc. [41] .. 23
Table 7: Coverity Inc. defect rate study results [10]... 24
Table 8: Secunia Security vulnerability report [81].. 26
Table 9: Server challenges to deploying Linux [34]... 29
Table 10: Free Linux support [41] .. 30
Table 11: National ITS Architecture ATMS benefits matrix [92] .. 36
Table 12: RIITS data available via web services [49] .. 48
Table 13: Anticipated ATC applications [36]... 63
Table 14: Standards of potential use for Caltrans ATMS... 87

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xiii

DISCLAIMER/DISCLOSURE
The research reported herein was performed as part of the Advanced Highway Maintenance

and Construction Technology (AHMCT) Research Center, within the Department of Mechanical
and Aeronautical Engineering at the University of California – Davis, and the Division of
Research and Innovation at the California Department of Transportation. It is evolutionary and
voluntary. It is a cooperative venture of local, State and Federal governments and universities.

The contents of this report reflect the views of the authors who are responsible for the facts
and the accuracy of the data presented herein. The contents do not necessarily reflect the official
views or policies of the State of California, the Federal Highway Administration, or the
University of California. This report does not constitute a standard, specification, or regulation.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xv

LIST OF ACRONYMS AND ABBREVIATIONS
Acronym Definition
AASHTO American Association of State and Highway Transportation Officials

ADIS deprecated, see ATIS
ADUS Archived Data User Services

AHMCT Advanced Highway Maintenance and Construction Technology
AMTICS Advanced Mobile Traffic Information and Communications System

APTA American Public Transportation Association
APTS Advanced Public Transportation System

ArcSDE An ESRI Inc. proprietary mapping product
ARTCC Air Route Traffic Control Center (FAA)
ARTS Automated Radar Terminal System
ASOS Automated Surface Observing System
ATC Advanced Transportation Controller
ATIS Advanced Traveler Information System

ATMS Advanced Traffic Management System
AVCS Advanced Vehicle Control System
AWOS Automated Weather Observing System
BIOS Basic Input Output System, a ROM chip
BSD Berkeley Software Distribution

CACS Japanese Comprehensive Automobile Traffic Control System
Caltrans California State Department of Transportation
CCTV Closed-Circuit TeleVision
CEO Chief Executive Officer
CHP California Highway Patrol
CIO Chief Information Officer
CLI Common Language Infrastructure

CMS Changeable Message Sign
COPAMS Commonwealth of Pennsylvania Air Monitoring System

COOP NWS’ Cooperative Observer Program
COTS Commercial Off-The-Shelf Software
CVO Commercial Vehicle Operations

CWOP Citizen’s Weather Observation Program
DEP Department of Environmental Protection
DMS Display Message Sign
DoD Department of Defense
DRI Caltrans’ Division of Research and Innovation

DRIVE Dedicated Road Infrastructures for Vehicle Safety in Europe
DTMC Distributed Traffic Management Center
ECMA European Computer Manufacturers Association
ERGS Electronic Route Guidance System

ERTICO European Road Transport Telematics Implementation Coordination Organization
ETMS Enhanced Traffic Management System (FAA)
FAA Federal Aviation Administration

FHWA Federal Highway Administration

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xvi

Acronym Definition
FMCSA Federal Motor Carrier Safety Administration

FOSS Free and Open-Source Software
FSF Free Software Foundation
FTA Federal Transit Administration
GCC GNU Compiler Collection

GDAL Geospatial Data Abstraction Library
GIF Graphics Interchange Format
GIS Geographic Information System

GML Geography Markup Language
GNU The GNU Project (stands for GNU’s Not Unix)
GPL Free Software Foundation’s General Public License

GRASS Geographic Resources Analysis Support System
GST Global System for Telematics
GUI Graphical User Interface

HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDEA Innovations Deserving Exploratory Analysis
IEC International Engineering Consortium

IMAP Internet Message Access Protocol
IOUG Independent Oracle Users Group

IP Internet Protocol
IRIS Intelligent Roadway Information System
ISO International Standards Organization

ISTEA Intermodal Surface Transportation Efficiency Act
IT Information Technology

ITE Institute of Transportation Engineers
ITS Intelligent Transportation Systems

ITS-4 4th generation ITS Technologies
IVHS Intelligent Vehicle Highway System, deprecated, see ITS
J2EE Java Platform, Enterprise Edition
JDK Java Development Kit

JEMS JBoss Enterprise Middleware System
JMS Java Messaging Service
JNI Java Native Interface

JPEG Joint Photographic Experts Group, lossy image compression
JSP Java Server Pages
JVM Java Virtual Machine
KML Keyhole Markup Language

LAMP Software stack consisting of: Linux, Apache, MySQL, and Perl/PHP/Python
LEAPS Lazy Evaluation Algorithm for Production Systems

MIT Massachusetts Institute of Technology
MOTS Modifiable Off-The-Shelf Software

MPEG-2/3/4 Moving Picture Experts Group codecs
MJPEG/M-JPEG Motion JPEG video codec

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xvii

Acronym Definition
MVCC Multi-Version Concurrency Control
NAS National Academy of Sciences

NCRST National Consortium on Remote Sensing in Transportation
NEMA National Electrical Manufacturers Association

NEXRAD NEXt-generation RADar, National Weather Service Doppler Radar
NFS Network File System

NGSIM FHWA’s Next Generation Simulation project
NOAA National Oceanic and Atmospheric Administration
NWS National Weather Service

NTCIP National Transportation Communications for ITS Protocol
OASIS Organization for the Advancement of Structured Information Standards
ODF OASIS Open Document Format
OGC Open Geospatial Consortium
OGR OSS library for reading vector files

OpenGIS Open Geospatial Consortium
OpenSSH Open Secure Shell
OpenSSL Open Secure Sockets Layer

OS Operating System
OSI Open Source Initiative
OSS Open Source Software

OSS/FS Open-Source Software / Free Software
OWL Web Ontology Language

PC Personal Computer
PDA Personal Digital Assistant
PHP PHP Hypertext Preprocessor, a popular programming language
PPC Power PC

PROMETHEUS Program for European Traffic with Highest Efficiency and Unprecedented Safety
RACS Road/Automobile Communication System
RAM Random Access Memory
RDF Resource Description Framework

RDF-S Resource Description Framework Schema
RDP Remote Desktop Protocol
RFC Requests For Comments
RFQ Requests For Quotation

RIITS Regional Integration of Intelligent Transportation Systems (see pg. 48)
RISC Reduced Instruction Set Computer
ROI Return On Investment

ROM Read Only Memory
RTD Remote Traffic Detector

RTMC Regional Transportation Management Center
RWIS Remote Weather Information System / Roadway Weather Information System
RWS Remote Weather Station

SAFE-T Statewide Analysis For Engineering and Technology, Oklahoma application
SAFETEA-LU Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xviii

Acronym Definition
SensorML Sensor Model Language

SHP ESRI Inc. vector shape file format
SOAP Simple Object Access Protocol
SOS Sensor Observation Service

SPARC Scalable Processor ARChitecture, Sun Microsystems Inc.
SPARQL SPARQL Protocol and RDF Query Language

SPS Sensor Planning Service
SQL Structured Query Language
SSL Secure Sockets Layer
SVG Scalable Vector Graphics
SWT Standard Widget Toolkit
TCIP Transit Communications Interface Profile

TCP/IP Transmission Control Protocol/Internet Protocol
TEA-21 Transportation Equity Act for the 21st Century
TEXAS Traffic EXperimental and Analysis Simulation

TMC Traffic Management Center
TransducerML Transducer Markup Language

TRB Transportation Research Board
UCD University of California Davis
USB Universal Serial Bus

USDOT U.S. Department of Transportation
VDOT Virginia Department of Transportation

VERTIS Japanese VEhicle, Road and Traffic Intelligence Society
VNC Virtual Network Computing
W3C World wide web consortium
WFS Web Feature Service
WMS Web Mapping Service

WRRHAMS Weather-Related Road Hazards Assessment and Monitoring System
WSDL Web Service Description Language

x86, x86-32 Commodity Intel, AMD, and compatible microprocessors
x64, x86-64 Commodity 64-bit Intel, AMD, and compatible microprocessors

XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language and Transformation

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xix

ACKNOWLEDGEMENTS
The authors thank the California State Department of Transportation for their support; in

particular, the guidance and review provided by the Open ATMS project team and Technical
Advisory Group. The authors also acknowledge the dedicated efforts of the AHMCT
development team members. Special thanks to Chad Bahrmann, Mohammed Bendelhoum, Alan
Benson, David Cordone, Sean Coughlin, Jason Ellison, David Gibson, Mark Hallenbeck, Roya
Hasas, Joe Havlicek, Robert Huck, James Kranig, Gene McHale, Bibiana McHugh, Jeff McRae,
Dan Middleton, Val Noronha, Carlos Palau, Brian Park, Cesar Perez, Brian Simi, Stan Slavin,
Brian Smith, Trey Tillander, and Fred Yazdan.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxi

EXECUTIVE SUMMARY

Purpose

The purpose of this report is to summarize developments in Advanced Traffic Management
System (ATMS) software and hardware as it relates to OSS (open-source software) and multi-
source commodity servers based on the Intel x86 architecture. Case studies are discussed for
ATMS and Intelligent Transportation System (ITS) projects that use OSS and commodity
hardware. The authors recommend review of the cited references to gain a deeper understanding.
Many of the cited references are available online, with links provided in the references. The
authors also recommend using an Internet search engine to gain familiarity with new terms,
concepts, and acronyms (see also pg. xv). The online encyclopedia Wikipedia may also be
helpful (en.wikipedia.org).

What is Open-Source Software?

Open-source software (OSS)1 is software that is distributed with its source code and is free
(to all) or low-cost. Open-source software is enhanced and maintained by a community, an
organized group of unpaid volunteers who contribute, maintain, and enhance it. Popular
examples of OSS projects are the Linux operating system, the GNU (GNU’s Not Unix) project,
the MySQL database, and the Apache web server.2 Open-source communities typically have
defined rules on how they operate. For example, project leaders are responsible for deciding
which features will be included in subsequent versions. OSS projects use a special type of
copyright license that preserves every user’s access to software source code.3 The most popular
open-source copyright license is the GPL (General Public License).4 Open-source licenses
ensures communal ownership of the source code and many open-source licenses protest
communal ownership of derivative versions [61]. The key idea underlying OSS is that software
is a kind of knowledge that is freely shared with and advanced by anyone interested in
contributing [107]. In contrast, the traditional proprietary (retail) view of software source code is
analogous to a manufacturing blueprint, and must therefore be protected and hidden from
competitors. The ability to easily share source code and knowledge is a key attribute of the OSS
approach, which produces a number of unique benefits.

The history of OSS is rich and has its roots in the creation of the ARPANET (the first packet-
switched network), AT&T’s Unix, Berkeley’s BSD (Berkeley Software Distribution) Unix, the
GNU project, and the Linux open-source operating system.5 Netscape’s decision in 1998 to open
the source of their Internet browser was also an important event for the open-source approach.

1 Throughout this report, we will use “open-source” where grammatically appropriate. However, it is important to
note, e.g. for Internet searches, that many popular references use strictly “open source”, i.e. with the hyphen omitted.
2 See www.linux.org, www mysql.com, and www.apache.org.
3 Appendix D (pg. 89) discusses OSS licenses in more detail.
4 For a description of the GPL copyright license, see www.gnu.org/copyleft or en.wikipedia.org/wiki/GPL.
5 For detailed accounts of the origins of OSS, see E.S. Raymond, The Cathedral and the Bazaar (available at
www.catb.org/~esr/writings/cathedral-bazaar/), and G. Moody, Rebel Code.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxii

Current Developments in Open-Source Software

OSS use is growing and shaping industry developments. The top three reasons cited for
Linux use on servers are low cost (78%), reliability (74%), and performance (73%) (see Table 2,
pg. 12) [7]. The top three reported concerns with Linux on servers are technical knowledge of
staff (35%), compatibility with existing software (33%), and problems related to multiple
versions of Linux (24%) (see Table 9, pg. 29). Among software developers, MySQL is
approaching majority market share (44%), an increase of 25% between April and October of
2005 [40]. The Independent Oracle Users Group (IOUG) in a survey in early 2006 found that
44% of respondents will be running their Oracle databases on Linux in the next twelve
months [106]. Linux is currently in use as a server operating system at 49% of companies
polled [7]. The remainder are either pilot testing or will be in twelve months (23%), or have no
plans (28%). Both IBM and Oracle certify and support their databases on Linux. Oracle offers
their complete product line on Linux. Oracle has chosen to “bear hug” OSS rather than fight it,
with Oracle’s CEO, Larry Ellison saying “we are moving aggressively into open source. We are
embracing it. We are not going to fight this trend. We think if we’re clever, we can make it work
to our advantage” [65]. Oracle has recently purchased OSS companies Sleepycat Software and
Innobase with the strategy of generating revenue through service and support rather than initial
or ongoing licensing fees. The OSS approach to software development is clearly having a large
impact on the information technology market, and will continue to drive change.

How is Open-Source Software Different?

Sharing software source code increases efficiency by sharing costs and development risks
with other interested organizations and individuals. However, organizations must be selective
about which software they share. A useful distinction is between differentiating and non-
differentiating software [87]. Differentiating software is software that distinguishes a company
from its competitors for potential customers. In contrast, non-differentiating software is
irrelevant to customer’s evaluation of a company. For example, Excel is differentiating software
for Microsoft’s customers because it enhances (or differentiates) their view of Microsoft
compared to competitors. The internal accounting software Microsoft uses is non-differentiating
software for customers because it has no effect on how customers perceive Microsoft. This
distinction is important because organizations have nothing to lose and much to gain by sharing
(via OSS) their non-differentiating software. Sharing non-differentiating software increases
efficiency because it enables spending additional resources on differentiating software, which
enhances the organization’s value to customers.

Comparing traditional retail closed-source (proprietary) software development with the OSS
development model is beneficial. The OSS development model distributes development risks and
costs among contributors. In contrast, proprietary software developers assume complete
development risk and incur costs prior to shipping a product. New OSS projects with no
collaborators are similar to the retail model. OSS tends to be more cost-efficient compared to
retail development—every dollar spent is a dollar spent on software development. This contrasts
with a company like Oracle, which spends about 13% of total revenue (the customer’s money)
on research and development.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxiii

A distinctive attribute of the OSS development model is a tendency to reduce customer lock-
in. Lock-in is a term used in economics to describe a situation in which a customer or vendor
faces high costs to switch products or technologies. OSS reduces lock-in in four ways. 1) There
is no motivation for OSS contributors to introduce non-standard hooks to increase lock-in
because there is no revenue motivation. 2) OSS contributors are inherently more interested in
following and forming standards because this increases the desirability of the software to others,
which encourages further contributions, more users, and increased benefits for everyone. The
standards-following nature of OSS is an especially strong incentive for State, Federal, and local
governments, which are often charged with following standards. 3) OSS markets are typically
competitive and healthy with a large number of products from which customers can choose. 4)
OSS projects tend to be portable because source code is available and projects are written for
multiple platforms. This makes it relatively easier for customers to switch operating system
platforms. Finally, by offering a free or low-cost substitute, an OSS product will tend to have a
damping influence on proprietary product cost.

Another distinctive attribute of the OSS development model is how innovation is created.
Generating innovation is a two-step process involving the creation of variations, followed by
effective selection among these variations [61]. The OSS development process encourages
innovation for a variety of reasons. The source code is available, which lowers barriers for
worldwide personal participation. This tends to create a large and diverse group of contributors,
for example academic researchers, students, hobbyists, government employees, etc. In addition,
OSS projects tend to have a pervasive pragmatic attitude among group members. These factors
and a complete lack of restrictions for contributors create a high degree of innovative variation.
Effective selection among this variation is a competitive process based completely on what
contributors, users, and developers find interesting and useful. New useful features and
enhancements generate interest and attention, resulting in incorporation into subsequent versions.
Because source code is available, innovations can more easily flow between different OSS
projects. The innovative nature of the OSS development process is particularly suited for
collaboration between government and research organizations.

What are Open-Source Software Strengths?

The OSS development model has a number of strengths, including reduced lock-in,
reliability, security, development efficiency, a tendency towards healthy competitive markets,
and a tendency towards the use of standards. This is a subset of benefits cited in other sources. In
a report for the Department of Defense, Mitre Corp. identified eight key strengths: massive
programming expertise, research and development covered by volunteer labor, an accepted
leadership structure, quick release rates, parallel development and debugging, maturity of code, a
culture of sharing, and long-term accessibility [63].

Increased reliability is often cited by OSS users as a primary benefit. It has been estimated
that software defects cost the U.S. economy $59 billion annually [2]. The OSS development
process creates software that tends to have fewer defects, with discovered defects repaired
faster [89]. The basis of the OSS development process (see Section 4) is peer review of code and
the ability of anyone to find defects and forward patches to developers. OSS communities have
developed effective methods to test and validate patches via a large and active developer and
user base (a key factor, as noted herein). The effectiveness of peer-reviewed development has

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxiv

been quantified in a three-year $1.24 million study for the Department of Homeland Security
called the “Vulnerability Discovery and Remediation Open Source Hardening Project” [79]. This
program is part of a larger Federal effort to perform security audits of approximately 40 open-
source software packages such as Linux, MySQL, and Apache. The project uses automated
source code scanning tools (from Coverity Inc.) which are based on research by Stanford
University. The mean number of defects per 1000 lines of source code in 32 open-source projects
was found to be 0.434 [38]. MySQL was found to have .224 defects per 1000 lines of code,
which is four times better than typical commercial software. Defect rates for popular OSS
projects are shown in Table 7 (pg. 24). There is an inverse relationship between the number of
users an OSS project has and the defect rate. The OSS development process also produced rapid
repairs of discovered defects [50].

Increased security is another primary benefit often cited by OSS users. When considering the
security of any system, healthy skepticism is in order—ultimately security depends on
knowledgeable, skilled, and paranoid system administrators. A qualitative approach is one way
of evaluating security. Using this approach indicates a clear security preference for OSS among
system administrators and Chief Information Officers (CIOs) over proprietary software [63].
However, there is healthy skepticism whether disclosing source code makes the system more
secure [109], while at the same time there is healthy skepticism that not disclosing source code
provides too great of a temptation for proprietary software vendors to hide numerous and critical
security vulnerabilities. Quantitatively, OSS security advisories are repaired faster. The corporate
security provider Secunia Inc. tracks and reports security advisories for a number of OSS and
proprietary software products [27].

Table 8 (pg. 26) shows the number of unpatched and patched security advisories for a
number of products. The data shows that the OSS products were rapidly repaired following
discovery of vulnerabilities. At the time of this writing, the LAMP (Linux, Apache, MySQL, and
PHP) stack, consisting of Red Hat ES 5/SUSE, Apache, MySQL, and PHP, contained two
unpatched advisories. By comparison, over a five-month period Microsoft’s Windows XP
reduced its number of unpatched advisories by one, down to 28. Some of these advisories are
rated as “highly critical.” The quantitatively lower defect rate and faster repair rate of OSS is
strong objective evidence of superior security.

Increased efficiency is another strength of the OSS development model. For developers, the
availability of existing software code that can be enhanced improves efficiency. The accessibility
of OSS over the Internet through a simple download is also powerful. No purchase requisition
forms are required—this can be a significant time and cost savings in an organization. An
individual with time, skill, and an Internet connection can solve previously unsolvable problems.
Updates can be provided automatically using the base operating system’s update manager
capabilities. On a State or National level, one can imagine the benefits from a National ATMS
open-source effort in which individual State DOTs contribute their best functionality or
components. Potentially, each DOT could gain from the best that every other state could
contribute, a net gain for all, including the traveling public.

A healthy ITS market is one of the six primary goals of the National ITS program [6]. By
definition, a market includes both buyers and sellers [98]. A healthy market results when the
benefit for both buyers and sellers is maximized over the long run. The use of OSS in ATMS

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxv

contributes to a healthy ITS market in a number of ways. First, there are no (or small) software
acquisition costs, which frees funds for more productive uses, such as adding features. Second,
the use of OSS products facilitates cooperation and development between cost-constrained
universities and DOTs. Third, the use of OSS enables contributions, such as enhancements and
added features, to OSS projects from which other users (e.g. other DOTs) benefit. Fourth, DOTs
would experience less software lock-in (see Section 4, pg. 15).

The use and development of ATMS standards is crucial for the healthy development of the
ATMS market and interoperability (see ITS Standards in Section 7). Because OSS is intrinsically
about sharing knowledge, there is inherent motivation to use and develop standards. Any DOT,
consultant, or university researcher contributing to an OSS project would want their
contributions to be included in subsequent versions of the product. Contributions that do not
conform to existing standards are much less likely to be used by others and less likely to be
included. Further, potential enhancements to OSS projects that ignore standards tend to increase
lock-in, which users avoid and view as a dead-end (see “Lock-in” in Section 4).

What are Open-Source Software Concerns?

Any new or disruptive technology has a number of concerns. Key concerns about OSS
include lack of trained staff, inconsistent quality, and support. Other concerns have been reported
elsewhere. For example, Mitre reports OSS weaknesses as: lack of ownership, difficulty in
starting new OSS projects, and less user-friendliness [63]. Table 7 (pg. 29) shows top issues
reported in a 2005 study of Linux deployment on servers [7]. Deployment issues that are
addressable by commercial markets can be expected to improve. For example, a key concern in
2002 was a lack of vendor support, which was addressed by the market by 2005.

A sufficient number of trained staff can be a problem if an organization has no Unix or Linux
experience. Nearly all college graduates in computer science or engineering have some amount
of experience with Linux. This trend is expected to improve. Training for existing staff is
available from a number of vendors. The FAA used this approach in their conversion of the
Enhanced Traffic Management System to OSS (see the case study, pg. 44). Sticking with
mainstream OSS applications (e.g. MySQL, Eclipse, PHP, etc.) increases the pool of potentially
available trained staff, as well as available support through online forums.

Inconsistent quality is a concern for new OSS projects, or projects with fewer users and
developers. There is a clear relationship between project code quality and the number of users.
This also carries over to support, documentation, and security concerns. New OSS projects also
face an origination problem—it is difficult to attract users and developers to small projects.

Support is often crucial for project success. The availability of support has dramatically
improved since 2002 when it was a top issue. Both paid support and free support (Table 8, pg.
30) are available for hardware, Linux, and mainstream applications such as MySQL. A unique
feature of the paid open-source support market is its competitive nature, which results from the
availability of source code, lowering entry barriers for new firms. Of particular importance to
California, Oracle’s support for Linux is extensive—all Oracle products are available on Linux
with full support.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxvi

What is ATMS?

The field of Advanced Traffic Management Systems (ATMS) is a primary subfield within
the Intelligent Transportation System (ITS) world. The ATMS view is a top-down management
perspective that integrates technology primarily to improve the flow of vehicle traffic and
improve safety. Real-time traffic data from cameras, speed sensors, etc. flows into a
Transportation Management Center (TMC) where it is integrated and processed (e.g. for incident
detection), and may result in actions taken (e.g. traffic routing, CMS messages) with the goal of
improving traffic flow. The National ITS Architecture defines the following primary goals and
metrics for ITS [6]:

• Increase transportation system efficiency,

• Enhance mobility,

• Improve safety,

• Reduce fuel consumption and environmental cost,

• Increase economic productivity, and

• Create an environment for an ITS market.

ATMS History

In 1956, the National Interstate and Defense Highways Act initiated a 35-year $114 billion
program that designed and constructed the Interstate highway system. This hugely successful
program was mostly complete by 1991, and the era of build-out was over. In the mid to late
1980s transportation officials from Federal and State governments, the private sector, and
universities began a series of informal meetings discussing the future of transportation. This
included meetings held by the California State Department of Transportation (Caltrans) in
October of 1986 to discuss technology applied to future advanced highways [112]. In June of
1988 in Washington, DC, the group formalized its structure and chose the name Mobility
2000 [93]. In 1990, Mobility 2000 morphed into ITS America, the main ITS advocacy and policy
group in the US. The initial name of ITS America was IVHS America and was changed in 1994
to reflect a broader intermodal perspective [111].

The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) was the first post-build-
out transportation act. It initiated a new approach focused on efficiency, intelligence, and
intermodalism. It had a primary goal of providing “the foundation for the nation to compete in
the global economy” [60]. This new mixture of infrastructure and technology was identified as
an Intelligent Transportation System (ITS) and was the centerpiece of the 1991 ISTEA act. ITS
is loosely defined as “the application of computers, communications, and sensor technology to
surface transportation” [59]. Subsequent surface transportation bills have continued ITS funding
and development. In 2005 the SAFETEA-LU (Safe, Accountable, Flexible, Efficient
Transportation Equity Act: A Legacy for Users) surface transportation spending bill was signed
into law.6 It continues healthy ITS implementation and research funding.

6 See www.fhwa.dot.gov/safetealu.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxvii

ITS Standards

National nonproprietary standards are crucial for the healthy development of the ITS
market [94]. Standards define what information is open and shared for participants. To meet ITS
standardization needs the U.S. Department of Transportation initiated development of the
National ITS Architecture in 1994. The National ITS Architecture provides a common
framework for ITS development by defining systems and subsystems and the data that flows
between them. The 2005 SAFETEA-LU surface transportation bill continues strong support of
the National ITS Architecture: “to the maximum extent practicable, the national architecture
shall promote interoperability among, and efficiency of, intelligent transportation system
technologies implemented throughout the United States.”7 In 2001, the TEA-21 act stipulated
denial of Federal funding for any ITS project that does not conform to the National ITS
Architecture. SAFETEA-LU continues this requirement.8

ATMS Trends

Trends in ATMS and ITS are driven both internally by customer needs and externally by
advances in technology. Semiconductor process technology continues to lower power
requirements, reduce chip size, and double performance about every 18 months. This is
simultaneously pushing decentralization of processing intelligence and commoditization of
sensors, processors, and communication. These are combined to produce results in real time, and
have been described as next-generation “ITS-4” technologies [96]. The commoditization of
hardware parallels the commoditization of software in the form of OSS. For example, the
Advanced Transportation Controller (ATC) standardization effort is taking advantage of these
trends by using commodity hardware and OSS (case study, pg. 63). Commodity IP video
cameras are another example and are referenced in several case studies.

Trends inside the ATMS market are continuing to push change. As ITS build-out continues
into lower-density population areas, cost-sensitivity increases—the primary obstacle to
implementing ATMS is no longer technology, it is cost. This is exemplified by California’s
hesitation to implement its existing ATMS system in all twelve districts. Other trends are the
increased use of standards and increasing ITS interoperability requirements. Finally, increasing
Homeland Security requirements appear to be a long-term trend driving some ATMS functional
requirements such as video surveillance.

Case Studies of ITS Software Projects Using Open-Source Software

This section discusses case studies of closed-source ITS software projects that use open-
source software, which are distinct from projects that are open-source projects. For example, the
projects might use MySQL, Linux, Apache, etc. along with developed software code to build the
application. The developed source code is not shared with other organizations. The focus here is
on ATMS projects; however, other related projects are discussed. It is significant that many of
the projects listed here are explicitly low-cost and many are associated with research
organizations. This is significant because research organizations tend to be more cost-constrained

7 See www.fhwa.dot.gov/safetealu, section 5307, subsection A.
8 See the SAFETEA-LU Public Law, www fhwa.dot.gov/safetealu, section 5307, subsection C.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxviii

than State DOTs. It is clear that the increased use of OSS by State DOTs will increase the flow
of innovation, ideas, and new developments between DOTs and research institutions, benefiting
both, and the traveling public.

The Virginia Web-based Congestion Monitoring ATMS project is implemented using OSS
by the Smart Travel Lab at the University of Virginia [95]. The project was completed in
September of 2003. It uses an existing Oracle database for historical traffic data, and the OSS
database MySQL for real-time data. MySQL was used to lower the load on the existing Oracle
database and to reduce Oracle licensing fees [86]. MySQL was also used because it was “free,
reliable, easy to use, [and] has [a] large user base” [85].

The Oklahoma Statewide Distributed Low-cost ITS project is implemented using OSS. It
uses a novel distributed architecture. It is being developed by the University of Oklahoma [57].
Cost was a major concern, so a distributed ITS was designed to keep costs low. The guiding
design philosophy is that “any console should be able to control any system resource at any
time.” This enables the elimination of an expensive centralized TMC. Operators are connected
by a peer–to-peer network into a virtual, geographically distributed, and fault-tolerant TMC. The
ITS console runs on commodity x86 hardware, Microsoft Windows XP, and the following OSS
products: Apache, PHP, MySQL, and the MapServer GIS.9

The Oklahoma SAFE-T (Statewide Analysis For Engineering and Technology) Accident
Analysis System is a project that uses OSS [99]. The Oklahoma Department of Transportation is
funding the development for traffic engineering decision-support [99]. It is presently being used
by the Oklahoma DOT, the Oklahoma Highway Patrol, and municipal and local traffic engineers
statewide. The goal is to reduce crashes using automated traffic analysis of highway
enhancements and construction. The system uses the OSS MySQL database and MapServer GIS
products [56,58]. The University of Oklahoma is developing the system.

The Oklahoma ATIS (Advanced Traveler Information System) System is a project that uses
OSS and is being developed by the University of Oklahoma [103]. It will provide real-time
traffic data for Oklahoma City and will be used by TMC personnel and the traveling public. The
system will provide real-time average speed, road conditions, construction information, and web-
cam images. The system is implemented with the OSS database MySQL, the Apache web server,
and the MapServer GIS [56].

The Minnesota IRIS Intelligent Roadway Information System (IRIS) is an ATMS project that
uses OSS and was developed by the Regional Transportation Management Center (RTMC)
within the Minnesota DOT (Mn/DOT). IRIS provides ramp metering, incident detection, and
CMS control. It uses Linux and the OSS database PostgreSQL10, and is implemented with Java.
The client displays a GUI road map and is supported on Linux and Windows. Commodity x86
hardware is used, including PCI-based serial communication with field elements. Mn/DOT’s
RTMC implements all of their software projects using OSS and is interested in collaborative
partnerships with other DOTs or organizations. Other RTMC projects are using Apache, Tomcat,

9 See mapserver.gis.umn.edu.
10 See www.postgresql.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxix

Batik, Hibernate, Struts, Velocity, Ant, Eclipse, Python, and Mercurial.11 Reported benefits of
their OSS approach are low initial and recurring costs, and the ability to customize the software.
Software stability and reliability are also reported to be high.

A relevant case study is the Federal Aviation Administration’s (FAA) recent technical refresh
of their Enhanced Traffic Management System (ETMS), which offers insight into what is
possible using commodity x86 hardware and OSS. During the technical refresh in 2004 and
2005, the FAA replaced all proprietary RISC (Reduced Instruction Set Computer) workstations
with commodity x86 workstations running Linux, reducing costs from $25,000 to $3,000 per
workstation. The ETMS system has 1,200 workstations scattered across 100 sites. Also,
1.5 million lines of software code were ported to Linux [16]. The initial cost estimate for the
technical refresh of the original proprietary RISC system was $25 million; however, the project
was achieved with $10 million. In addition, performance improved substantially [13].

The Weather-Related Road Hazards Assessment and Monitoring System (WRRHAMS) is a
project that uses OSS and was funded by the National Consortium on Remote Sensing in
Transportation (NCRST) [20]. The project goal was to develop a web-based application “for
identifying and visualizing transportation infrastructure locations in danger of having been
damaged by precipitation events” for rural unpaved roads in New Mexico [114]. The system was
implemented using Linux and the OSS GIS GRASS (Geographic Resources Analysis Support
System).12

The Pennsylvania Hourly Mesonet, which also uses OSS, is a centralized repository of
historic and real-time weather station data maintained by the Pennsylvania State Climatologist13.
Hourly data is received from approximately 160 networked weather stations (Figure 18) across
Pennsylvania which report temperature (Figure 19), wind direction, wind speed, and other
information [102]. Processed data includes wind streamlines, temperatures, dew-point contours,
and associated time series. The project used the OSS Perl scripting language, Apache web server,
MySQL database, and Red Hat Enterprise Linux operating system.

The Los Angeles County RIITS (Regional Integration of Intelligent Transportation Systems)
project is implemented with OSS and has a primary goal of increasing the effectiveness of
investments already made in electronic information systems and transportation systems through
the real-time exchange of traffic and transportation data. Agencies involved are Caltrans, the
California Highway Patrol, the City of Los Angeles Department of Transportation, and the Los
Angeles County Metropolitan Transportation Authority. RIITS uses an innovate approach with
extensive use of web services and XML for data integration. OSS used includes Red Hat Fedora
Linux, JDK 1.4 (Java Development Kit), Apache Tomcat JSP (Java Server Pages) Server, and
the Apache Axis SOAP provider [70].

 The University of Maryland CATT Laboratory (Center for Advanced Transportation
Technology) is developing RITIS (Regional Integrated Transportation Information System)

11 See www.apache.org, tomcat.apache.org, xmlgraphics.apache.org/batik, www hibernate.org, struts.apache.org,
jakarta.apache.org/velocity, ant.apache.org, www.eclipse.org, www.python.org, www.selenic.com/mercurial.
12 See grass.itc.it.
13 See the Pennsylvania Mesonet site at pasc.met.psu.edu/MESONET.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxx

using open-source software14. The goal of RITIS is to improve transportation efficiency, safety,
and security by integrating existing real-time and archival regional transportation data from
Virginia, Maryland, and the District of Columbia, among others (see Figure 21). RITIS is built
using Apache, PHP, MapServer, PostgreSQL, the JBoss Application Server, MySQL, JDOM,
and Log4J. The CATT Laboratory makes extensive use of OSS.

The University of Maryland CATT Laboratory is developing an incident management system
using open-source software for the Virginia Department of Transportation (VDOT). This
incident management system was design and developed rapidly to meet VDOT’s immediate
TMC software needs until a full featured solution is developed. It was developed using the
Apache HTTP Server, PHP, MapServer, PostgreSQL, AMFPHP, and the Wildfire Server.

Case Studies of ITS Open-Source Software Projects

This section discusses case studies of ITS software projects that are open-source software
projects. The prior section covered closed-source software projects that use open-source
software. Projects discussed here are explicitly organized to share project artifacts: source code,
datasets, test results, etc., with a community of users who may contribute to the project in some
form. The community benefits from these contributions. These projects use an OSS license to
grant users access to project artifacts. See Appendix D for information on open-source licenses
(pg. 89). The focus here is on ATMS projects; however, other related projects are discussed.

The MIT Open-Source MITSIMLab Traffic Simulator is an open-source project that is
implemented using OSS. It is developed by MIT’s Intelligent Transportation Systems Program
and is used to evaluate ATMS and ATIS systems [75]. MITSIMLab uses an open-source license
that requires modifications and enhancements to be posted in the public domain. Support for the
open-source version is provided by a public newsgroup that has 45 members as of May 2006.

The Federal Highway Administration’s Next Generation Simulation program (NGSIM) uses
the open-source approach by releasing some project products using an open-source license and
encouraging community involvement. It is openly sharing data sets, documentation, and
algorithms with the transportation community. Program goals are to improve traffic simulation
tools, promote the use of simulation, and ensure the accuracy and trust of traffic simulation tools
by providing validated simulation results. The NGSIM program uses the Creative Commons
copyright license,15 which is similar to the GNU GPL license. It grants users redistribution rights
and requires attribution.

The TEXAS (Traffic EXperimental and Analysis Simulation) intersection simulation model
is an open-source project. In May of 2003 the United States Department of Transportation
(USDOT) requested enhancements to the TEXAS microscopic single intersection simulation
model [3]. The TEXAS simulator models sub-microscopic behavior of vehicles as they pass
through intersections and mix with other traffic flows. The source code for this project is
licensed using the Free Software Foundation’s (FSF) open-source GPL license.

14For the University of Maryland CATT Laboratory, see www.cattlab.umd.edu.
15 See Appendix D (pg. 89) for more information and creativecommons.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxxi

The University of Washington Urban Simulation and Modeling Project is an open-source
project. UrbanSim is developed by the Center for Urban Simulation and Policy Analysis at the
University of Washington, Seattle16. UrbanSim models economic relationships between actors
such as households, businesses, developers, and government policies. UrbanSim uses the OSS
projects Python, MySQL, and GDAL. It has been tested with Windows XP, SUSE Linux, and
Mac OS X. UrbanSim uses the GPL open-source license.

The Dynamic Timetable Generator project is a prototype proof-of-concept open-source
project from the TRB IDEA (Innovations Deserving Exploratory Analysis) program. The goal of
the project is to provide a general-purpose open-source tool that dynamically generates transit
timetables for customers accessing a transit web site. Developed software code will be licensed
using an open-source license.

 The TimeTable Publisher is an open-source project of the Oregon Tri-County
Metropolitan Transportation District (TriMet). The goal of TimeTable Publisher is to provide a
general-purpose open-source tool that dynamically generates transit timetables for customers
accessing a transit web site. TimeTable Publisher is based on some ideas from TRB’s prototype
IDEA project, and has benefited from a number of lessons learned during the prototype. TriMet
will release TimeTable Publisher using an open-source license. TriMet uses OSS extensively and
reports a number of positive technical and organizational benefits.

Case Studies of ITS Hardware Projects Using Open-Source Software

This section discusses case studies of ITS hardware projects that use OSS in some way. The
focus is on ATMS-related projects; however, other transportation-related projects are discussed.

Peek Traffic Inc. sells a Linux-based automatic traffic data recorder, the ADR-6000 [24]. It is
a rack-mount unit with a Pentium-class processor. The Texas Transportation Institute performed
an evaluation of the ADR-6000 and three similar units [44]. The researchers noted that the unit
was comparable to the others and fell near the bottom of the price range.

The city of Valencia Spain recently deployed a traffic management system that uses OSS for
video streaming over TCP/IP [49]. The guiding philosophy used to build the system was to use
Commercial-Off-the-Shelf (COTS) hardware and OSS components that follow open standards
and avoid proprietary systems. TCP/IP video cameras using MPEG-4 were used, instead of
traditional closed-circuit TV (CCTV), to provide increased scalability, lower cabling costs, and
facilitate providing video streams to the public over the Internet. The system uses OSS: Linux,
MySQL, the video player VideoLAN Client (VLC), and the multimedia system FFMPEG17,
among others [83]. A diagram of the main system components is shown in Figure 31, pg. 64.

Case Studies of ITS Open-Source Hardware Projects

This section discusses case studies of ITS hardware projects that are open-source projects—
they attempt to build a community of users sharing software code, experience, improvements,

16 For UrbanSim, see cuspa.washington.edu.
17 See www mysql.com, www.videolan.org, and ffmpeg mplayerhq hu.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxxii

etc. The community benefits from these contributions. Projects in this category use some type of
OSS license to grant users access to project artifacts. See Appendix D for information on open-
source licenses (pg. 89).

The Advanced Transportation Controller (ATC) project uses OSS and is an OSS project. It is
a standardization effort initiated by the USDOT, and sponsored by the American Association of
State and Highway Transportation Officials (AASHTO), the Institute of Transportation
Engineers (ITE), and the National Electrical Manufacturers Association (NEMA). It has been
recognized as one of the most important emerging standards for the ITS community. The ATC
will provide an open software and hardware platform for a wide variety of ITS applications, and
is viewed as similar to a ruggedized field-deployed personal computer. Table 10 (pg. 63) lists
some anticipated applications. The ATC standard specifies the Linux operating system. The ATC
standardization effort is needed for several reasons. First, there is a growing need to integrate
controllers that were previously incompatible. Second, increasingly sophisticated ITS
applications require supporting a broader set of applications, faster communication, and the
ability to evolve over time. The ATC standard identifies these as broad ITS trends that are
pushing device intelligence closer to the field, and driving the need for field devices that can run
more sophisticated applications.

The European Global System for Telematics Open System project both uses OSS and is an
OSS project. ERTICO is the European equivalent to ITS America, and sets standards, funds
research, and coordinates projects. An ongoing project is the Global System for Telematics
(GST), which has the goal of facilitating the creation of an open market for in-vehicle ITS
services [15]. The GST Open Systems sub-project is delivering an open telematics framework
consisting of the specifications, architecture, and a reference implementation for in-vehicle
applications. The open telematics framework will be used by service providers, car
manufacturers, and mobile end-users. The project uses open standards and source, including the
JBoss J2EE application server, the SyncML synchronization standard, HTTP, Simple Object
Access Protocol (SOAP), TCP/IP, and the Eclipse development environment, among others. See
Figure 32 (pg. 65) for more information.

Conclusions

The ATMS and ITS markets are being driven both internally by customer needs and
externally by advances in technology (shown simplified in Figure 1 below, and in Figure 34, pg.
70). Some of the trend drivers are:

• Improvements in semiconductor process technology pushing commoditization of
sensors, processors, communication, and decentralization of processing intelligence,
providing the capability for real-time decision-making (also called “ITS-4”
technologies).

• Needs for lower-cost ATMS due to build-out into lower-density population areas.

• Ongoing needs to reduce congestion, lower accident rates, and increase mobility.

• Homeland Security requirements.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxxiii

Needs for…
•ATMS interoperability

•ATMS innovation
•ATMS standardization

•Lower initial and ongoing ATMS costs
•Decisions in real time

Changing technology
e g

Commoditization of sensors,
communications, processors,

“ITS-4”

Evolving customer needs
e g

•Continued ATMS build-out
•Increased safety and efficiency
•Homeland Security
•Etc

ATMS Trends

Open-Source Strengths
•Low cost, less lock-in
•Promotes innovation
•Promotes standards

•More reliable
•More secure

Trends drive needs…

Needs addressed by…

Figure 1: ATMS trends, needs, solutions (simplified)

These trends are driving needs for further innovation, better ATMS interoperability, more
and better real-time data, and the ability to make real-time traffic management decisions. These
needs are driving the necessity for software that is less expensive, but more secure, reliable,
standards-based, and innovative.

Improvements in safety, congestion, and efficiency have been achieved with ITS applications
and proprietary software. This report details the use of OSS to build ITS and ATMS applications.
Each of the ITS projects covered in the case studies used OSS in one of two ways. The first type
of project case study used open-source software to implement a closed-source application—ten
of the case studies used this approach. Project organization is more or less unchanged compared
to projects using proprietary products. The second type of project used open-source software to
implement an open-source application—five of the case studies used this approach. These
projects are organized to share project source code, datasets, test results, etc. with a community
of users who may contribute to the project in some form. The community as a whole benefits
from these contributions. Projects in this category use some type of OSS license to give a
community ongoing access to project artifacts.

Benefits provided by OSS and its unique development model must be balanced with a
consideration of some of the concerns, including lack of trained staff, less user-friendliness, and
inconsistent quality. An understanding of the OSS development model is crucial for setting
expectations. For example, benefits gained from peer review are proportional to the number of

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 xxxiv

individuals involved. As shown in the case studies, measured use of OSS with a consideration of
OSS strengths and concerns can provide immense benefits to an organization.

There are three conclusions reached here. First, a number of ATMS and ITS projects have
constructed applications using open-source software. For example, Minnesota’s IRIS ATMS,
Oklahoma’s Statewide distributed ITS, and the National ATC standard for field devices all use
OSS. In addition, others have used OSS to implement large and complex non-ITS applications.
Examples include the FAA’s technical refresh of the Nation’s Real-time Enhanced Traffic
Management System, and a number of corporations that run their businesses on OSS and
commodity hardware such as Google, E*TRADE, Sabre, Travelocity, Yahoo!, and Amazon.

Second, as summarized in Figure 1, some of the benefits reported in the case studies related
to the OSS development model parallel trends in ATMS and ITS. For example, high deployment
costs are a concern for continued ATMS build-out in California. The need for increasingly
sophisticated software applications in field devices and TMCs are also driving higher software
costs. These cost concerns parallel OSS cost benefits reported in some of the case studies (e.g.
see the Mn/DOT IRIS System, pg. 43). Reduced lock-in is closely associated with zero or low
software licensing costs. Needs for higher ATMS reliability and security parallel reliability and
security strengths reported with the OSS model, which may benefit ATMS applications.

Third, in the ITS field in general, there appears to be increasing interest in collaboration. This
parallels the general requirement that ATMS and ITS systems increase functional
interoperability. One-third of the cited case studies (5) are themselves open-source projects using
open-source licenses to ensure community access to artifacts. A number of individuals contacted
for this report and involved in the case studies expressed interest in sharing their proprietary
work with others in the form of open-source ATMS projects. The open-source development
model facilitates collaboration, the exchange of ideas, software code, and pooled funding which
spreads development risks. DOTs, cities, and counties may benefit from continuing this
collaborative approach. Collaborative access to source code may also increase competition
among prospective firms because of lowered entry barriers. Firms or individuals that did enhance
an OSS ATMS could not claim a proprietary right to the source code they wrote, potentially
reducing lock-in for State DOTs. However, adopted enhancements would gain them visibility
and recognition, which would increase their ability to win contracts for future enhancements.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 1

SECTION 1:
INTRODUCTION

The subjects of this report are Advanced Traffic Management Systems (ATMS), open-source
software (OSS), and the relationship between them. This report is the accumulated effort of a
task within a larger multi-year research study undertaken by the Advanced Highway
Maintenance and Construction Technology (AHMCT) Research Center at the University of
California, Davis (UCD). The project title is Research & Development of an Open-Source
Advanced Traffic Management System, with funding by the California State Department of
Transportation (Caltrans). The report objectives are to:

• Summarize the history and current developments in ATMS software and hardware as
it relates to OSS and commodity x86 hardware,

• Summarize the history, strengths, and weaknesses of OSS, and

• Summarize relevant ATMS hardware and software projects that use OSS, or are OSS
projects themselves.

This report assumes light familiarity with ATMS and Intelligent Transportation System (ITS)
concepts and less familiarity with software concepts. A brief introduction is provided to
disruptive technology and product cycles. Sources of information are research journals, reports,
news sources, web sites, and communication with individuals from State DOTs and research
institutions. The authors recommend review of the cited references to gain a deeper
understanding. Many of the cited references are available online, with links provided in the
references. The authors also recommend using an Internet search engine to gain familiarity with
new terms, concepts, and acronyms (see pg. xv). The online encyclopedia Wikipedia may also be
helpful (en.wikipedia.org).

Improvements that have been achieved in safety, congestion, and efficiency with ATMS and
proprietary software and hardware are impressive. This report implicitly asks the question: is it
reasonable to use OSS and commodity hardware to build ATMS applications to achieve further
benefits? Based on the information collected and analyzed for this report, the answer is yes. In
addition, it appears that unique benefits may be derived from the open-source development
model, such as increased innovation and collaboration among DOTs and research institutions,
enhanced ATMS market health, and increased interoperability.

Following this introduction, Section 2 discusses how and why technology markets change,
the nature of innovations, product lifecycles, disruptive innovation, and the commoditization of
the computer hardware market. Section 3 discusses OSS history and recent developments.
Sections 4-6 discuss how OSS development is different, software engineering, types of software
development, and OSS strengths and weaknesses. Section 7 discusses ATMS history, goals, and
trends. Finally, sections 8-11 discuss case studies of OSS use in ATMS and ITS hardware and
software projects.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 3

SECTION 2:
HOW AND WHY TECHNOLOGY MARKETS CHANGE

The computer hardware market is undergoing intense long-term change. Expensive RISC
(Reduced Instruction Set Computer) systems from Sun, IBM, and Hewlett-Packard are being
challenged. This raises a number of interesting general questions. What drives change? Can
companies adapt to changing markets? What are the customer benefits and risks of adopting
newer technology? This section attempts to address these questions, and is important for
understanding change in any technology market. Key conclusions are that the RISC/Unix
hardware market is being severely challenged by a disruptive technology: commodity hardware
and OSS. OSS also appears to have the traits of a disruptive technology for existing software
vendors.

The RISC/Unix market is less than 40 years old and relatively young. Another much older
market is faced with change from commodity hardware and open-source—the encyclopedia
market. The venerable Encyclopædia Britannica18 was first published in 1768. Britannica has
238 years of experience, 4,000 contributors, and approximately 120,000 articles in the online
version [14]. Compare this with Wikipedia, a free, online, and open-source encyclopedia that
anyone can easily edit. It has existed since 2001 and contains over one million entries in 200
languages [115]. Figure 2 shows Wikipedia’s growth rate. What about quality? There have been
complaints about accuracy, completeness, etc.19 However, the journal Nature performed a
comparative review of encyclopedia accuracy and found that “among 42 entries tested, the
difference in accuracy was not particularly great: the average science entry in Wikipedia
contained around four inaccuracies; Britannica, about three” [55]. To emphasize, Wikipedia
started in 2001, is free, has eight times the number of entries, is built by volunteers, is growing
exponentially20, and shows no signs of slowing. The good people of Britannica surely must be
asking themselves: what is happening? How is it possible their existence could be threatened by
a free encyclopedia?

Figure 2: Total Wikipedia Encyclopedia articles in all languages [115]

18 All products referenced in this report are registered, copyright, or trademark of their respective owners. These
marks are omitted throughout for conciseness.
19 For a list of complaints about Wikipedia quality, see: en.wikipedia.org/wiki/Wikipedia Sucks.
20 As of June 2006, Wikipedia is adding 62.8 new articles and 143.5 new users per hour. See www.wikiside.com.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 4

Innovations Are Sustaining or Disruptive

Open and competitive markets as diverse as encyclopedias, hard disks, accounting software,
mechanical excavators, and ATMS share a number of interesting traits. Exploring these traits is
worthwhile and important for understanding the present and future of ATMS, OSS, and the
relationship between them. To this end, Christensen’s concepts of product lifecycles, disruptive
innovations, and sustaining innovations are very helpful [39].

Consider any open market with competition. For example, motorcycles, disk drives, or
fishing reels. These markets can be characterized by a stream of innovations. Any innovation can
be characterized as sustaining or disruptive. Sustaining innovations extend the performance of
existing products using metrics customers already use to evaluate the products. For example,
adding additional cores to a microprocessor extends performance, which is a metric the customer
already uses to evaluate processors. Other sustaining examples are larger LCD monitors, word
processors with more features, and larger hard drives.

In contrast, disruptive innovations result in a change in the customer’s primary product
evaluation criteria. Familiar disruptive examples include the invention of the inexpensive
microprocessor (price was the new metric), a reduction in the physical size of hard drives (e.g.
1-inch drives used in cameras), and the bundling of previously separate productivity software
applications into the Office Suite by Microsoft (the new metric was convenience). Table 1 shows
other sustaining and disruptive examples.

Table 1: Sustaining and disruptive products [39]

Sustaining Technology Disruptive Technology
(relative to sustaining technology)

Processors built with logic boards Microprocessor
Traditional accounting software Quicken QuickBooks

Large motorcycles,
e.g. BMW, Harley-Davidson Honda 50cc Supercub (1960)

Circuit-switched networks Packet-switched networks
Traditional retailing Internet-based retailing
Integrated steel mill Mini-mill
Department stores Discount retailing, e.g. Kmart, Wal-Mart

Manned fighters and bombers Pilotless drones
Open surgery Arthroscopic and endoscopic surgery

Minicomputers Microcomputers
Vacuum tubes Transistors

Characteristics of Disruptive Products

Products based on disruptive innovations tend to have a number of unusual characteristics
that distinguish them from existing products. Disruptive products tend to be simpler, less
expensive, more reliable, and improving at a faster rate than traditional products. Because of
these properties, they are especially attractive to customers in new markets. For example,
Hewlett-Packard’s 1.3-in Kittyhawk drive (Figure 3) was unexpectedly used by digital camera

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 5

manufactures a new and previously ignored market. A number of factors cause existing firms to
ignore disruptive innovations and favor sustaining technology. Disruptive innovations tend to
have low performance along traditional performance dimensions. Disruptive innovations also
have lower profit margins and faster improvement rates, which gives them a catch-up advantage.
In contrast, sustaining innovations tend to support existing firms with their high cost structures
and well-defined product evaluation criteria.

Figure 3: HP Kittyhawk 1.3" micro drive and flash card

The Product Lifecycle

Products in a market tend to progress through a product lifecycle over time [39]. A product
lifecycle is a series of sequential competitive stages that describe how products evolve over time
and the customer’s relationship with all of the comparable products in the market. The stages are
functionality, reliability, convenience, and price (Figure 4 pg. 6). Each stage in the lifecycle
identifies the primary attribute customers use to evaluate products. Customers judge products in
the functionality phase superior if they have more desirable features. When most products in a
market have a core set of desired features, customers’ product evaluation criterion shifts to the
next stage, reliability, in which higher-reliability products are judged superior, which drives
buying decisions. When products are sufficiently functional and reliable, the customer’s attention
shifts to convenience. For technology products, this is often called ease-of-use. When all three of
these criteria are met, products enter the commodity phase and compete primarily on price. An
example is the commodity x86 processor market, in which processor cost is the primary concern
for customers (assuming functionality requirements have been met such as performance, power
consumption, etc.).

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 6

Cost
(commodity stage)

Convenience
Reliability

Functionality

Product evaluation and comparison is based on…

Figure 4: Product lifecycle

Changes in Product Lifecycle

The appearance of disruptive technology in a market often indicates a change in product
lifecycle. In a competitive market, firms continually strive to increase the attractiveness of their
products by improving them. Customers are willing to pay a premium for improved products.
Firms can typically improve their products using sustaining technology faster than consumers
demand these improvements. This is called performance oversupply [39]. Figure 5 shows
lifecycle changes in the disk drive market over time. In Phase 1, competition was based on drive
capacity. As sustaining technology improved drive capacity beyond demand, a disruptive
technology—physically smaller drives—was introduced. This changed the basis of competition,
and so it continues through to the commoditization phase.

Figure 5: Lifecycle changes in the disk drive industry over time [39]

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 7

Firms strive to improve existing products with sustaining innovations because this protects
their long-term product investments, and more importantly, it preserves their profit margins. It is
difficult for an existing firm with high profit margins to enter a disruptive market with initial low
customer demand and low profit margins, as they are simultaneously developing products that
threaten their existing product lines.

Commoditization of the Computer Hardware Market

A relevant example of disruptive technology is x86 commodity hardware for the established
RISC/Unix vendors. Commodity x86 hardware combined with Linux offers comparable
performance for a fractionally lower price. A typical $25,000 RISC/Unix workstation can be
replaced with a $3,000 x86/Linux workstation (see the FAA case study, pg. 44). Of the
previously numerous RISC/Unix vendors, only three remain: Sun, IBM, and Hewlett-Packard.
Sun is a classic example of an established vendor confronted with disruptive technology,
shrinking demand, lower profit margins, and a high cost structure. A number of years ago Sun
killed a plan to embrace x86 hardware. Sun is presently selling x86 hardware and offers an x86
version of Solaris, but one wonders if it may be too late—Sun continues to lose market share, is
fighting larger competitors in a shrinking market, and is statistically unlikely to make a transition
to a lower cost structure. Revenue has decreased 39% between 2001 and 2005 and 13,000 jobs
have been cut. This is a long-term trend. Figure 7 (pg. 8) shows a MetaGroup study of platform
growth through 2012 in terms of computing capacity. Unix is estimated to be 20% of the market
in 2012 (13x growth), Linux 26% (251x), and Windows 51% (74x).

Figure 6: Sun Microsystems stock price, January 2000 to June 2006

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 8

Figure 7: Data Center capacity growth 2002-12 [76]

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 9

SECTION 3:
HISTORY OF OPEN-SOURCE SOFTWARE

One of the goals of this report is to summarize the history, developments, strengths, and
weaknesses of open-source software (OSS). To that end, this section starts with a few comments
on OSS growth, which has been consistent. This leads naturally to two questions: what exactly is
open-source software, and how did the OSS development model evolve? The answers to these
questions are followed with some recent developments and usage statistics.

Open-Source Software Growth

The open-source software industry has a rich history full of interesting characters and diverse
business interests, and is a global community connected by the Internet.21 OSS growth has been
consistent, organic, and strong. Firms such as Google, E*TRADE, Sabre, Travelocity, Yahoo!,
and Amazon run their businesses with OSS and commodity hardware. The open-source Apache
web server runs 67% of active web site servers [80]. A recent survey of Oracle users at the
beginning of 2006 showed that 44% plan to be running their Oracle databases on the OSS
operating system Linux by the end of the year [106]. Clearly, OSS is fulfilling a market need.

Figure 8: Active web servers, 6/2000 to 4/2006 [80]

Definition of Open-Source Software

What is open-source software? In essence, OSS is software that is distributed with its source
code and is free. Open-source software is enhanced and maintained by a community, which is an
organized group of unpaid volunteers who contribute, maintain, and enhance an open-source
software project. The terms “open-source” and “free software” convey similar ideas but have
historically slightly different origins. The term open-source is associated with the Open Source

21 For detailed accounts of the origins of OSS, see E.S. Raymond, The Cathedral and the Bazaar (available at
www.catb.org/~esr/writings/cathedral-bazaar/), and G. Moody, Rebel Code.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 10

Initiative (OSI), a nonprofit organization founded by Eric Raymond and Bruce Perens in 1998 to
promote open-source software [81]. The term was created with the hope that it would convey a
more pragmatic business-friendly attitude than “free software.” OSI defines criteria that software
licenses must comply with to be considered “open source.” Without getting bogged down in
legal definitions, this generally means an open-source license must grant users the right to freely
copy, use, and modify the software. It also stipulates that derivate works must be licensed under
the same terms as the original..22 Appendix D (pg. 89) discusses specific OSS licenses in more
detail.

Aside from a legal definition, OSS has an implicit meaning to most people that assumes:

1. Anyone can contribute to the project and has full access to the software code.
2. A community of users and developers contributes to the evolution, development, and

testing of the software.
3. There are rules about how the community operates (see Section 4).

Underlying these assumptions is the key idea that software code is a kind of knowledge that is
freely shared with any interested person [107]. Collectively these ideas are sometimes referred to
as the “open-source software movement.”

History of Open-Source Software

The history of open-source software is an incremental story that has its roots in the creation
of the ARPANET (the first packet-switched network), AT&T’s Unix, Berkeley’s BSD Unix, the
GNU project, and the Linux open-source operating system. Netscape’s decision in 1998 to open
the source of their Internet browser was also an important event for the open-source approach.
The development of open-source software is also a story of many interrelated events linked by
the Internet.

In 1968, the Department of Defense Advanced Research Projects Agency issued an RFQ
(Request for Quotation) for ARPANET, the first packet-switching network, and what would
eventually come to be known as the Internet. Initially ARPANET connected primarily university
computers and researchers, enabling the sharing of ideas and standards. For example, the
Request For Comments (RFC) technical specification process was started in 1969 [61]. The next
step in the process was AT&T’s development of Unix in the early 1970s. From the beginning,
AT&T distributed Unix source code and provided no support or maintenance, fostering an
attitude of cooperation and mutual support among users [92]. Building on this tradition, in 1978
Berkeley started releasing nearly-free copies of their improved version of Unix, BSD Unix.
Improvements from users were included in the system and made available in subsequent
releases, which, combined with the low price, made BSD very popular [91]. AT&T and the
University of California Berkeley subsequently became entangled in a lawsuit, over copyright
issues, that was not resolved until much later. The uncertain legal status of Unix provided critical
impetus for two software projects crucial to the future of open-source: GNU and Linux.

22 For OSI’s Open Source Definition, see www.opensource.org/docs/definition.php.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 11

In 1971 Richard Stallman, a programmer, was working in MIT’s artificial intelligence
laboratory, which had a rich tradition of sharing source code and ideas among developers.
Because of corporate involvement with the lab and subsequent intellectual property
disagreements, Stallman came to believe that there should be no limitations on access to software
code and argued against any type of intellectual property. In 1983, Stallman announced the GNU
(GNU’s Not Unix) project, which has a goal of creating an entirely free and open-source clone of
the Unix system. Stallman’s critical innovation was the GNU General Public License (GPL),
which was released in 1989. The GPL is a copyright license with special qualities intended to
protect a user’s right to distribute and modify a work. The GPL also protects communal rights to
derivative works—derivative works are by definition copyrighted with the GPL. Open-source
copyright licenses with this property are often called copyleft licenses.23 Most copyright licenses
restrict users from doing certain things; for example making copies of software and giving it to
friends. The GPL is different in that it specifies rights that Stallman wants copyright licensees to
have. For example “You may copy and distribute verbatim copies of the Program’s source code
as you receive it...” [52]. GNU software and many OSS projects license their software using the
GNU GPL, including the open-source operating system Linux.

Linus Torvalds was a Finnish computer science student in Helsinki in 1991 when he placed
on the Internet the source code for version 0.01 of a free operating system he was developing as
a hobby. It was called Linux. Torvalds was using the GNU compiler and other GNU tools, and
was inspired in part by Minix, an operating system developed by Andrew Tanenbaum for
teaching computer science students about operating systems. From the beginning, Torvalds
solicited feedback from people connected by the Internet. The Internet and Torvalds’ willingness
to incorporate other people’s suggestions and improvements encouraged people to
contribute [77]. Discussing early Linux bug fixes, Torvalds remarks that “they started out so
small, that I never got the feeling that, hey, how dare they impose on my system. Instead, I just
said, OK, that’s right, obviously correct, so in [to Linux] it went. The next time it was much
easier, because at that time there weren’t many people who did this, so I got to know the people
who sent in changes. And again they grew gradually, and so at no point I felt, hey, I’m losing
control” [77]. In this way, Linux became two things: an operating system, and a new distributed,
collaborative, and parallel development model (see Section 4 for details). Before the success of
Linux, no one could have imagined that it was possible to develop something as complex as an
operating system using volunteers connected mainly by the Internet. As early as 2001 it was
estimated that more than 40,000 developers worldwide had contributed to Linux [89].

Another important point in the history of OSS is January 1998, when Netscape
Communications turned their Navigator Internet browser into an open-source product. At the end
of a long market-share losing battle with Microsoft, Netscape had concluded that the only way to
survive was to play a different game. For many, Netscape’s decision legitimized the open-source
approach as a strategy for competing with a proprietary software vendor. One year later Hewlett-
Packard, IBM, Dell, Intel, and SGI announced support and official approval of Linux running on
their hardware. The corporate embrace of OSS was underway.

23 For a detailed explanation of copyleft, see www.gnu.org/copyleft.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 12

Table 2: Motivation for Linux server adoption [7]

Linux Motivators for Server Usage %
Relatively low cost or no licensing fee 78
Reliability 74
Performance 73
Windows security issues 65
Need an alternative to Windows 60
Recommendations by our technical staff 60
Ability to modify source code to meet our needs 45
Development tools widely available through the Internet 45
Fulfills company requirements or standards 40
Fast software patches and bug fixes 40
Measurable Return on Investment (ROI) 38
Company has an open-source philosophy 33
Unix 25

Recent Developments

The current dynamics in the Linux market provide insight into the larger OSS market. The
primary driver of Linux adoption on both desktops and servers is low cost, according to a survey
in early 2005 [7]. This is significant because it indicates OSS has reached approximate feature
and convenience parity with proprietary products (see Section 2). The top three reasons cited for
Linux use on servers are low cost (78%), reliability (74%), and performance (73%). These
growth drivers indicate a mature product. Other reasons are shown in Table 2. The OSS market
is healthy with many competitors in different product categories and continues to respond to
market demands. A partial list of popular open-source projects is shown in Table 3 (pg 13). In
2002, support was the primary concern, but this is no longer viewed as an issue due to support
programs implemented by many vendors. On the desktop, where Linux has 9% market share,
key desired features are installation convenience and device support. A relatively new Linux
distribution named Ubuntu (oo-BOON-too) with the motto “it just works” is focusing on the
desktop market and is receiving positive attention.24

Linux has many areas to improve, as Table 7 (Section 5) shows. The top three reported
problems with Linux on servers are technical knowledge of staff (35%), compatibility with
existing software (33%), and problems related to multiple versions of Linux (24%).
Approximately one-third of respondents indicated no problems were encountered moving to
Linux (28%).

24 See www.ubuntu.com.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 13

Table 3: Partial list of open-source projects from Appendix B
Open-source Project Category License Reference

Apache Web Server Apache www.apache.org
BSD variants Operating System BSD en.wikipedia.org/wiki/BSD

Cygwin Unix-like Environment Modified GPL cygwin.com
Drools/JBoss Rules Rules Engine Apache labs.jboss.com/portal/jbossrules

Eclipse Development Platform Eclipse www.eclipse.org
EnterpriseDB Database GPL www.enterprisedb.com

GCC Compiler GPL gcc.gnu.org
JBoss Application

Server J2EE Server LGPL www.jboss.org

Jena Semantic Web Toolkit Jena jena.sourceforge.net
Linux Operating System GPL en.wikipedia.org/wiki/Linux

MapServer Internet Map Server MapServer mapserver.gis.umn.edu
MediaWiki Collaboration Application GPL www mediawiki.org/wiki/MediaWiki

Mono .NET Application
Framework GPL, LGPL www.mono-project.com

Firefox Web Browser Mozilla www.mozilla.com
Thunderbird Email Application Mozilla www.mozilla.com

MySQL Database GPL www.mysql.com
OpenSSH Communications Tool OpenSSH www.openssh.com
OpenSSL Communications Tool OpenSSL www.openssl.org

Open Office Office Productivity Suite LGPL www.openoffice.org
Perl Development Language GPL www.perl.org

Python Development Language Python www.python.org
PHP Development Language PHP www.php net

PostGIS Database Extension GPL www.refractions net
PostgreSQL Database BSD www.postgresql.org

Protégé Ontology Editor Open Content
License protege.stanford.edu

rdesktop Remote Desktop Client GPL www rdesktop.org
Samba File and Print Sharing GPL www.samba.org

VNC Remote Desktop Client and
Server GPL en.wikipedia.org/wiki/VNC

The use of OSS is growing, and large traditional IT vendors such as IBM, Hewlett-Packard,
and Oracle view OSS and Linux as strategic. Among software developers, the OSS database
MySQL is approaching majority market share (44%), which is an increase of 25% between April
and October of 2005 [40]. The Independent Oracle Users Group (IOUG), in a survey in early
2006, found that 44% of respondents will be running their Oracle databases on Linux in the next
twelve months [106]. The president of IOUG said “now the market has accepted Linux. [It] has
accepted [that] you can run hugely scalable, Oracle RAC (Real Application Clusters), multi-
node, thousands-of-concurrent-user Oracle instances, on Linux...[combine that with] the overall
lower cost of ownership, and you’ve got the best of both worlds, and we’re seeing the
results” [106]. In addition, Linux is currently in use as a server operating system at 49% of
companies polled [7]. The remainder are either pilot testing or will be in twelve months (23%) or
have no plans (28%). Both IBM and Oracle certify and support their databases on Linux. Oracle

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 14

sells Linux versions of all Oracle products. IBM runs and supports Linux on its mainframes,
POWER servers, workstations, and PCs. IBM presently has 300+ full-time developers
contributing to Linux projects and has a large Linux budget [53,90].

The OSS approach continues to drive industry change. Microsoft is running a 300-server
OSS lab to test interoperability with OSS products and regards Linux as one of its biggest
threats [62,67]. Microsoft has also created a web site (CodePlex25) that is a community
development repository for Microsoft .Net (“dot-net”) developers. To compete with the OSS
database MySQL, Oracle, IBM, and Microsoft have lowered their database prices and offer
restricted free versions to attract customers [66]. Oracle has chosen to “bear hug” OSS rather
than fight it, with Oracle’s CEO, Larry Ellison saying “we are moving aggressively into open
source. We are embracing it. We are not going to fight this trend. We think if we’re clever, we
can make it work to our advantage” [65]. Oracle has recently purchased OSS companies
Sleepycat Software and Innobase, with the strategy of making revenue through service and
support rather than initial or ongoing licensing fees. Sun has recently announced its intentions to
open-source the Java development platform. This is seen as a response in part to Linux vendor
Red Hat’s recent purchase of the popular Java middleware provider JBoss.

A striking example of the OSS approach driving industry change is EnterpriseDB26, an open-
source relational database system that is compatible with Oracle. EnterpriseDB is based on the
OSS PostgreSQL database and consists of a database server, replication server, migration tool
set, developer studio, debugger, and management server. Sony Online has implemented
EnterpriseDB and converted more than 150 existing Oracle 9i databases used for online
gaming [42]. EnterpriseDB was started in 2004 and is based in New Jersey. They have received
significant venture capital funding. EnterpriseDB uses a dual-license scheme and the GNU GPL
license27.

OSS use within government is expanding. A number of cities worldwide have standardized
on OSS, including: Munich, Germany; Turku, Finland; Rome, Italy; and Mannheim, Germany.
In Europe, a Maastricht University survey of twelve countries found 49% of European local
government bodies are using OSS and 70% report an expectation of further increase [41].
Almost one-third (29%) did not know their local government was using OSS. In the U.S. there is
movement among State Chief Information Officers (CIOs) for the definition of open standards
relating to document formats [23]. In early 2006 Minnesota introduced a bill requiring the use of
open data formats for archiving State documents [68]. This follows Massachusetts’ adoption of
the Open Document Format (ODF), which is a standardized office productivity data format
approved by the OASIS consortium (Organization for the Advancement of Structured
Information Standards). The ISO (International Organization for Standards) and the IEC
(International Engineering Consortium) have also approved ODF. The close association between
the standardization of data formats and use of OSS is not coincidental. Both have shared goals,
as explored in the next two sections.

25 See www.codeplex.com.
26 For further information, see www.enterprisedb.com.
27 Appendix D describes dual copyright licensing (pg. 89).

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 15

SECTION 4:
HOW OPEN-SOURCE SOFTWARE IS DIFFERENT

Open-source software and its development process are fundamentally different from the
closed-source approach, and are often initially difficult to understand. This section explores how
OSS is different, starting with a few brief perspective-enhancing comments about software
engineering and the low success rate (29%) for software projects in general. Understanding
software development’s low success rate is important for understanding some of the advantages
and disadvantages of the OSS development model discussed in this and subsequent sections. A
key distinction is made between software that is differentiating or non-differentiating—one is
beneficial to share with competitors, the other is not. This is followed with a comparison of the
strengths and weaknesses of the OSS and closed-source development models. This is important
for understanding how the OSS model tends to reduce software lock-in. This is followed by a
more detailed explanation of the OSS development process and innovation.

The distinctiveness of OSS begins with three assumptions:

1. Anyone can contribute to the project and has full access to the software code.
2. A community of users and developers contribute to the evolution, development, and

testing of the software.
3. There are rules about how the community operates.

These assumptions naturally lead to a number of questions. If the source code is open, where is
the value? What keeps absolute chaos from breaking out? What stops someone from taking the
source code and starting a new project? How is quality assured? If there is no profit motive, what
inspires innovation? This section will answer these and other questions. First, some comments
about software engineering are provided as background.

Software Engineering

We take it for granted that approximately one-third of software projects are successful, an
abysmally-low success rate. If any other engineering profession had similar failure rates (e.g.
construction of buildings, bridges, medical devices, cars, airplanes, etc.) a National emergency
would be declared. Clearly, software development is high-risk. This is relevant and important for
ATMS projects because any methodology or approach that lowers development risks is valuable.
The low software project success rate is due in part to the young age of the profession. Software
Engineering as a profession is only about 30-40 years old, and is still emerging from its
craftsman/hacker stage into a full engineering discipline. Other engineering professions have
successfully made similar transitions. Software Engineering is the use and development of sound
engineering principles for the production of software that is reasonably priced, reliable, and
works efficiently on real machines [88]. The Standish Group surveyed more than 50,000
completed software projects in the U.S. between 1994 and 2004 [4]. For the year 2004 it found
29% of projects succeeded (within budget, with required features, on time), 53% of projects were
challenged (completed late, over budget, and/or with less than desired functionality), and the
remaining 18% failed (were canceled prior to completion). In 2000, cost overruns averaged 45%,
time overruns were 63%, and delivered features were 67% of those planned. The dollar costs

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 16

associated with this low success rate are huge—estimated at $81 billion spent on canceled
projects alone in 1995.

Challenged

Succeeded
Failed

53%53%

29%29%18%18%

Software Project Success Rates…

Figure 9: Software project success rates in 2004 [4]

Differentiating and Non-Differentiating Software

If open-source is a good thing, should an organization share all of its software code? The
answer is no—it depends on the software, and whether it is differentiating or non-differentiating
software. Differentiating software distinguishes a company from its competitors in the minds of
potential customers [87].28 For example, AutoCAD is differentiating software for Autodesk’s
customers. It is generally not a good idea to share differentiating software with competitors. On
the other hand, it is often beneficial to share non-differentiating software with competitors. For
example, all legal firms require nearly the same functionality from accounting software.
Enlightened legal firms might agree to cooperate and share the development of accounting
software and simultaneously continue to compete in the domain of legal services. New
functionality added by a single person or firm would be available to every other firm at no cost.
In summary, sharing non-differentiating software increases efficiency by sharing costs and
development risks. This enables additional resources to be spent on differentiating software if
desired, which enhances an organization’s appeal to customers.

Types of Software Development

Different types of software development have strengths and weaknesses and it is useful to
distinguish between them. Perens defines four types of software development and benefits and
weaknesses of each approach [87]. These are:

• Retail

• In-House

28 This distinction is also useful for knowledge and manufactured items. Economics consider both software and
manufactured items (e.g. hammers) to be embodied knowledge (see Välimäki). A hammer is both the knowledge
required to build it and the physical object. In a similar way, software is both the knowledge required to develop it
and a program running on a physical machine.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 17

• Collaboration (closed to the outside world)

• Open-Source (open to the outside world)

Retail and open-source development will be discussed briefly. Retail software development
is often called proprietary because source code is almost never available and the vendor
maintains complete licensing control over the source code. Familiar examples are products from
Apple, Microsoft, Oracle, etc. Retail software development is only approximately 25% of the
total software market by dollar value [1]. Retail software developers assume complete
responsibility for the costs and risks of developing new products. These costs and risks are high,
which tends to push retail software vendors towards high-volume markets, for example, word
processors, games, etc. Finally, retail developers spend a small amount of their total revenue on
research and development. For example, Oracle spent 12%, 13%, and 13% of total revenue in
2003, 2004, and 2005, respectively, on research and development. That means for every dollar
spent on retail software, only thirteen cents went into the research and development of the
purchased product. The remaining 87 cents went into advertising, sales, profits, etc.

In contrast to retail development, OSS tends to distribute development risks among
contributors. If a new feature is desired in an existing product, it is likely that multiple
contributors will be interested in participating. This distributes development risks and costs
among participants. For new projects with no collaborators, development risks would be similar
to the retail model. For this reason, OSS projects tend to be incremental and avoid starting from
scratch. In this regard, the large number of OSS projects available creates a kind of competitive
market of available source code for starting new projects. Finally, OSS is more efficient
compared to retail development—every dollar spent on software is a dollar spent on software
development. See Table 3 (pg. 17) for a comparison of development methods.

Table 4: Retail versus open-source software development models [87]

Attribute Retail OSS
Distributes development risks No Yes
Distributes development costs No Yes
Overhead rate High Low

Software and Lock-in

Lock-in is a term used in economics to describe a situation in which a customer or vendor
faces high costs to switch products or technologies. For example, there is a high re-training cost
to switch word processors or operating systems, or to learn to drive safely on the opposite side of
the road. Traditional vendors face lock-in when confronted by competitors using new disruptive
technology—their high cost structure makes switching costs prohibitively expensive. There is
little lock-in associated with, for example, toothpaste or calculus textbooks. In economic terms
software lock-in occurs because the price customers are willing to pay for a product they have
spent time learning (sometimes years) becomes proportionally more inelastic (see Appendix A).
This customer dependency encourages vendors to raise prices to the maximum bearable level. By
offering a free or low-cost substitute, an OSS product will tend to have a damping influence on
proprietary product cost.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 18

One of the primary benefits of OSS is greatly reduced lock-in. For customers, software lock-in
has two painful aspects: 1) the ongoing cost of a software license the customer is locked into, and
2) the learning and development cost of switching to a new product. OSS eliminates the first
concern because there is no acquisition cost for OSS. That leaves the second concern, the
development and learning costs associated with switching products. OSS reduces the pain
associated with this concern in a number of ways, primarily because OSS projects, developers,
and users are similarly motivated. First, there is no motivation to introduce nonstandard hooks to
increase lock-in, because there is no revenue motivation. Second, OSS projects, developers, and
users are inherently more interested in following and forming standards because this increases
the desirability of the software to others, which encourages further contributions. The standards-
following nature of OSS is an especially strong incentive for State, Federal, and local
governments, which are often charged with following standards. Third, there are typically a
number of competing products in any given OSS market. For example in the OSS database
market, there are MySQL, PostgreSQL, Ingres, Firebird, and MaxDB29, among others. Fourth,
OSS projects tend to be portable because their source code is available. For example, moving a
project from Linux to BSD to proprietary Unix to a POSIX environment on Windows XP is
possible. Many OSS projects are developed for all of these platforms simultaneously from a
single code base. For example, switching a MySQL database from Windows XP to Linux is
relatively easy.

The Open-Source Development Process

When Torvalds started Linux in 1991, other popular operating systems already existed, such
as Minix, with available source code. Linux is the one that grew into a worldwide phenomenon
running on everything from traffic controllers to supercomputers, and the one embraced by the
corporate world. Torvalds’ key innovation was a new development process—a new combination
of relaxed top-down guidance mixed with developers and users connected over the Internet
contributing numerous self-motivated suggestions, requests, fixes, and new features. This
approach takes maximum advantage of a distributed development community. The following
paragraphs briefly discuss OSS project organization, projects traits, and the OSS innovation
process.

OSS project organization varies by project. Contributors regard themselves as part of a
community [47]. Typically, each project has a single recognized leader responsible for the
overall direction and vision of the project, although there have been other structures. Leaders are
responsible for finding competent replacements if they no longer wish to lead. Leaders may or
may not write actual software code. An OSS copyright license (e.g. GNU’s GPL) is typically
used, ensuring distributed ownership of source code. This means leaders do not own anything
and must therefore lead without coercion. Ultimately all a leader has is the respect and
admiration of the community combined with his exclusive right to determine the contents of
subsequent versions of the project [89]. Assisting a leader are developers who write code, make
suggestions, and find and repair defects. On large projects, developers may be organized
hierarchically. Developers may be volunteers working for free, or employees contributing as part
of their job function at a corporation or government agency. Members of the community also
include users who may or may not report defects and provide suggestions and requests.

29 See www mysql.com, www.postgresql.org, www.ingres.com, www.firebirdsql.org, and www.sapdb.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 19

Dissatisfied community members may at any time start a new parallel project with a new name,
using any version of the existing project. This is called forking a project. This is a rare
occurrence and typically only happens in extreme situations where a large number of community
members are highly dissatisfied. The potential of a project forking is positive for users and
developers because it encourages alignment of developer and user interests [78]. New projects
live and die based on the number of contributors they can attract.

Eric Raymond has famously described some of the traits of successful OSS
development [89]. The majority of these guidelines are focused on enhancing the distribution of
project work—in other words, enhancing a bottom-up approach. The guidelines also help create
a giant positive feedback network, which ultimately encourages participation. These
development guidelines include:

• Consider code contributors to be co-developers. This encourages further contributions
and a sense of collective ownership. This also indicates the importance of listening to
suggestions and requests from users and developers. Contributions are accepted from
anyone, lowering barriers to community entry.

• Release new versions of the project often. This encourages a sense of improvement,
responsiveness, and relevance.

• Consider testers to be your most valuable resource. The more testers and users a
project has the more defects are found, and the more everyone benefits.

• Focus on recognizing good ideas from the community, rather than your own good
ideas.

Innovation and Open-Source Software

Innovation is often cited as another OSS strength. Joode describes two opposite approaches
for generating innovation: the rational process, and the variation and selection process [61]. The
rational approach is top-down and involves analysis and consideration of available options. The
second approach is used by OSS, and tends to be a bottom-up approach to creating innovation. It
relies on the creation of variation combined with selection among alternatives. The OSS
development process creates variation through 1) the availability of source code, 2) low barriers
for personal participation, 3) a large and diverse group of contributors, and 4) a pervasive
pragmatic attitude among group members. These factors and a lack of restrictions create a high
degree of variation. Selection among this variation is a result of the cumulative effect of
individual choice and is based on professional attention. In the OSS world, professional attention
cannot be coerced. Many factors affect the personal interest of OSS project contributors: the
popularity of a project (number of downloads, number of contributors), the reputation of those
involved, the existence of competitors, personal interest, the ability of the project leader to
distribute success and recognition, and so on. New useful features and enhancements generate
interest and attention, resulting in incorporation into subsequent versions. Because source code is
available, innovations can more easily flow between different OSS projects. The innovative
nature of the OSS development process is particularly suited for collaboration between
government and research organizations.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 20

Typical Open-Source Development Environment

This subsection briefly compares a proprietary software development environment with an
OSS development environment. The focus is on matching proprietary products with OSS
products within the product category. In some product categories there are many OSS products
available, which can make counterpart selection complex. For example there are at least eighteen
OSS Java virtual machines (JVM), some specialized.30 The goal here is to suggest a mainstream
OSS counterpart for each proprietary product, not provide an exhaustive list of candidates.

Table 5 shows COTS and potential OSS product counterparts. Some of these OSS products
are described briefly in Appendix B (pg. 79). Most of the listed products are cross-platform,
raising the possibility of a heterogeneous environment. For example, EnterpriseDB supports
Linux x86, Linux x86-64, Mac OS X Intel, Mac OS X PPC, and Solaris 10 x86-64. In general,
OSS counterparts should not be viewed as drop-in replacements for COTS products. OSS
products that emphasize compatibility are the Java virtual machines and class libraries, the
Oracle compatible database EnterpriseDB (pg. 80), Mono (pg. 82), and the language compilers.

Some COTS products from Table 5 are rather specialized, such as the Gensym G2 system
and SL-GMS widget framework. Typical Linux and BSD distributions are bundled with a large
number of utilities that Solaris or HP-UX users would be familiar with: grep, awk, sed, ping,
man, more, cat, vi, Emacs, finger, NFS, etc. Shells include Bash (Bourne), PDKSH, TCSH, Z,
and more. Several GUIs are typically included in standard distributions such as GNOME and
KDE. The Eclipse development environment supports many languages such as Java, C/C++,
Fortran, PHP, Perl, Ruby, COBOL, UML2, and Python, among others.

In operational terms, a machine running Linux or BSD will fit into an existing computing
environment, necessitating file and printer sharing. Typical Linux and BSD distributions are
bundled with Samba, an OSS file and printer sharing application. Samba enables Linux machines
to appear as Windows file and print servers on a network. Samba also enables simple file sharing
between Linux and BSD machines. NFS is also supported. Rdesktop is an OSS remote desktop
client that allows remote access to Windows machines running a remote desktop server (see pg.
85). VNC products are also available that enable remote connections between many types of
machines (see pg. 85).

30 For a list of OSS Java virtual machines, see en.wikipedia.org/wiki/List of Java virtual machines.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 21

Table 5: COTS and potential OSS product counterparts

Company COTS Product Category Potential OSS Counterparts

Gensym G2 7.0 Object oriented rule based
system JBoss Rules (Drools)

Gensym G2-Oracle Bridge G2 database connectivity PostgreSQL ODBC, JDBC
MySQL ODBC, JDBC

Gensym GSI C/C++ external system
interface For Java: JNI

HP, Sun HP-UX or Solaris Operating System Linux,
BSD

Microsoft .NET Development Framework Mono

Oracle Oracle Database 9.2 Relational Database
MySQL,

PostgreSQL,
EnterpriseDB

Oracle Oracle 9i
Application Server

J2EE,
Web services,

JSP Web server,
JVM,

HTTP Server

See Java EE below,
Apache Axis,

Apache Tomcat,
See Java SE below

Apache HTTP Server

Oracle PL/SQL Oracle procedural language
extensions to SQL

EnterpriseDB,
PostgreSQL: PL/pgSQL

Oracle Pro*C C/C++ preprocessor for SQL For PostgreSQL: ecpg,
For MySQL: C interface

Oracle JDeveloper Integrated Java development
environment Eclipse

SL SL-GMS Widget Development
Framework

For Java: SWT, Swing
For C++: Qt

Sun Java EE JRE Enterprise Edition, J2EE

JBoss AS,
Apache Struts,

Spring Framework,
Sun GlassFish

Sun Java SE JRE Standard Edition, J2SE
Sun Java SE31

Apache Harmony,
GNU GCJ

Tibco SmartSockets 6.60 Reliable messaging Apache ActiveMQ
Various C/C++ C language compiler GCC

31 Sun Java SE is not an open-source product but is free. See java.sun.com/javase/faqs.jsp#Licensing.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 23

SECTION 5:
OPEN-SOURCE SOFTWARE STRENGTHS

This section discusses some of the strengths of the open-source development model: reduced
lock-in, reliability, security, development efficiency, how OSS might positively affect ITS
markets (more specific to the ATMS application focus), and the use of standards in OSS. This is
a subset of benefits cited in other sources. For example, in a report for the Department of
Defense, Mitre Corp. identified eight key strengths (Table 4) [63]. In a survey of CIOs the three
greatest strengths of OSS were reported to be lower capital investment (63%), lower total cost of
ownership (59%) and greater reliability (41%) [113]. For government, perhaps one of the most
important OSS benefits is reduced lock-in. An important point is that OSS has many of the traits
of disruptive products (see pg. 4) —it is less expensive, more reliable, and improving at a faster
rate than traditional products.

Table 6: OSS strengths for DoD, reported by Mitre Inc. [63]

OSS Strengths for Department of Defense
Massive programming expertise
Research and development covered by volunteer labor
Accepted leadership structure
Quick release rate
Parallel development and debugging
Maturity of code
Culture of sharing
Long-term accessibility

Reduced Lock-In

Lock-in is also discussed in detail in Section 4. Briefly, lock-in is a term used in economics
to describe a situation in which a customer or vendor faces high learning or financial costs to
switch products or technologies. OSS greatly reduces lock-in for four reasons: 1) there is no
financial motivation for OSS developers to increase lock-in; 2) OSS projects and users tend to
follow and form standards; 3) the OSS market is healthy and competitive with a number of
products in any given market segment; and 4) OSS projects tend to be portable because their
source code is available.

Reliability

It has been estimated that software defects cost the U.S. economy $59 billion annually [2].
The OSS development process creates software that 1) tends to have fewer defects and 2) repairs
discovered defects faster. The basis of the OSS development process (Section 4) is peer review
of code and the ability of anyone to find defects and forward patches to the developers. This
creates a rich feedback loop. This has been famously stated by Raymond as “given enough
eyeballs, all bugs are shallow” [89]. Peer review is crucial in all engineering disciplines. For
software engineering, it has been estimated that peer review catches approximately 60% of
defects [29]. Given the abysmally-low success rate of software projects (29%) and the high level
of defects, a development methodology that is inherently based on peer review with the widest

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 24

possible audience is significant. In fact, any software development practice that moves current
software development practices from the craftsman stage towards a full engineering discipline is
significant.

The defect reducing nature of a peer-review-based development process can be quantified.
The Department of Homeland Security is funding a three-year $1.24 million study “Vulnerability
Discovery and Remediation Open Source Hardening Project” [79]. This program is part of a
larger Federal effort to perform security audits of approximately 40 open-source software
packages such as Linux, MySQL, and Apache. The project uses automated source code scanning
tools (from Coverity Inc.) which are based on research by Stanford University. Table 5 shows
defect rates for popular OSS projects and typical commercial software. The mean number of
defects per 1000 lines of source code in 32 open-source projects was found to be 0.434 [38].
MySQL was found to have .224 defects per 1000 lines of code, which is four times better than
typical commercial software. It is worth noting that the OSS projects in Table 5 are the most
popular in terms of the quantity of users. Clearly, there is an inverse relationship between the
number of users and the defect rate. In addition, the OSS development process produces rapid
repairs of discovered defects. “More than 900 flaws were repaired in the two weeks after
Coverity, which makes tools to analyze source code, announced the results of its first scan of 32
open-source projects. As a result, some of the software is now entirely bug free” [50].

Table 7: Coverity Inc. defect rate study results [38]

Development Model Project Defects per 1000
Lines of Code

OSS Perl .186
OSS MySQL .224
OSS Linux .233
OSS Apache .250
OSS Python .372
OSS PHP .474
OSS LAMP Average .290
OSS Baseline OSS .434

COTS Typical Commercial Software .896

Security

When considering the security of any system, healthy skepticism is in order. Ultimately,
security depends on knowledgeable, skilled, and paranoid system administrators. That said,
superior security is widely associated with OSS. However, evaluation of security is difficult
because of the large number of variables: severity of defects, expertise of system administrators
and users, how rapidly vendors respond to reported and unreported problems, and the number of
attacks targeting the platform in question. Higher volume systems will naturally experience more
attacks of greater diversity. Both proprietary and OSS vendors have used the complexity of the
issue to make competing claims of superior security.

A qualitative approach is one way of evaluating security. Using this approach indicates a
clear security preference for OSS among system administrators and CIOs over proprietary

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 25

software [63]. However, there is healthy skepticism that disclosing source code makes the
system more secure [109]. There is also healthy skepticism that not disclosing source code
provides too great of a temptation for proprietary software vendors to hide numerous and critical
security vulnerabilities.

A wide-ranging analysis report prepared for the Department of Defense (DoD) in 2003
regarding their use of Free and Open Source Software (FOSS) concluded [33]:

• The DoD should encourage the use of OSS. OSS “applications tend to be much lower
in cost than their proprietary equivalents, yet they often provide high levels of
functionality with good user acceptance. This makes them good candidates to provide
product diversity in both the acquisition and architecture of DoD systems.”

• The DoD should create a list of “Generally Recognized As Safe” OSS that is
commercially supported, widely used, and has a demonstrated record of security and
reliability.

• “Banning FOSS would have immediate, broad, and strongly negative impacts on the
ability of many sensitive and security-focused DoD groups to defend against cyber
attacks.”

• Banning FOSS “would remove the demonstrated ability of FOSS applications to be
updated rapidly in response to new types of cyber attack.”

• “FOSS software plays a more critical role in the DoD than has generally been
recognized...one unexpected result was the degree to which security depends on
FOSS.”

The speed with which discovered security vulnerabilities are repaired is important.
Quantitatively, OSS security advisories are repaired faster. The corporate security provider
Secunia Inc. tracks and reports security advisories for a number of OSS and proprietary software
products [27]. Table 6 shows the number of unpatched and patched security advisories for a
number of products. The data shows that the OSS products were more or less completely
patched. At the time of this writing, the LAMP stack consisting of Red Hat ES 5/SUSE, Apache,
MySQL, and PHP contained two unpatched advisories. Furthermore, Microsoft’s Windows XP
over a five-month period reduced its number of unpatched advisories by one, down to 28. Some
of these advisories are rated as “highly critical.”

Many of the traditional arguments that OSS is inherently more secure are based on the
strengths of the OSS development process:

• The ability of anyone to find and repair problems because the source code is
available. This results in the rapid repair of defects and security advisories [38].

• Peer-reviewed software code results in a lower number of defects. A lower number of
defects means a lower number of potential security exploits.

• The availability of source code enables anyone to enhance security. For example, the
National Security Agency (NSA) developed Security Enhanced Linux32 (SELinux)

32 See www nsa.gov/selinux.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 26

which is now a part of some mainline Linux distributions. SELinux implements
mandatory access control within the kernel.

Table 8: Secunia Security vulnerability report [27]

Development
Model Product Date

Unpatched
Security

Advisories

Patched
Security

Advisories

COTS Microsoft Windows XP
Professional 01/2006 29 95

OSS Red Hat 9 Linux 01/2006 1 99
OSS SUSE Enterprise Server 9 01/2006 0 91

COTS Microsoft Windows XP
Professional 05/2006 28 106

OSS Red Hat Enterprise Linux ES 4 05/2006 0 91
OSS MySQL V5 05/2006 1 2

COTS Oracle Database 10g 05/2006 4 11
OSS Apache HTTP Server V2.2.x 05/2006 0 0
OSS PHP V5.1.x 05/2006 1 6

COTS Microsoft Internet Explorer
V6.0.x 05/2006 21 101

OSS Mozilla Firefox V1.x Internet
browser 05/2006 3 30

Efficiency

OSS can potentially enhance developer efficiency, organizational efficiency, and macro-
economic efficiency [87,104]. On a National level, one can imagine the benefits from a National
ATMS open-source effort in which individual State DOTs contribute their best functionality or
component. Potentially, each DOT could benefit from the best contribution from every other
state. For large organizations, the easy accessibility of OSS via the Internet and a simple
download enhances efficiency. No purchase requisition forms are required—this can be a
significant time and cost savings in an organization. An individual with time, skill, and an
Internet connection can solve previously unsolvable problems.

For the individual developer, it is important to make a distinction between using OSS
products and working on a project that is itself an OSS project. Most efficiency gains for
individual developers result from reuse of source code that is open. Efficiency gains are therefore
proportional to the quantity of open-source code available. A more subtle and equally powerful
efficiency enhancer is specialization, also known as division of labor.33 Analogous to free trade
between nations, specialization allows developers to contribute to a collective project in the way
they deem most appropriate, enhancing organizational and National efficiency.34 For an

33 Division of labor is the “specialization of cooperative labor in specific, circumscribed tasks and roles, intended to
increase efficiency of output.” (see Wikipedia, ‘Division of Labor’). Adam Smith argued in An Inquiry into the
Nature and Causes of the Wealth of Nations (1776) that the primary benefit of trade between nations results from the
division of labor. One can imagine similar benefits between organizations sharing code.
34 An example of specialization is the ability of some people to rapidly identify defects and the ability of others to
rapidly fix them. Another example is the development of the first port of Linux to Sun’s SPARC. See G. Moody,
Rebel Code.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 27

organization, this enables developers to spend more time enhancing differentiating software (see
Section 4), increasing the value of the organization to its customers.

Healthy ITS Markets

A healthy ITS market is one of the six primary goals of the National ITS program [6]. A
market includes both buyers and sellers [98]. A healthy market results when benefits for both
buyers and sellers are maximized over the long run. It is important to note that ultimately
customers (or taxpayers) fund the development of any software produced by a private company,
State employees, or hired consultants.

The use of OSS in ATMS contributes to a healthy ITS market in a number of ways. First,
there are no (or small) software acquisition costs. This frees funds for other more productive
uses, for example adding enhancements and new capabilities. This benefits taxpayers, DOTs, and
consultants. Second, the use of OSS products facilitates cooperation and development between
cost-constrained universities and DOTs. Third, the use of OSS (e.g. open-source GIS) enables
contributions and enhancements to these open-source projects, from which other users (e.g. other
DOTs) benefit. Knowledge and experience gained with OSS products also benefits other
organizations. Fourth, DOTs would experience less software product lock-in (see Lock-in,
Section 4). This would free funds currently spent on artificially high software licensing costs for
more productive uses and encourage competition from vendors and consultants.

In addition to using OSS products on ATMS projects, the creation of an open-source ATMS
project would produce further benefits. First, knowledge and software could more easily flow
between universities, DOTs, and the private sector. This is expressed well as “the intrinsic
parallelism and free idea exchange in OSS has benefits that are not replicable with our current
licensing model” (internal Microsoft document [105]). The FHWA is using this approach with
their NGSIM project (see pg. 55). Multiple State DOTs, universities, and private sector firms
could collaborate and fund an OSS ATMS. As a result, there would likely be an increase in
innovation for the same reasons OSS encourages innovation. Second, an OSS ATMS would
encourage the development of standards and interoperability. Developed software code would
only be reusable by other organizations if it conformed to existing standards. Third, an OSS
ATMS would lower entry barriers for commercial firms seeking ATMS-related contracts with
DOTs for service, support, and enhancements. This has the potential of increasing the quality
and quantity of firms seeking DOT contracts. Fourth, the use of an OSS ATMS eliminates the
risk to DOTs of proprietary ATMS vendors going out of business, or not adequately supporting
their proprietary system. The demise of software vendors is more likely in small and specialized
software markets where vendors have a difficult time financing software development before
sales, and customers are reluctant to use products from vendors who might disappear, taking
their proprietary products with them.

Use of Standards

The use and development of ATMS standards are crucial for the healthy development of the
ATMS market and interoperability (see ITS Standards in Section 7). Because OSS is intrinsically
about sharing knowledge, there is inherent motivation to use and develop standards. Any DOT,
consultant, or university researcher contributing to an OSS project wants their contributions to be

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 28

included in subsequent versions of the product. Nonconforming contributions are less likely to be
used by others and less likely to be included. Further, potential enhancements to OSS projects
that ignore standards tend to increase lock-in, which is undesirable and to be avoided.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 29

SECTION 6:
OPEN-SOURCE SOFTWARE CONCERNS

This section discusses concerns about OSS: lack of trained staff, inconsistent quality, and
support. Other concerns have been reported elsewhere. For example, Mitre reports OSS
weaknesses including lack of ownership, difficulty in starting new OSS projects, and less user-
friendliness [63]. Table 7 shows the top issues reported in a 2005 study of Linux deployment on
servers [7]. Deployment issues that are addressable by commercial markets can be expected to
improve. For example, lack of vendor support in 2002 was addressed by the market by 2005.
Some OSS deployment concerns are addressed in this section. Benefits provided by OSS and its
unique development model must be balanced with a consideration of concerns. An understanding
of the OSS development model is crucial for setting expectations. For example, benefits gained
from peer review are proportional to the number of individuals involved.

Table 9: Server challenges to deploying Linux [7]

Issue Deploying Linux on Servers % of
Respondents

Technical knowledge of our personnel 35
Compatibility with existing software 33
Problems related to multiple Linux distributions/versions 24
Poor documentation 20
Hardware support problems 20
Poor technical support 17
Lack of widely available rapid development tools 13
Difficult to integrate with existing database server 13
Too new/not widely used 12
Inability to find quality/affordable Linux training 11
Lack of E-commerce components 10
Too complex, too difficult to master 9
Security 6
Reliability 6
No issues encountered 28

Enough Trained Staff

A sufficient number of trained staff can be a problem if an organization has no Unix or Linux
experience. Nearly all college graduates in computer science or engineering have some amount
of experience with Linux, and this trend is expected to continue. A May 2006 search of the Dice
technology job site found a nearly equal number of job postings mentioning Unix and Windows
experience, and about half that amount mentioning Linux (13751, 13038, and 6936 respectively).
Given that Unix skills are somewhat transferable to Linux it should not be difficult to find skilled
staff or training for existing staff. For example, the FAA’s successful conversion of their
Enhanced Traffic Management System to OSS depended on obtaining generous training for a
large number of staff at multiple sites (see pg. 44). Sticking with mainstream OSS applications
(e.g. MySQL, Eclipse, PHP, etc.) increases the pool of potentially available trained staff.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 30

Inconsistent Quality

Inconsistent quality is a concern for new OSS projects, or projects with fewer users and
developers. There is a clear relationship between project code quality and the number of users.
Fewer developers means less peer-reviewed code. This also carries over to support,
documentation, and security concerns. In a report to address similar issues for the Department of
Defense regarding its use of OSS, Mitre Corporation recommended that the DoD create a
“Generally Recognized As Safe” list of OSS. They did not recommend banning OSS products
not on the list, because of reliance on some specialty open-source tools.

Support

The availability of support has dramatically improved since 2002, when it was a top issue.
Both paid and free support are available for hardware, Linux, and mainstream applications such
as MySQL. A unique feature of the paid open-source support market is its competitive nature.
Because source code is available, entry barriers are low for new firms in the support market.
Multiple independent organizations compete in this market. Free support is also available over
the Internet from a number of sites (Table 8). Mainstream Linux distributions such as Red Hat
and SUSE have both free support through documentation and knowledge bases, and paid
support. See Figure 10 for a diagram of Red Hat’s support structure. Hardware vendors such as
Dell offer preinstalled Red Hat and SUSE. Dell, Red Hat, and Oracle offer a certified Oracle 9i
configuration.

Oracle’s support for Linux is extensive. Oracle shipped its first database product for Linux in
1998. Linux is expected to be running in 44% of Oracle installations by the end of 2006 [106].
Oracle provides first-line support for Red Hat and SUSE. In addition, all Oracle products are
available on Linux.

Table 10: Free Linux support [63]
Vendor URL

LinuxHelp http://www.linuxhelp.net/
Linux Documentation Project www.linuxdoc.org
Linux Support Services free.linux‐support.net
Red Hat Support Links www.redhat.com/support/docs/tips/urls/urls.html
Novell SUSE Help http://www.novell.com/services/
News groups (multiple) comp.os.linux
News groups (multiple) alt.os.linux

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 31

Figure 10: Red Hat support workflow diagram [25]

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 33

SECTION 7:
HISTORICAL DEVELOPMENTS IN ATMS

This section discusses historical developments in Advanced Traffic Management Systems
(ATMS). ATMS is a primary subfield within the Intelligent Transportation System (ITS)
ecosystem. The ATMS view is a top-down management perspective that integrates technology
primarily to improve safety and the flow of vehicle traffic. This section briefly discusses ATMS
and ITS history, ITS standards, international ITS efforts, goals and benefits of ATMS, and,
finally, ATMS trends.

Birth of Intelligent Transportation Systems

In 1956, the National Interstate and Defense Highways Act initiated a 35-year $114 billion
program that designed and constructed the Interstate highway system. The impact this program
had on the United States was enormous. It was mostly complete by 1991, and the era of build-out
was over.

Figure 11: 1969 Astro concept car for “systems-controlled interstate highways of the
future” [9,28]

In the mid to late 1980s transportation officials from Federal and State governments, the
private sector, and universities began a series of informal meetings discussing the future of
transportation. This included meetings held by Caltrans in October of 1986 to discuss technology
applied to future advanced highways [112]. In June of 1988 in Washington, DC, the group
formalized its structure and chose the name Mobility 2000 [93]. The first National Mobility 2000
meeting was held in February of 1989 in San Antonio, Texas, and was organized into four
groups: ATMS, Advanced Driver Information Systems (ADIS) (now Advanced Traveler
Information Systems or ATIS), Commercial Vehicle Operations (CVO), and Advanced Vehicle
Control Systems (AVCS) [93]. In 1990, Mobility 2000 morphed into ITS America, the main ITS
advocacy and policy group in the US. The initial name of ITS America was IVHS America—the
1994 change reflects a broader intermodal perspective [111]. With membership consisting of
individuals in the public and private sector, ITS America has provided crucial development
guidance for subsequent transportation acts and initiatives.

The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) was the first post-build-
out transportation act. It initiated a new approach focused on efficiency, intelligence, and

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 34

intermodalism. It also had a primary goal of providing “the foundation for the nation to compete
in the global economy” [60]. This new mixture of infrastructure and technology was identified as
an Intelligent Transportation System (ITS) and was the centerpiece of the 1991 ISTEA act. ITS
is loosely defined as “the application of computers, communications, and sensor technology to
surface transportation” [59].

In 2005 the SAFETEA-LU (Safe, Accountable, Flexible, Efficient Transportation Equity
Act: A Legacy for Users) surface transportation spending bill was signed into law.35 It has the
following implications for ITS [84]:

• Provides more funding for ITS and Operations.

• Maintains strong ITS research and development funding.

• Increases focus on congestion relief.

• Puts strong focus on managed lanes and pricing.

• Establishes nationwide requirement for real-time information systems.

• Advances system management and operations.

ITS Standards

Standards are agreements over shared knowledge and are crucial for the healthy development
of new markets such as ITS. It is difficult to imagine healthy and efficient markets for electricity,
radios, or car tires without government and/or industry standards. “The biggest single retardant
in the deployment of ITS is the lack of standards...proprietary systems are secret. It’s important
to have national, nonproprietary standards” said David J. Hensing, Deputy Executive Director of
AASHTO [94]. Standards define what information is open and shared for participants. Inherently
a National Intelligent Transportation System would require conceptual and operational
integration between private firms, research organizations, State, local, and National
governments. To meet these needs the U.S. Department of Transportation initiated development
of the National ITS Architecture in 1994. The National ITS Architecture provides a common
framework for ITS development by defining systems and subsystems and the data that flows
between them. For example, it defines eight service areas, one of which is traffic management
(ATMS). It further defines 21 market packages within traffic management, for example, Freeway
Control is defined as ATMS market package #4 [8]. The 2005 SAFETEA-LU surface
transportation bill continues strong support of the National ITS Architecture “to the maximum
extent practicable, the national architecture shall promote interoperability among, and efficiency
of, intelligent transportation system technologies implemented throughout the United States.”36
Current ITS standards include 81 published, 12 approved, 7 in ballot, and 10 in
development [19]. The 1998 Transportation Equity Act for the 21st Century (TEA-21) further
required the Department of Transportation to identify and specify “which standards are critical to
ensuring national interoperability or critical to the development of other standards and specifying
the status of the development of each standard identified” [94]. In 2001, TEA-21 also stipulated
denial of federal funding for any ITS project that does not conform to the National ITS

35 See www fhwa.dot.gov/safetealu.
36 See www fhwa.dot.gov/safetealu, section 5307, subsection A.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 35

Architecture. SAFETEA-LU continues this requirement. ITS projects funded by the Highway
Trust Fund must “conform to the national architecture, applicable standards or provisional
standards, and protocols.”37

International ITS Efforts

In Japan, ITS research began in the 1970s with the Comprehensive Automobile Traffic
Control System (CACS), which was a centralized route guidance system similar to the concept
of the Electronic Route Guidance System (ERGS) in the 1970s in the United States. In 1984,
development work on a car navigation system began with the Road/Automobile Communication
System (RACS) and the Advanced Mobile Traffic Information and Communications System
(AMTICS). Presently the ITS program is part of the generalized National IT program called the
Advanced Information and Telecommunications Society, which has a national goal for Japan “to
become the world’s most advanced IT nation” [17]. ITS Japan, also known as Vehicle, Road and
Traffic Intelligence Society or VERTIS, is analogous to ITS America, promoting ITS research
and development, standards development, deployment, and public/private cooperation.

In Europe, the PROMETHEUS program (Program for European Traffic with Highest
Efficiency and Unprecedented Safety) was started in 1986 and funded by automobile companies,
research institutions, and governments to produce a common technology platform [97]. The
emphasis was on sophisticated in-vehicle technology. In 1989, the DRIVE program (Dedicated
Road Infrastructures for Vehicle safety in Europe) was started with the goals of improving traffic
efficiency and safety. In 1991, ERTICO (European Road Transport Telematics Implementation
Coordination Organization) was created to develop policies and strategies, and coordinate
numerous ITS projects. ERTICO is similar to ITS America with an overall goal to enhance
European competitiveness with ITS and market-driven investment.

ATMS Goals and Benefits

ATMS provides a top-down perspective that integrates technology primarily to improve the
flow of traffic. Real-time infrastructure data from cameras, speed sensors, etc., flows into a TMC
where they are integrated and processed (e.g. for incident detection), and may result in actions
taken (e.g. traffic routing, CMS message updates) with the goal of improving traffic flow. The
National ITS Architecture defines the following primary goals and associated metrics for
ITS [6]:

• Increase transportation system efficiency

• Enhance mobility

• Improve safety

• Reduce fuel consumption and environmental cost

• Increase economic productivity

• Create an environment for an ITS market

37 See the SAFETEA-LU Public Law, www.fhwa.dot.gov/safetealu, section 5307, subsection C.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 36

It also defines a detailed goals matrix for the 21 market packages within the traffic management
service area. This matrix is reproduced in Table 11.

Looking forward, so-called ITS-4 technologies have been identified as sensing,
communication, and processing speed, combined to produce real-time results [104].
Improvements will enable increasingly sophisticated ATMS applications.

ITS/ATMS Milestones

• 1988 Mobility 2000

• 1990 Formation of ITS America

• 1991 End of build-out era

• 1991 ISTEA (Intermodal Surface Transportation Efficiency Act)

• 1994 National ITS Architecture

• 1997 National Automated Highway Systems Consortium Demonstration

• 1998 TEA-21, Transportation Equity Act for the 21st Century

• 2002/3 Ten-Year ITS Plan

• 2005 SAFETEA-LU, Safe, Accountable, Flexible, Efficient Transportation Equity
Act: A Legacy for Users

Commodity IP video cameras are a good example and are referenced in several case studies
in this report. IP video cameras use sophisticated compression, simplify and reduce cabling costs,
and enable low-cost public distribution of images over the Internet. Expanding camera
intelligence will only increase, e.g. automatic scaling of image resolution and frame rate using
built-in intelligence. One can easily imagine automatic detection and notification of emergency
traffic situations. Commercial units that provide gunshot detection integrated with video in urban
environments are available, and research sponsored by the U.S. Army is currently investigating
seismic and olfactory sensors [26].

Trends inside the ATMS market are continuing to push change. As ITS build-out continues
into lower-density population areas, cost-sensitivity increases—the primary obstacle to
implementing ATMS is no longer technology, it is cost. This is exemplified by California’s
hesitation to implement its existing ATMS system in all twelve districts. It is significant that the
more cost-sensitive states are developing the most innovative low-cost ATMS implementations
(see case studies, pg. 39). A trend directly related to lowering costs is the increased use of
standards. Increased ITS interoperability requirements are also driving standardization efforts.
Finally, increasing Homeland Security requirements appear to be a long-term trend driving some
ATMS functional requirements such as video surveillance.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 37

Table 11: National ITS Architecture ATMS benefits matrix [5]

Market Package Name
Increase

Transportation
System Efficiency

Enhance
Mobility

Improve
Safety

Reduce
Environmental

Cost

Increase
Economic

Productivity

Create
Environment

for an ITS
Market

Network Surveillance √ √ √ √

Probe Surveillance √ √ √ √√

Surface Street Control √√ √√√ √√ √√ √

Freeway Control √√ √√√ √ √√ √

HOV Lane Management √ √√ √ √

Traffic Information
Dissemination

√√ √ √ √

Regional Traffic Control √√√ √√√ √√ √√√ √

Traffic Incident Management
System

√√ √√ √√ √√√ √

Traffic Forecast and Demand
Management

√√ √√ √

Electronic Toll Collection √√ √

Emissions Monitoring and
Management

 √√√ √√

Virtual TMC and Smart Probe
Data

√ √ √ √ √

Standard Railroad Grade
Crossing

 √√√ √

Advanced Railroad Grade
Crossing

 √√√ √

Railroad Operations
Coordination

√ √ √ √

Parking Facility Management √√ √ √

Regional Parking Management √√ √ √

Reversible Lane Management √√ √ √

Speed Monitoring √√ √ √√√ √

Drawbridge Management √√ √√ √ √

Roadway Closure Management √ √√ √ √

Key—Satisfies goals: √ Marginally, √√ Almost every aspect, √√√ Completely

ATMS Trends

Trends in ATMS and ITS are driven both internally by customer needs and externally by
advances in technology. Semiconductor process technology continues to lower power
requirements, reduce chip size, and double performance about every eighteen months. This is
simultaneously pushing decentralization of processing intelligence and commoditization of

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 38

sensors, processors, and communication. These are combined to produce real-time results, and
have been described as next-generation “ITS-4” technologies [96]. The commoditization of
hardware parallels the commoditization of software in the form of OSS.

The Advanced Transportation Controller (ATC) standardization effort is taking advantage of
these trends by using commodity hardware and software: “as the current trend continues towards
distributing more of the intelligence of ITS out closer to the field, there is an increasing demand
for more and more capable field deployable devices. This hardware must run more sophisticated
applications software and operate in modern networking environments. The ATC Controller is
intended to address these needs” [11]. The ATC standard identifies software costs as “one of the
largest component costs of today’s Intelligent Transportation Systems.” The standard seeks to
addresses this concern with the inclusion of the OSS operating system Linux as part of the
standard.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 39

SECTION 8:
CASE STUDIES OF ITS SOFTWARE PROJECTS

USING OPEN-SOURCE SOFTWARE
This section discusses case studies of closed-source ITS software projects that use open-

source software, which are distinct from projects that are open-source projects (see the following
section for this latter category). Projects discussed here use OSS to implement software
applications that are themselves closed-source. For example, they might use MySQL, Linux,
Apache, etc., along with developed software code to build the application. The developed source
code is not shared with other organizations. The majority of case studies fall into this category.
This is often the first step an organization takes towards the open-source approach, replacing
proprietary software tools with open-source counterparts. Project organization is more or less
unchanged compared with the proprietary approach. Subsequent sections cover projects that are
more hardware-oriented. The focus here is on ATMS projects; however, other related projects
are discussed. Each case study strives to answer who, why, what, and how, with respect to OSS.

It is significant that many of the projects listed here are explicitly low-cost. Most of the
projects are associated with research organizations. This is significant because research
organizations tend to be more cost-constrained than State DOTs. It seems clear that the increased
use of OSS by State DOTs will increase the flow of innovation, ideas, and new developments
between DOTs and research institutions, benefiting both, along with the traveling public. Several
individuals involved in the following case studies expressed interest in sharing their work with
others in the form of an open-source project. There is clearly an unmet need and interest among
research institutions and states for sharing knowledge and software code.

Virginia Department of Transportation Web-based Congestion Monitoring ATMS

The Virginia Web-based Congestion Monitoring ATMS project is implemented using OSS.
The Smart Travel Lab is an ITS research group at the University of Virginia [104]. In September
of 2003 they completed the ATMS project “Web-based Congestion Monitoring Map for NOVA
Smart Traffic Signal System” for the Virginia Department of Transportation [86]. The project
had three objectives:

• Develop a real-time congestion metric for signalized intersections.

• Provide Internet-based intersection-level maps indicating congestion levels.

• Provide congestion trend data.

The developed congestion metric used an intersection volume-to-capacity ratio. The
congestion maps were used to identify intersections with poor signal-timing performance for
reoptimization.

The web-based application presents users with a clickable map of Virginia’s road network
(Figure 12, pg. 40). The system provides network- and intersection-level maps with real-time and
historic traffic data and covers three Virginia DOT (VDOT) TMCs and 1000+ signalized
intersections. Real-time traffic data is updated on 15-minute intervals. The system is designed for
both TMC ATMS personnel and ATIS users. Real-time traffic data is stored in a MySQL

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 40

database running on the Linux operating system. Web-based mapping is provided by ESRI’s
ArcIMS. Daily traffic data is loaded into an Oracle 8i database each evening (Figure 13, pg. 40).

Figure 12: Web-based congestion maps from Virginia ATMS [86]

Figure 13: Architecture of Virginia ATMS Web-based Congestion Monitoring [86]

The system uses the existing Oracle database for historical traffic data and MySQL for real-
time data. MySQL was used to lower the load on the existing Oracle database and to reduce
database licensing fees. MySQL was also used because it was “free, reliable, easy to use, has
large user base” [85]. A disadvantage reported was that this staged architecture requires an extra
step, presumably because of the added complexity of moving data between two databases [85].

Oklahoma Department of Transportation Statewide Distributed Low-Cost ITS

The Oklahoma Statewide Distributed Low-cost ITS project is implemented using OSS. The
Oklahoma Department of Transportation is currently developing a Statewide ITS with a novel

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 41

distributed architecture [57]. The University of Oklahoma is developing the system. Cost was a
major concern for ITS deployment in Oklahoma. To address this issue, a low–cost and
distributed ITS is currently being deployed. A guiding design philosophy is that “any console
should be able to control any system resource at any time.” This enables the elimination of an
expensive centralized TMC. TMC operators are connected by a peer-to-peer network into a
virtual, geographically-distributed, and fault-tolerant TMC.

System-wide functional requirements specify that the system must handle incident
management, work zone traffic management, weather information monitoring, critical
infrastructure monitoring, commercial vehicle operations, and public dissemination of
information. Security privilege levels are used to control access to resources. Design
requirements specify that an ITS console user operating anywhere in the State should be able to:

• Control any ITS device at any time.

• View video from any system camera.

• Post messages to all ITS consoles Statewide.

• Forward information (warnings, images, messages, video) to the ATIS and 511
systems.

The system is constructed with CCTV cameras, IP web cameras, CMSs, Remote Traffic
Detectors (RTDs), and Remote Weather Stations (RWSs). Various codecs were tested (MPEG-2,
MPEG-4, MJPEG) and ultimately MPEG-2 was selected. Figure 14 (pg. 42) shows the network
architecture diagram.

The ITS console runs on commodity x86 hardware. To control costs “a concerted effort has
been made to base the software architecture on open-source and public domain packages where
possible in order to avoid costly and recurrent software licensing fees.” The ITS console is
constructed with Microsoft Windows XP and the following open-source products:

• Apache web server (www.apache.org),

• PHP interpreter (www.php.net),

• MySQL database (www.mysql.com), and

• MapServer GIS (mapserver.gis.umn.edu).

The Apache web server is running locally on the ITS console machine. Access to applications is
through the web browser. Other development tools include Microsoft Visual Basic, Visual C++,
and JavaScript. The ITS console displays analog and digital video, and controls CCTV cameras,
CMSs, RTDs, RWSs, and other sensors. A message queue and database are used to control
device access (e.g. to CMS), event logging, and user messages.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 42

Figure 14: Oklahoma ITS Distributed IP Network Architecture [57]

Oklahoma Department of Transportation SAFE-T Accident Analysis System
The Oklahoma SAFE-T (Statewide Analysis For Engineering and Technology) Accident

Analysis System is a project that uses OSS [99]. The Oklahoma Department of Transportation is
currently developing the system to provide traffic engineering decision-support. It is presently
being used by the Oklahoma DOT, the Oklahoma Highway Patrol, and municipal and local
traffic engineers statewide. The goal is to reduce crashes using automated traffic analysis of
highway enhancements and construction. The system uses the MySQL database and MapServer
GIS products [56]. The University of Oklahoma is developing the system.

Oklahoma Department of Transportation ATIS System
The Oklahoma ATIS (Advanced Traveler Information System) System is a project that uses

OSS. The Oklahoma DOT is funding the project, which is a web-based system [103], and the
University of Oklahoma is developing the system. The application will provide real-time traffic
data for Oklahoma City and will be used by TMC personnel and the traveling public. The system
will provide real-time average speed, road conditions, construction information, and web-cam
images. The system is implemented with the open-source database MySQL, the Apache web
server, and the MapServer GIS [56].

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 43

Figure 15: Oklahoma Web-based ATIS [18]

Minnesota Department of Transportation IRIS Intelligent Roadway Information System

The Minnesota IRIS Intelligent Roadway Information System is a project that uses OSS. The
Minnesota Departmental of Transportation (Mn/DOT) Regional Transportation Management
Center’s (RTMC) goals are to improve safety and reduce congestion using “cutting-edge
technology, progressive programs, and real-time information delivery systems” [21]. The RTMC
is co-located in a unified command center with the State Highway Patrol, Mn/DOT’s Metro
District Maintenance Dispatch, and the Office of Traffic, Security and Operations. The RTMC’s
ATMS operations software (IRIS) provides ramp metering, incident detection, and CMS control.
Mn/DOT’s RTMC implements all of their software projects using OSS, and is interested in
collaborative partnerships with other DOTs or organizations. The RTMC plans to continue using
OSS and is pleased with the results [64].

Minnesota’s IRIS ATMS system uses Linux and the open-source database PostgreSQL, and
is implemented with Java. The client displays a GUI map and is supported on Linux and
Windows. Commodity server hardware is used, including PCI-based serial communication with

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 44

field elements. Other RTMC projects are using OSS components including Apache, Tomcat,
Batik, Hibernate, Struts, Velocity, Ant, Eclipse, Python, and Mercurial.38

Key benefits of the OSS approach are reported to be low initial and recurring costs, and the
ability to customize. Software stability and reliability are also reported to be high. It was also
reported that moving from the “tried-and-tested” OSS projects to the “cutting-edge” OSS
projects tends to result in a higher number of unanticipated problems. Working with “cutting-
edge” OSS projects required developer time to resolve issues, reported to be similar to working
with a beta version of commercial software.

FAA Real-time Enhanced Air Traffic Management System

The FAA Real-time Enhanced Air Traffic Management System is a project that uses OSS.
This report is primarily concerned with surface transportation. However, the Federal Aviation
Administration’s (FAA) recent technical refresh of their Enhanced Traffic Management System
(ETMS) offers insight into what is possible using commodity hardware and OSS. The primary
goal of the FAA’s ETMS system is to enable air traffic managers to control air traffic so that
system capacity is not exceeded. ETMS is used nationwide to monitor real time air traffic
volume, surges, and gaps. It integrates five types of data: geographic maps, traffic situation data,
alert data, flight list and count data, and weather data [13].

During the technical refresh in 2004 and 2005, the FAA replaced all proprietary RISC
workstations with commodity workstations running Linux, reducing per-workstation costs from
$25,000 to $3,000. The ETMS system has 1,200 workstations scattered across 100 sites. As part
of the technical refresh, software consisting of 1.5 million lines of code was ported to Linux [16].
The initial cost estimate for the technical refresh of the original proprietary RISC system was
$25 million; however, the technical refresh, using commodity hardware and Linux, was achieved
with $10 million. In addition, performance improved substantially [13].

Prior to the ETMS refresh, Linux was used in the FAA’s Common Automated Radar
Terminal System (ARTS) [35]. The ARTS system was first used in Atlanta in 1964 and was
expanded and upgraded over time [12]. By 1973, the system was used nationwide. In the 1980s,
the software was ported to C. The system was ported to Linux in 2000 for testing purposes
because the proprietary production hardware was so expensive. The FAA began production use
of Common ARTS running on Linux in 2003 on a non-critical system (Figure 16). As the FAA
gained experience with Linux and commodity hardware, their Linux use has expanded.

38 See www.apache.org, tomcat.apache.org, xmlgraphics.apache.org/batik, www hibernate.org, struts.apache.org,
jakarta.apache.org/velocity, ant.apache.org, www.eclipse.org, www.python.org, www.selenic.com/mercurial.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 45

Figure 16: Linux ARTS screenshot [35]

U.S. DOT Weather-Related Road Hazards Assessment and Monitoring System

The Weather-Related Road Hazards Assessment and Monitoring System is a project that uses
OSS. The National Consortium on Remote Sensing in Transportation (NCRST) funded the
research demonstration project Weather-Related Road Hazards Assessment and Monitoring
System (WRRHAMS) [20]. The project goal was to develop a web-based application for “for
identifying and visualizing transportation infrastructure locations in danger of having been
damaged by precipitation events” for rural unpaved roads in New Mexico [114]. The system
used near-real-time NEXRAD (Next Generation Radar) Doppler radar precipitation data
combined with local soil, vegetation, and terrain data. The output product is a map indicating
areas with a high probability of flash flood damage to rural roads. The system started operating
in February of 2003. Operation ceased due to funding problems. The system was implemented
using Linux and the open-source GRASS (Geographic Resources Analysis Support System)
GIS.39

39 See grass.itc.it.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 46

Figure 17: WRRHAMS web application screen shot [114]

Pennsylvania State Hourly Mesonet

The Pennsylvania Hourly Mesonet project uses OSS—it is a centralized repository of historic
and real-time weather station data developed and maintained by the Pennsylvania State
Climatologist at the Pennsylvania State University, Department of Meteorology40 . Data is
received from approximately 160 networked weather stations (Figure 18) operated by the FAA,
PennDOT (Pennsylvania Department of Transportation), and PADEP (Pennsylvania Department
of Environmental Protection) [102]. Minimally these stations report hourly temperature (Figure
19), wind direction, and wind speed. Plans are underway to incorporate the approximately 125
National Weather Service (NWS) Cooperative Observer Program (COOP) stations. Weather
station data is processed hourly. Derived information includes wind streamlines, temperatures,
dew point contours, and time series displays of information. Roadway Weather Information
System (RWIS) sensors are used to monitor roadway temperature, ground condition (e.g. icy,
wet, snow cover), and average vehicle speeds. New data sources are being added as their data
passes a certain level of quality assurance. For example, the Citizen’s Weather Observation
Program (CWOP) has more than 100 hourly reporting sites in Pennsylvania.

40 See the Pennsylvania Mesonet site at pasc.met.psu.edu/MESONET and www.met.psu.edu.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 47

Hourly Mesonet data is stored in a MySQL database. The OSS Perl scripting language41 is
used to read flat data files received from sensors and to insert the results into the MySQL
database. The Mesonet web site uses the Linux operating system and Apache web server. In
general, the Pennsylvania State University Department of Meteorology uses Java, PHP, Perl,
Linux, MySQL, Flash (a proprietary product from Adobe, Inc.), and Red Hat Enterprise
Linux [30]. Red Hat was selected for its quality and ongoing support. Satisfaction is reported to
be high. Software is developed by a combination of undergraduate and graduate students and a
few full-time research assistants.

Figure 18: Pennsylvania Mesonet weather station locations

Figure 19: Pennsylvania Mesonet real-time surface temperature analysis

41 For Perl, see www.perl.org

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 48

Los Angeles County Regional ITS Integration Project

 The Los Angeles County RIITS (Regional Integration of Intelligent Transportation
Systems) project is implemented with OSS, and is sponsored by the Los Angeles County
Metropolitan Transportation Authority42. Its primary goal is to increase the effectiveness of
investments already made in electronic information systems and transportation systems through
the real-time exchange of traffic and transportation data. Agencies involved are Caltrans, the
California Highway Patrol, the City of Los Angeles Department of Transportation, and the Los
Angeles County Metropolitan Transportation Authority (see Table 12 for integration data types).
Examples of benefits expected from information sharing include [45]:

• Help dispatchers identify congested routes and identify alternatives;

• Allow law enforcement and emergency services to track GPS-equipped transit
vehicles that require assistance;

• Provide video images of freeway incidents to multiple agencies;

• Inform transit operators of expected transit vehicle arrival times;

• Increase airport and port operators’ understanding of road conditions affecting
passenger and truck arrivals.

Table 12: RIITS data available via web services [71]

Data Type Agency Providing Data Update Rates
Congestion – Freeway Inventory Caltrans D7 Daily/Midnight
Congestion – Freeway Real-time Caltrans D7 Every 1 Minute
Congestion – Arterial Inventory LADOT Daily/Midnight
Congestion – Arterial Real-time LADOT Every 1 Minute
Congestion – Arterial Inventory Caltrans D7 Quarterly
Congestion – Arterial Real-time Caltrans D7 Every 1 Minute
Event CHP Every 1 Minute
Event Caltrans D7 Every 1 Minute
Bus Routes – Inventory MTA – Metro Quarterly
Bus Real-time Locations MTA - Metro Once per 2 Minutes
Train Routes – Inventory MTA – Metro Quarterly
Train Real-time Locations MTA – Metro Every 1 Minute
CMS Inventory Caltrans D7 Daily/Midnight
CMS Real-Time Caltrans D7 Every 1 Minute
CCTV Inventory Caltrans D7 Quarterly
CCTV Snapshots Caltrans D7 Every 1 Minute

The RIITS project uses both OSS and COTS software. It uses an innovative approach with

extensive use of web services and XML for data integration. It is a web- and Java-based

42 See the RIITS web site at www.riits.net.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 49

application. Figure 20 provides a screenshot. Open-source software used on the project includes
Red Hat Fedora Linux, JDK 1.4 (Java Development Kit), Apache Tomcat JSP (Java Server
Pages) Server, and the Apache Axis SOAP provider [70]. The project was developed by Delcan
Inc., who reported decreasing interest among government organizations in using high-cost
proprietary software products to build ATMS applications [46].

Figure 20: RIITS maps at different zoom levels [72]

University of Maryland RITIS System

 The University of Maryland CATT Laboratory (Center for Advanced Transportation
Technology) is developing RITIS (Regional Integrated Transportation Information System)
using open-source software.43 The goal of RITIS is to improve transportation efficiency, safety,
and security by integrating existing real-time and archival regional transportation data from
Virginia, Maryland, and the District of Columbia, among others (see Figure 21). The system
collects and disseminates data in a standardized format to a wide variety of users, providing real-
time data for traveler information and operations. Archived data is available for research,

43For the University of Maryland CATT Laboratory, see www.cattlab.umd.edu.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 50

planning, operational needs, and performance monitoring. Traffic and incident data is archived
indefinitely. A website suitable for PDA use is also available. Prototype screen shots are shown
in Figure 22 and Figure 23.

RITIS is built with OSS, including the Apache HTTP Server, PHP, MapServer, PostgreSQL,
the JBoss Application Server, MySQL, JDOM,44 and Log4J.45 Traffic detector data and incident
data are available in XML. RITIS data is available to other systems via XML and SOAP, JMS
(Java Messaging Service), and others. In general, the CATT Laboratory makes extensive use of
OSS [48], motivated in part by the desire to make CATT developed software projects affordable
to cost-sensitive agencies such as county traffic management centers. CATT reports that their
overall experience with OSS is positive. They have found that OSS software quality varies
widely between projects, and that the best software seems to be produced by organizations and
foundations which oversee projects and provide direction. They noted that the Apache HTTP
Server is highly reliable, easy to configure, easy to maintain, well documented, and supported by
a vast user community. They also noted some quirks, such as the need to recompile for SSL
support. CATT reported that the JBoss Application Server is complex to configure and suffers
from a “severe lack of documentation and user support.” CATT also noted that a number of other
J2EE servers are available such as JOnAS,46 and GlassFish,47 among others.

Figure 21: University of Maryland CATT Laboratory RITIS Data Distribution [82]

44 For JDOM, see www.jdom.org.
45 For Log4J, see logging.apache.org.
46 For the JOnAS Java J2EE server, see jonas.objectweb.org.
47 For the GlassFish Java J2EE server, see glassfish.dev.java net.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 51

Figure 22: University of Maryland CATT Laboratory RITIS Prototype Screen [82]

Figure 23: University of Maryland CATT Laboratory RITIS PDA Prototype Screens [82]

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 52

Virginia Department of Transportation Incident Management System

 The University of Maryland CATT Laboratory (Center for Advanced Transportation
Technology) 48 is developing an incident management system using open-source software for the
Virginia Department of Transportation (VDOT).49 This incident management system was rapidly
designed and developed to meet VDOT’s immediate TMC software needs until a full-featured
solution can be developed. It provides data collection, performance measures, mapping, and
other features. It is designed to be maintainable, customizable, and easy to setup. Other
organizations have expressed interest in adopting it. CATT’s Incident Management System was
developed using the Apache HTTP Server, PHP, MapServer, PostgreSQL, AMFPHP50, and the
Wildfire Server.51 The CATT Laboratory makes extensive use of OSS. See pg. 49 for another
CATT case study and additional information.

48For the University of Maryland CATT Laboratory, see www.cattlab.umd.edu.
49For the Virginia Department of Transportation, see www.virginiadot.org.
50 For AMFPHP, see www.amfphp.org.
51 For the Wildfire Server, see www.jivesoftware.org/wildfire.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 53

SECTION 9:
CASE STUDIES OF ITS OPEN-SOURCE SOFTWARE PROJECTS

This section discusses case studies of ITS software projects that are open-source software
projects, as distinct from those discussed in the prior section, which are closed-source software
projects that use open-source software. Projects discussed here are explicitly organized to share
project artifacts: source code, datasets, test results, etc. with a community of users who may
contribute to the project in some form. The community benefits from these contributions.
Projects in this category use some type of OSS license to grant users access to project artifacts.
See Appendix D for information on open-source licenses (pg. 89). Subsequent sections discuss
ITS projects that are more hardware-oriented. The focus here is on ATMS projects; however,
other related projects are discussed. Each case study strives to answer who, why, what, and how,
with respect to OSS.

Massachusetts Institute of Technology MITSIMLab Traffic Simulator

The MIT Open-Source MITSIMLab Traffic Simulator is an open-source project that is also
implemented using OSS. MITSIMLab is a traffic simulation package developed by MIT’s
Intelligent Transportation Systems Program and is used to evaluate ATMS and ATIS
systems [75]. MITSIMLab uses a license that requires modifications and enhancements to be
posted in the public domain and provides source code for downloading. Technical support for the
open-source version of MITSIMLab is provided by a public newsgroup, which has 45 members,
as of May 2006. MITSIMLab’s functionality can be organized into three categories (Figure 24,
pg. 54) which are discussed below:

• Microscopic traffic simulation (MITSIM),

• Traffic management simulation (TMS), and

• Graphical user interface (GUI)

The MITSIM component models the physical world, which includes the transportation
network and traffic. The transportation network is defined by lanes, links, nodes, traffic controls,
and surveillance devices. Statistically selected predefined routes are used to simulate traffic.
Each vehicle is simulated using desired speed, aggressiveness, vehicle characteristics, a car-
following model, a lane-changing model, responses to signals, speed limits, accidents, and toll
booths [74].

The TMS component simulates the traffic control system. Simulation parameters include
ramp control, lane control signs, variable speed limit signs, tunnel entrance signs, intersection
control, changeable message signs, and in-vehicle route guidance.

The GUI component is used for debugging and viewing network performance (Figure 25).

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 54

Figure 24: MITSIMLab components [74]

Figure 25: MITSIMLab interface [36]
The city of Stockholm Sweden evaluated MITSIMLab and five other simulation products in

a detailed comparison [31,36]. MITSIMLab’s simulation abilities were judged superior overall.
However, a proprietary competitor (AIMSUN2, Advanced Interactive Microscopic Simulator for

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 55

Urban and Non-Urban Networks52) was judged to have more complete documentation and better
stability.

Federal Highway Administration Next Generation Simulation

The Next Generation Simulation project uses the open-source approach by releasing some
project products using an open-source license and encouraging community involvement. The
Federal Highway Administration’s Next Generation Simulation program (NGSIM) is a traffic
simulation research community that is openly sharing data sets, documentation, and algorithms
with the transportation community [22]. Program goals are to improve traffic simulation tools,
promote the use of simulation, and ensure the accuracy and trust of traffic simulation tools by
providing validated simulation results. To achieve these goals FHWA is acting as a “Market
Facilitator” to promote the development of the commercial traffic simulation market. Application
development will be left to the private sector and FHWA explicitly will not compete in the
market. In addition, FHWA will establish standard NGSIM data formats, a web site
(www.ngsim.fhwa.dot.gov), and repository. It is notable that this innovative program is
sharing knowledge with the goal of establishing a healthy commercial market in traffic
simulation.

The NGSIM program uses a Creative Commons copyright license, which is similar to the
GNU GPL license.53 It stipulates that:54

• You must give the FHWA and the NGSIM program credit for the data;

• For any reuse or distribution, you must make clear to others that any such reuse or
distribution is subject to the license terms of this work; and

• Any of these conditions can be waived if you obtain written permission from the
FHWA.

Creative Commons is a non-profit organization started in 2001 by Lawrence Lessig, a law
professor at Stanford. Creative Commons provides a variety of free copyright licenses to
copyright holders through their web site.55 Their goal is to facilitate sharing of information.

U.S. DOT Open-Source TEXAS Intersection Simulation Model

The TEXAS intersection simulation model is an open-source project. In May of 2003 the
U.S. Department of Transportation requested enhancements to the TEXAS (Traffic
EXperimental and Analysis Simulation) microscopic single-intersection simulation model [3].
The TEXAS simulator models sub-microscopic behavior of vehicles as they pass through
intersections and mix with other traffic flows. The enhancements include writing a new Java-
based user interface, and interfacing with the simulation engine which is written in Fortran
90/95. All of the source code for this project will be copyrighted using the Free Software
Foundation’s GPL [54]. The project solicitation states “the vendor would be expected to make

52 See www.aimsum.com.
53 See creativecommons.org/licenses/by/2.0/ for the specific license used.
54 See the NGSIM web site: www.ngsim.fhwa.dot.gov.
55 See creativecommons.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 56

their profits through support and maintenance of the tool.” The application is expected to run on
the Linux, Windows 2000/XP, and Mac OS platforms. Phase 2 will add multiple data import
features, including CAD and graphics files as templates or data. At the time of this writing (May
2006) development is focusing on simulation model enhancements.

University of Washington Urban Simulation and Modeling Project

UrbanSim is an open-source project sponsored and developed by the Center for Urban
Simulation and Policy Analysis at the University of Washington, Seattle56. UrbanSim is a
simulation tool that models economic relationships between actors such as households,
businesses, developers, and government policies. It uses the following inputs: population
estimates, transportation system plans, employment, economic forecasts, land-use plans, and
land-development policies such as density constraints, environmental constraints, and
development impact fees. It provides the following future outputs:

• Population distributions
• Households by type (e.g. income, age of head, size, number children, housing type)
• Businesses by type (e.g. industry and number of employees)
• Land use by type (user-specified)
• Units of housing by type
• Square footage of nonresidential space by type
• Densities of development by type of land use
• Prices of land and improvements by land use

Funding for UrbanSim has come from the National Science Foundation, the Puget Sound
Regional Council, IBM, Google, King County, the Oregon Department of Transportation, the
Wasatch Front Regional Council, and the Houston-Galveston Council of Governments, and
FHWA. Technical support is provided through the UrbanSim Commons wiki, which provides a
means for users to exchange information and resources57. Some current UrbanSim users include:
Paris, France; Amherst, Massachusetts; Northwing of the Randstad in the Netherlands; Tel Aviv,
Israel; and the Wasatch Front in Utah.

UrbanSim uses other open-source packages, including Python, MySQL, and GDAL58. It has
been tested with Windows XP, SUSE Linux, and Mac OS X (PPC and Intel). UrbanSim uses the
GPL open-source license.

56 For UrbanSim, see cuspa.washington.edu.
57 For UrbanSim Commons, see urbansimcommons.org.
58 For GDAL, the Geospatial Data Abstraction Library, see www remotesensing.org/gdal.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 57

Figure 26: UrbanSim open-source modeling analysis for Tel Aviv metropolitan area [51]

TRB IDEA Program Dynamic Timetable Generator

The Dynamic Timetable Generator project is a prototype proof-of-concept open-source
project from the IDEA (Innovations Deserving Exploratory Analysis) program. The IDEA
program is sponsored by the Transportation Research Board (TRB) and the National Academy of
Science (NAS). The IDEA program funds promising research that uses unproven innovations for
highways, rail, safety, and transit [100]. Projects are selected based on innovation, benefits, and
science. Transit IDEA projects focus on transit security, bus transit, and innovations that increase
ridership.

 The Dynamic Timetable Generator project goal is to provide a general-purpose open-
source tool that dynamically generates transit timetables for customers accessing a transit web
site. Transit agencies benefit from timely and accurate web site updates. A simplified
architecture diagram is shown in Figure 27. Project participants include the Oregon Tri-County
Metropolitan Transportation District (TriMet)59, King County Metro60 in Seattle, Washington,
the Chicago Regional Transit Authority,61 and the New York State DOT Passenger Transport
Division62 [43,100]. The project emphasizes the use of public standards because of anticipated
use by a wide range of agencies using diverse operating systems. Standards used include XML

59 For TriMet, see www.trimet.org.
60 For King Country Metro, see transit metrokc.gov.
61 For the Chicago Regional Transit Authority, see www.rtachicago.com.
62 For the New York State DOT, see www.nysdot.gov.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 58

(eXtensible Markup Language), XSLT (eXtensible Stylesheet Language and Transformation),
and the Transit Communications Interface Profile (TCIP). Developed software code will be
licensed using an open-source license.

Figure 27: Prototype Dynamic Timetable Generator Architecture [100]

Oregon Tri-County Metropolitan Transportation District TimeTable Publisher

 The TimeTable Publisher63 is an open-source project of the Oregon Tri-County
Metropolitan Transportation District (TriMet).64 The goal of TimeTable Publisher is to provide a
general-purpose open-source tool that dynamically generates transit timetables for customers
accessing a transit web site. TriMet was a participant in TRB’s prototype open-source Dynamic
Timetable Generator project (see pg. 57). TimeTable Publisher is based on some ideas from
TRB’s prototype IDEA project and has benefited from a number of lessons learned during that
prototype development. TriMet will release TimeTable Publisher using an open-source license.
TriMet uses OSS extensively and is interested in collaborating with other transit agencies,
including the possibility of creating an open-source transit foundation.65 TimeTable Publisher
uses the Apache HTTP Server, Linux, and Tomcat, among others. TriMet is also working with
Google Inc. on the Google Transit project,66 which uses the Creative Commons Attribution-
ShareAlike license.67 TriMet reports the following organizational benefits for using OSS [101]:

• Shared costs, risks, and lessons learned
• Software support and maintenance can be extended indefinitely
• Approach is proven and in use
• Control over technical destiny
• Development and service base larger under OSS
• Benefits smaller agencies
• Consistent user interfaces

63 For TimeTable Publisher, see timetablepublisher.com.
64 For TriMet, see www.trimet.org.
65 For a discussion of use of OSS in Transit and the use of software foundations, see P. Okunieff, “Transit and Open
Source: Is It an Option?” www.consystec.com/docs/IDEA TOSSI Final 062905 V2.1.pdf
66 For Google Transit, see maps.google.com/transit and for the open-source Google Transit Feed Specification, see
code.google.com/transit/spec/transit feed specification htm.
67For the Creative Commons ShareAlike License, see creativecommons.org/licenses.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 59

TriMet reports the following technical benefits for using OSS:

• Ability to customize code
• Flexibility
• Modularity
• Shorter development cycles
• Re-usable code
• Ability to scale application to meet specific performance criteria
• More technical support and resources due to broader base
• More Assessable: ADA, General, Documentation
• Fosters innovation and competition

Figure 28: TriMet's Transit TimeTable Publisher [101]

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 61

SECTION 10:
CASE STUDIES OF ITS HARDWARE PROJECTS

USING OPEN-SOURCE SOFTWARE
This section discusses case studies of ITS hardware projects that use OSS. The prior sections

discussed projects that are more software-oriented, while this section and the next focus on
explicit hardware systems. The focus is on ATMS related projects; however, other transportation
related projects are discussed. Each case study strives to answer who, why, what, and how, with
respect to OSS. A significant point is that the vast majority of the case studies in this report used
commodity x86 and x64 hardware in addition to OSS.

Peek Traffic Inc. Linux-Based Commercial Traffic Data Recorder

Peek Traffic Inc. sells a Linux-based automatic traffic data recorder, the ADR-6000 [24]. It is
a rack-mount unit with a Pentium-class processor.68 The Texas Transportation Institute
performed an evaluation of the ADR-6000 and three similar units [44]. The researchers noted
that the unit was comparable to the others and fell near the bottom of the price range.

Figure 29: Peak ADR-6000 Linux based automatic data recorder [24]

City of Valencia, Spain Video Streaming System for Urban Traffic Control

The city of Valencia Spain recently deployed a traffic management system that uses OSS to
stream video over TCP/IP [49]. The city has 600 traffic cameras with plans to increase that to
1000. The guiding philosophy used to build the system was to use COTS and OSS components
that follow open standards, and avoid proprietary systems. TCP/IP video cameras were used
instead of traditional CCTV to provide increased scalability, lower cabling costs, and facilitate
providing video streams to the public over the Internet. The video cameras use the MPEG-4
codec. The system uses Linux, the OSS database MySQL, the OSS video player VLC, and the
OSS multimedia system FFMPEG69, among others [83]. Figure 30 provides a diagram of the
main system components.

68 For ADR-6000 specifications, see www.ustraffic net/products/data/ADR-6000-05.pdf.
69 See www mysql.com, www.videolan.org, and ffmpeg mplayerhq hu.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 62

Figure 30: System components of TMC, Valencia, Spain [49]

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 63

SECTION 11:
CASE STUDIES OF ITS OPEN-SOURCE HARDWARE PROJECTS

This section discusses case studies of ITS hardware projects that are open-source projects—
they attempt to build a community of users sharing software code, experience, improvements,
etc. The community benefits from these contributions. Projects in this category use some type of
OSS license to grant users access to project artifacts. See Appendix D for information on open-
source licenses (pg. 89). Prior sections discussed ITS projects that are more software-oriented,
while Section 10 presented hardware projects that use open source, but are not actually open-
source projects. The focus is on ATMS related projects; however, other transportation related
projects are discussed. Each case study strives to answer who, why, what, and how, with respect
to OSS. A significant point is that the vast majority of the case studies in this report used
commodity x86 and x64 hardware in addition to OSS.

U.S. DOT Advanced Transportation Controller

The Advanced Transportation Controller (ATC) project uses OSS and is an OSS project. It is
a standardization effort initiated by the U.S. Department of Transportation, and sponsored by
AASHTO, ITE, and NEMA (see also ATMS Trends, pg. 37). It has been recognized as one of
the most important standards for the ITS community. ATC will provide an open software and
hardware platform for a wide variety of ITS applications, and is viewed as similar to a
ruggedized field-deployed personal computer. Table 10 shows some of the anticipated
applications. The draft standard is near completion and adoption. The standard stipulates that the
“ATC shall use a Linux operating system (O/S) and shall include standard POSIX libraries for
application support including real-time extensions of POSIX 1003” [11]. Figure 31 (pg. 64)
shows the layered structure of ATC. The standardized API layer insulates applications from
changes to the operating system and hardware.

Table 13: Anticipated ATC applications [11]
Traffic Signal Highway Rail Intersections

Traffic Surveillance Speed Monitoring
Lane Use Signals Incident Management
Communications Highway Advisory Radio

Field Masters Freeway Lane Control
Ramp Meter High Occupancy Vehicle Systems

Variable/Dynamic Message Signs Access Control
General ITS beacons Roadway Weather Information Systems

CCTV Cameras Irrigation Control
The ATC standardization effort is needed for several reasons. First, there is an increasing

need to integrate controllers that were previously incompatible (e.g. the 2070 and NEMA
controllers), both for functional and standardization reasons. Second, increasingly sophisticated
ITS applications require supporting a broader set of applications, faster communication, and the
ability to evolve over time. The ATC standard identifies this need as a broad ITS trend: “as the
current trend continues towards distributing more of the intelligence of ITS out closer to the
field, there is an increasing demand for more and more capable field deployable devices. This
hardware must run more sophisticated applications software and operate in modern networking
environments. The ATC Controller is intended to address these needs” [11]. It is interesting to

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 64

note that the ATC standardization effort started with an attempt simply to standardize the API
layer and not the operating system. Clearly at some point the standardization committee came to
the conclusion that an open-source operating system (specifically, Linux) could be adopted into
the standard without sacrificing portability, future expansion, reliability, hardware options, or a
healthy ATC hardware and software market.

Figure 31: ATC software layered organization [10]

European ERTICO Global System for Telematics Open System

The European Global System for Telematics Open System project both uses OSS and is an
OSS project. ERTICO is the European equivalent to ITS America, and sets standards, funds
research, and coordinates projects. The Global System for Telematics (GST) is an ongoing
project with the goal of facilitating the creation of an open market for in-vehicle ITS
services [15]. The GST Open Systems sub-project is delivering an open telematics framework,
consisting of the specifications, architecture, and a reference implementation for in-vehicle
applications. The open telematics framework will be used by service providers, car
manufacturers, and mobile end-users. In-vehicle applications will be distributed by service
providers from control centers. The GST Open Systems project provides specifications and
example implementations of these systems for service providers and car manufacturers
implementing these systems.

The Open Systems project uses open standards and open-source. Mobile applications are
deployed from control centers via web applications and servers using the open-source GPL
license. Applications run on the open-source JBoss70 J2EE application server. The SyncML71
synchronization standard is used, which is based on the Sync4J 1.4.8 open-source
implementation. Other open standards used include HTTP, SOAP, and TCP/IP (see Figure 32 for

70 See www.jboss.org.
71 See www.openmobilealliance.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 65

more). The open-source Eclipse72 development environment is also used. Both Linux and
Windows XP are used for development.

Figure 32: ERTICO GST Open System protocol stack [108]

72 See www.eclipse.org.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 67

SECTION 12:
CONCLUSIONS

Summary

This report has three objectives:

• to summarize the history and current developments in ATMS software and hardware,

• to summarize the history, developments, strengths, and weaknesses of OSS, and

• to summarize case studies of OSS and commodity hardware use in ATMS projects in
the reference literature.

Section 2 discusses how and why technology markets change, the nature of innovations, product
lifecycles, disruptive innovation, and commoditization of the computer hardware market.
Section 3 presents OSS history and recent developments. Sections 4-6 discuss how OSS is
different, software engineering, types of software development, and OSS strengths and
weaknesses. Section 7 summarizes ATMS history, goals, and trends. Sections 8 and 9 overview
case studies of OSS use and OSS projects in ATMS and ITS software, while Sections 10 and 11
summarize case studies of OSS use and OSS projects in ATMS and ITS hardware. Finally, the
appendices discuss lock-in, popular OSS projects, relevant ATMS standards, OSS licenses, and
semantic modeling.

Conclusion

The ATMS and ITS markets are being driven both internally by customer needs and
externally by advances in technology (see Figure 34, pg. 70). Improvements in semiconductor
process technology continue to push commoditization of sensors, processors, communication,
and decentralization of processing intelligence, providing the capability for real-time decision-
making. ATMS customer needs are also driving change. As ITS build-out continues into lower-
density population areas, cost-sensitivity increases. The primary obstacle to implementing
ATMS is no longer technology—rather it is cost. Homeland Security requirements appear to be a
long-term trend driving some ATMS functional requirements such as video surveillance and
increased IT security. Finally, the ongoing need to reduce congestion, lower accident rates, and
increase efficiency is driving needs for further innovation, ATMS interoperability, more and
better real-time data, and the ability to make traffic management decisions in real time. As
recognized by the National ATC standardization effort, these trends are driving the need for
more sophisticated field devices. This, combined with lower hardware prices and the price
sensitivity of further ATMS build-out are driving the need for software that is less expensive and
more secure, reliable, standards-based, and innovative.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 68

Needs for…
•ATMS interoperability

•ATMS innovation
•ATMS standardization

•Lower initial and ongoing ATMS costs
•Decisions in real time

Changing technology
e.g.

Commoditization of sensors,
communications, processors,

“ITS-4”

Evolving customer needs
e.g.

•Continued ATMS build-out
•Increased safety and efficiency
•Homeland Security
•Etc.

ATMS Trends

Open-Source Strengths
•Low cost, less lock-in
•Promotes innovation
•Promotes standards

•More reliable
•More secure

Trends drive needs…

Needs addressed by…

Figure 33: ATMS trends, needs, solutions (simplified)
Improvements in safety, congestion, and efficiency have already been achieved with ITS

applications and proprietary software. This report details the use of OSS to build ITS and ATMS
applications. Each of the ITS projects covered in the case studies used OSS in one of two ways:

1. The first type of project case study used open-source software to implement a closed-
source application: Ten of the case studies used this approach. Project organization is
more or less unchanged compared to projects using proprietary products.

2. The second type of project used open-source software to implement an open-source
application. Five of the case studies used this approach. These projects are organized
to share project source code, datasets, test results, etc. with a community of users who
may contribute to the project in some form. The community as a whole benefits from
these contributions. Projects in this category use some type of OSS license to give a
community ongoing access to project artifacts.

Benefits provided by OSS and its unique development model must be balanced with a
consideration of concerns, including lack of trained staff, less user-friendliness, and inconsistent
quality. An understanding of the OSS development model is crucial for setting expectations. For
example, benefits gained from peer review are proportional to the number of individuals

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 69

involved. As shown in the case studies, measured use of OSS with a consideration of OSS
strengths and concerns can provide immense benefits to an organization.

There are three conclusions reached here. First, a number of ATMS and ITS projects have
constructed applications using open-source software. For example, Minnesota’s IRIS ATMS
system, Oklahoma’s Statewide distributed ITS, and the National ATC standard for field devices
all use OSS. In addition, others have used OSS to implement large and complex non-ITS
applications, including the FAA’s technical refresh of the Nation’s Real-time Enhanced Traffic
Management System, and a number of corporations that run their businesses on OSS and
commodity hardware, such as Google, E*TRADE, Sabre, Travelocity, Yahoo!, and Amazon.

Second, as summarized in Figure 34, some of the benefits reported in the case studies related
to the OSS development model parallel trends in ATMS and ITS. For example, high deployment
costs are a concern for continued ATMS build-out in California. The need for increasingly
sophisticated software applications in field devices and TMCs are also driving higher software
costs. These cost concerns parallel OSS cost benefits reported in some of the case studies (e.g.
see the Mn/DOT IRIS System, pg. 43). Reduced lock-in is closely associated with zero or low
software licensing costs. Needs for higher ATMS reliability and security parallel reliability and
security strengths reported with the OSS model, and may benefit ATMS applications.

Third, in the ITS field in general, there appears to be increasing interest in collaboration. This
parallels the general requirement that ATMS and ITS systems increase functional
interoperability. One third of the cited case studies (5) are themselves open-source projects using
open-source licenses to ensure community access to artifacts. A number of individuals contacted
for this report and involved in the case studies expressed interest in sharing their proprietary
work with others in the form of open-source ATMS projects. The open-source development
model facilitates collaboration, the exchange of ideas, software code, and pooled funding which
spreads development risks. DOTs, cities, and counties may benefit from continuing this
collaborative approach. Collaborative access to source code may also increase competition
among prospective firms because of lowered entry barriers. Firms or individuals that did enhance
an OSS ATMS could not claim a proprietary right to the source code they wrote, potentially
reducing lock-in for State DOTs. However, adopted enhancements would gain them visibility
and recognition, which would increase their ability to win contracts for future enhancements.

These conclusions taken together indicate strong potential for application of OSS for ATMS
in California and the Nation. The current project will continue to investigate California’s
evolving ATMS requirements, and map these against the capabilities and potential for
application of OSS, in order to test and demonstrate the applicability and benefits relative to
California’s needs.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 70

Higher software costs

Sophisticated general
purpose field devices

ATMS trends driven
by customer needs

Cheaper, more
numerous, more
intelligent field

devices

Commoditization of sensors,
communications, processors

Decisions in real time

Increase ITS
safety and
efficiency

ATMS build-out,
coverage of lower
population density

Homeland
Security

Lower cost
ATMS

ATMS
interoperability

ATMS
standardization

Need for more
sensors in the field

ATMS trends driven
by technology

“ITS-4”

Need for
innovation

ATMS Trends, Needs, and Solutions

drives

needed

Open-Source Strengths
•Low cost, less lock-in
•Promotes innovation
•Promotes standards

•More reliable
•More secure

Figure 34: ATMS trends, needs, and solutions (detailed)

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 71

REFERENCES
1. "Size of the U.S. Computer Software Industry," Office of Technology and Electronic

Commerce, United States Department of Commerce, 1997.
2. "Software Errors Cost U.S. Economy $59.5 Billion Annually," National Institute of

Standards and Technology, http://www.nist.gov/public_affairs/releases/n02-10.htm,
2002.

3. "Enhancing the Usability of an Intersection Collision Avoidance Simulation Model,"
U.S. Department of Transportation, http://www.volpe.dot.gov/sbir/sol03/sec8full.html,
2003.

4. "The CHAOS Report," The Standish Group, http://www.standishgroup.com, 2004.
5. "ITS Goals Supported by Market Packages, National ITS Architecture," U.S. Department

of Transportation, http://www.iteris.com/itsarch/html/mp/itsgoalsbymp.htm, 2005.
6. "ITS Goals, National ITS Architecture," U.S. Department of Transportation,

http://www.iteris.com/itsarch/html/mp/itsgoals.htm, 2005.
7. "Linux Outlook," InformationWeek Research Brief,

http://i.cmpnet.com/infoweek/1057/IWKLinuxOutlook-2005.pdf, 2005.
8. "National ITS Architecture V5.1," U.S. Department of Transportation,

http://www.iteris.com/itsarch/, 2005.
9. "1969 Chevrolet Astro III Concept Car," Fotos de Carros Web Site,

http://www.fotosdecarros.com, 2006.
10. "Advanced Transportation Controller (ATC) Application Programming Interface (API)

Software Requirements Specification (SRS)," Institute of Transportation Engineers,
http://www.ite.org/standards/atc/APISRS0204.pdf, 2006.

11. "Advanced Transportation Controller (ATC) Standard, Version 5.2a," Institute for
Transportation Engineers, http://www.ite.org/standards/atc, 2006.

12. "Common ARTS History," Federal Aviation Administration,
http://www.faa.gov/ats/atb/Sectors/Automation/CommonArts/history.htm, 2006.

13. "Denver ARTCC, Traffic Management System Assures the Maximum Safety and
Efficiency," http://www.nw.faa.gov/ats/zdvartcc/tmu_tools.html#110, 2006.

14. "Encyclopaedia Britannica Website," http://britannica.com, 2006.
15. "ERTICO GST Project Web Page,"

http://www.ertico.com/en/activities/projects and fora/gst.htm, 2006.
16. "Federal Aviation Administration FAA Saves $15 Million by Migrating to Red Hat

Enterprise Linux Desktop," Red Hat Inc.,
http://www.redhat.com/rhel/informationcenter/successstories/government/faa.html, 2006.

17. "IT Strategic Headquarters Web Site," Prime minister of Japan and His Cabinet,
http://www.kantei.go.jp/foreign/policy/it/index e.html, 2006.

18. "ITS Research Laboratory," University of Oklahoma, http://its.ou.edu, 2006.
19. "ITS Standards Program Website," U.S. Department of Transportation,

http://www.standards.its.dot.gov/default.asp, 2006.
20. "Managing Rural Roads in Local Agencies and on Indian Reservations, Rural ITS - Real

World Solutions," Department of Transportation ITS web site,
http://www.its.dot.gov/rural/CaseDetails.asp?ID=20, 2006.

21. "Minnesota Department of Transportation, RTMC Homepage,"
http://www.dot.state.mn.us/tmc/index.html, 2006.

22. "Next Generation Simulation Program Web Page," http://ngsim.fhwa.dot.gov/, 2006.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 72

23. "Oasis Web Site," OASIS, http://www.oasis-open.org/news/oasis-news-2006-05-08.php,
2006.

24. "Peek Traffic Inc. Web Page," http://www.ustraffic.net, 2006.
25. "Red Hat Technical Support Call Handling," Red Hat,

https://www.redhat.com/support/service/guide/, 2006.
26. "Safety Dynamics Inc.," http://www.safetydynamics.net/products.html, 2006.
27. "Secunia Inc. Security Reports," http://secunia.com/product, 2006.
28. "Transportation Futuristics Virtual Museum," University of California Berkeley,

http://www.lib.berkeley.edu/news events/exhibits/futuristics/index.html, 2006.
29. V.R.B. B. Boehm, "Software Defect Reduction Top 10 List," IEEE Computer Society,

34(1): pp. 135-137, 2001.
30. C. Bahrmann, Pennsylvania State University, Department of Meteorology,

http://www.met.psu.edu/, 2006.
31. M.E. Ben-Akiva, "Calibration and Evaluation of MITSIMLab in Stockholm,"

http://web.mit.edu/its/papers/CALIBR2.PDF, 2002.
32. T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web," Scientific American,

2001.
33. T. Bollinger, "Use of Free and Open-Source Software (FOSS) in the U.S. Department of

Defense," Mitre Corporation Rept. # MP 02 W0000101, 2003.
34. S. Bratt, "Weaving a Web for the Next Generation of Science," W3C Presentation,

http://www.w3.org/2004/Talks/1109-sb-gsaWebSci/Overview.html, 2004.
35. T. Brusehaver, "Linux in Air Traffic Control," http://www.linuxjournal.com/article/7066,

2004.
36. W. Burghout, "ITS Features in MITSIMLab," Centre for Traffic Engineering and

Simulation, Department of Infrastructure and Planning, Royal Institute of Technology,
http://www.infra.kth.se/ctr/publikationer/ctr2000_04.pdf, 2000.

37. B. Cantrill, "The Economics of Software," http://blogs.sun.com/bmc/20040828, 2004.
38. B. Chelf, "Measuring Software Quality a Study of Open Source Software," Coverity Inc.,

http://www.coverity.com, 2006.
39. C.M. Christensen, The Innovator's Dilemma, Harper Business, 2000.
40. G. Clarke, "MySQL Destined for ‘Majority’ Market Share," The Register,

http://www.theregister.co.uk/2005/10/18/mysql_marketshare_numbers/, 2005.
41. G. Clarke, "Open Source Taking over Europe," The Register,

http://www.theregister.co.uk/2005/10/21/opensource government/, 2005.
42. ComputerWorld, "Sony Online Opts for Open-Source Database over Oracle,"

http://www.computerworld.com/databasetopics/data/software/story/0,10801,109722,00.ht
ml, 2006.

43. ConSysTec Inc., "Transit Projects Summary Web Page,"
http://www.consystec.com/transproj.html, 2006.

44. R.P. D. Middleton, "Evaluation of Vehicle Detection Systems," Texas A&M University,
College Station, Texas 77843-3135 Rept. # 2119-1, 2002.

45. Delcan Inc., "RIITS Project Outreach and Marketing Package--Final," RIITS, Los
Angeles County Metropolitan Transportation Authority,
http://www.riits.net/pdf/Final 2.6 051904-RIITS.pdf, 2004.

46. Delcan Inc., Personal Communication, 2006.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 73

47. K. Edwards, "Epistemic Communities, Situated Learning and Open Source Software
Development," http://opensource.mit.edu/papers/kasperedwards-ec.pdf, 2001.

48. J. Ellison, University of Maryland, CATT Laboratory, http://www.cattlab.umd.edu/,
2006.

49. M. Esteve, C.E. Palau, and T. Catarci, "A Flexible Video Streaming System for Urban
Traffic Control," Multimedia IEEE, 13(1): pp. 78-83, 2006.

50. J. Evers, "Developers Fast to Fix Open Source Bugs," ZDNet News,
http://news.zdnet.com/2100-1009_22-6057669.html, 2006.

51. D. Felsenstein, "UrbanSim Application for the Tel Aviv Metropolitan Area," Department
of Geography & Institute for Urban and Regional Studies Hebrew University of
Jerusalem, http://urbansimcommons.org/IsraelProject, 2006.

52. Free Software Foundation, "GNU General Public License Version 2,"
http://www.gnu.org/copyleft/gpl.html, 1991.

53. J. Gapper, "A Threat to the Fragile Linux Ecosystem,"
http://news.ft.com/cms/s/7beb0326-d2ed-11da-828e-0000779e2340.html, 2006.

54. D. Gibson, Conversation with, 2006.
55. J. Giles, "Internet Encyclopaedias Go Head to Head," Nature, 2005.
56. J. Havlicek, Conversation with, 2006.
57. R.C. Huck, "A Low-Cost Distributed Control Architecture for Intelligent Transportation

Systems Deployment in the State of Oklahoma,"
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1520173, 2005.

58. R.C. Huck, Conversation with, 2006.
59. ITS America, "ITS America 10 Year Plan," ITS America,

http://www.itsa.org/itsa/files/pdf/National10YearPlanITSExecSummary.pdf, 2002.
60. C.M. Johnson, "The National ITS Program: Where We've Been and Where We're

Going," Public Roads On-line, Public Roads On-line, pp, 1997.
61. R.W. Joode, Protecting the Virtual Commons, Self-Organizing Open Source and Free

Software Communities and Innovative Intellectual Property Regimes, 2003.
62. K. Kenedy, "Ballmer: Microsoft to Focus on Linux Competition, Software as a Service,

Internet Advertising," Information Week, 2006.
63. C.A. Kenwood, "A Business Case Study of Open Source Software," Mitre Corp.,

http://www.mitre.org/work/tech_papers/tech_papers_01/kenwood_software/kenwood_sof
tware.pdf, 2001.

64. J.M. Kranig, Director of Traffic Operations for the Regional Transportation Management
Center, Office of Traffic, Security and Operations, Minnesota Department of
Transportation, 2006.

65. S. Lacy, "Oracle's Open-Source Shopping Spree," Business Week,
http://www.businessweek.com/technology/content/feb2006/tc20060209_810527.htm,
2006.

66. M. LaMonica, "Oracle Buys Open Source Database Firm," CNet News,
http://news.com.com/Oracle+buys+open source+database+firm/2100-7344_3-
5892632.html, 2005.

67. M. LaMonica, "Microsoft to ‘Open the Doors’ of Linux Labs," CNet News,
http://news.com.com/Microsoft+to+open+the+doors+of+Linux+labs/2100-7252 3-
6058196.html?tag=st.rn, 2006.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 74

68. M. Lamonica, "States Struggling to Deal with Digital Documents," CNet News,
http://news.com.com/States+struggling+to+deal+with+digital+documents/2100-1014_3-
6064793.html?tag=nl, 2006.

69. Library of Congress, "Copyright Office Website," United States Copyright Office,
http://www.copyright.gov/, 2006.

70. Los Angeles County Metropolitan Transportation Authority, "Task 3.5, Software Design
Document Version 1.0," Regional Integration of Intelligent Transportation Systems
Project, http://www.riits.net/pdf/SDD_v10.pdf, 2003.

71. Los Angeles County Metropolitan Transportation Authority, "Integration Instructions,
Version 1.0," Regional Integration of Intelligent Transportation Systems Project,
http://www.riits.net/pdf/Integration%20Instructions%20V2.pdf, 2004.

72. Los Angeles County Metropolitan Transportation Authority, "RIITS Guidebook,"
Regional Integration of Intelligent Transportation Systems Project,
http://www.riits.net/pdf/RIITS-Guidebook-Final.pdf, 2004.

73. F. Marinescu, "Advanced Message Queue Protocol to Commoditize Messaging,"
InfoQueue, http://www.infoq.com/news/amq, 2006.

74. Massachusetts Institute of Technology, "MITSIMLab Brochure,"
http://web.mit.edu/its/papers/MITSIM2001.pdf, 2006.

75. Massachusetts Institute of Technology, "MITSIMLab Web Page,"
http://web.mit.edu/its/mitsimlab.html, 2006.

76. K. McIsaac, "The Future of Software," MetaGroup,
http://www.oracle.com/global/in/corporate/presentations/owmumbai/Tech_Keynote-
The_Future_of_Technology-Kevin_McIssac-Meta_Group.pdf, 2004.

77. G. Moody, Rebel Code, 2002.
78. G. Moody, "Does Dual Licensing Threaten Free Software?," Linux Journal,

http://linuxjournal.com/node/1000069, 2006.
79. R. Naraine, "DHS Funds Open-Source Security Project," eWeek,

http://www.eweek.com/article2/0,1895,1909946,00.asp, 2006.
80. Netcraft, "Netcraft Usage Statistics," http://www.netcraft.com, 2006.
81. Open Source Initiative, "History of the OSI,"

http://www.opensource.org/docs/history.php, 2006.
82. M. Pack, "Presentation of Regional Integrated Transportation Information System

(Ritis)," University of Maryland, CATT Laboratory,
http://www.cattlab.umd.edu/media/other/RITIS for Joe Geckle.ppt, 2006.

83. C.E. Palau, Conversation with, 2006.
84. J.F. Paniati, "SAFETEA-LU Implementation ITS & Operations," ITS America 2006

Annual Meeting and Exposition,
http://ops.fhwa.dot.gov/speeches/its_america/2006/paniati_50706/index.htm, 2006.

85. B. Park, "Developing Efficient Data Archive Designs for the State of Virginia," TRB
Publication, http://trb.mtc.ca.gov/urban/adus/Virgina%20ADUS.pdf, 2003.

86. B. Park, "Web-Based Congestion Monitoring Map for Nova Smart Traffic Signal
System," http://cts.virginia.edu/docs/UVACTS-13-0-83.pdf, 2003.

87. B. Perens, "The Emerging Economic Paradigm of Open Source," Cyber Security Policy
Research Institute, George Washington University,
http://perens.com/Articles/Economic.html, 2005.

88. R.S. Pressman, Software Engineering, McGraw-Hill, 2001.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 75

89. E.S. Raymond, The Cathedral and the Bazaar, 2001.
90. R. Rhodes, "Open Source and Linux," IBM, http://www-

1.ibm.com/linux/industry/opensource.shtml, 2005.
91. P.H. Salus, A Quarter Century of Unix, 1994.
92. P.H. Salus, "Unix at 25," http://wolfram.schneider.org/bsd/ftp/article/rt3.htm, 1997.
93. L. Saxton, "Mobility 2000 and the Roots of IVHS," NHS Review, pp. 11-26, 1993.
94. D. Smallen, "How Transportation Systems Talk to Each Other--Standards for Intelligent

Transportation Systems," Public Roads, (Sept-Oct), 1999.
95. STL, "ADMS Virginia " Smart Travel Lab, University of Virginia,

http://cts.virginia.edu/stl adms.htm, 2006.
96. J.M. Sussman, "Perspectives on Intelligent Transportation Systems," 2005.
97. M.H. T. Dingus, S. Jahns, "Development of Human Factors Guidelines for Advanced

Traveler Information Systems and Commercial Vehicle Operations: Literature Review,"
Federal Highway Administration Rept. # FHWA-RD-95-153, 1996.

98. J.B. Taylor, Principles of Macroeconomics, Houghton Mifflin, 1998.
99. Transportation Research Board, "An Accident Analysis System for Traffic Engineering

Decision Support on a Statewide Basis—SAFE-T,"
http://rip.trb.org/browse/dproject.asp?n=9119, 2003.

100. Transportation Research Board, "New Ideas for Transit, Transit Idea Program Annual
Progress Report," http://onlinepubs.trb.org/onlinepubs/sp/transit-
idea_report_jan2005.pdf, 2005.

101. Tri-County Metropolitan Transportation District, "Transit Oss and Data Sharing Meeting,
Oss Benefits for Transit," Portland, pp. 1, 2005.

102. Turner-Fairbanks Highway Research Center, "Collaborative Research on Road Weather
Observations and Predictions by Universities, State DOTs and National Weather Service
Forecast Offices, Developing an Interactive Mesonet for PennDOT," Federal Highway
Administration, http://www.tfhrc.gov/its/pubs/04109/, 2004.

103. University of Oklahoma, "Intelligent Transportation Systems Laboratory,"
http://its.ou.edu, 2006.

104. University of Virginia Center for Transportation Studies, "Smart Travel Lab, Archived
Data Management System," http://cts.virginia.edu/stl_adms.htm, 2006.

105. J.C. V. Valloppillil, "Microsoft Halloween Documents,"
http://www.catb.org/~esr/halloween/, 1998.

106. L. Vaas, "Linux Muscling to the Top in Oracle Shops "
http://www.eweek.com/article2/0,1895,1945810,00.asp, 2006.

107. M. Välimäki, "The Rise of Open Source Licensing: A Challenge to the Use of
Intellectual Property in the Software Industry," pp, 2005.

108. E. Vermassen, "GST Open Systems White Paper," ERTICO Open Systems,
http://www.gstproject.org/os/documents/DOC GST OS DEV White Paper.pdf, 2006.

109. J. Viega, "Open Source Security: Still a Myth," O'Reilly Network,
http://www.onlamp.com/pub/a/security/2004/09/16/open_source_security_myths.html?pa
ge=1, 2004.

110. W3C, "W3C Semantic Web Activity Page," W3C, http://www.w3.org/2001/sw/, 2006.
111. C.E. Wallace, "ITS Florida—Yesterday, Today, and Tomorrow," ITS Florida,

http://itsflorida.org/documents/official doc/Founding of ITSA FL.doc, 2005.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 76

112. C.E. Wallace, "A Series of E-Mail Messages About the Founding of What We Now Call
ITS," http://itsflorida.org/documents/official_doc/April-Email_Histories.doc, 2005.

113. L.C. Ware, "Open Source Gains Momentum," CIO Magazine,
http://www2.cio.com/research/surveyreport.cfm?id=48, 2002.

114. R. Watson, "Workshop on Application of Remote Sensing Technologies for Disaster
Response," 2003.

115. Wikipedia, "Wikipedia Statistics," http://en.wikipedia.org/wiki/Special:Statistics, 2006.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 77

APPENDIX A:
LOCK-IN: WHY DOES A DATABASE COST MORE

THAN AN OPERATING SYSTEM?
Some databases cost tens of thousands of dollars. Why? A database is comparatively no more

complex than a word processor, spreadsheet, or microprocessor. The simple answer is lock-in.
That is, after a database-dependent application is written, customers are willing to pay very high
prices to keep their applications running. The economic term for this situation is demand
inelasticity [37]. Other products have high demand inelasticity, e.g. essential medical drugs, and
cigarettes. Figure 35 shows a supply/demand curve for this situation. As the quantity available of
a certain product decreases, a customer’s willingness to pay higher prices increases until the
customer reaches the breaking point and rewrites their application using another database. The
production of software is unique, in that there is hardly any incremental cost to vendors for
providing a nearly unlimited supply of the product. Compare this lock-in situation with a healthy
competitive market supply/demand curve in Figure 36. In a healthy market with multiple
suppliers and lower demand inelasticity (lower slope on the demand curve), customers can more
freely move between different suppliers, which discourages suppliers from raising prices. The
high demand inelasticity of software also explains why software vendors are happy to offer
limited functionality low-cost or free versions of their products—they are counting on high
switching costs ultimately producing more total revenue.

Figure 35: Database demand inelasticity price curve [37]

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 78

Market Price

Figure 36: Supply/demand curve for a competitive market [37]

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 79

APPENDIX B:
PARTIAL DIRECTORY OF MAINSTREAM

OPEN-SOURCE SOFTWARE APPLICATIONS
This appendix provides a partial list of potentially useful mainstream open-source software

applications. This is not an all-inclusive list and the intent is simply to orient the reader within
the OSS world relative to major OSS projects and project categories. All of the projects listed
have a large and active developer and user community, which is an important factor for quality
and reliability of an OSS project. All of the non-operating system projects listed have versions
that run on Linux and Windows, and many support other operating systems such as BSD,
Solaris, Mac OS, and others. The AHMCT Research Center has a long history of using open-
source and proprietary software products in a heterogeneous computing environment. The Center
has used or is using many of the products below, in research and/or IT operations.

The summary information presented here will provide a general overview of each project;
however, for detailed understanding, the reader is referred to the appropriate web site(s) and
references.

Apache ActiveMQ Messaging Middleware

 Apache ActiveMQ is messaging middleware used by software developers to add
messaging capabilities to custom-built applications. It supports clustering, peer networks,
discovery, SSL, multicast, and persistence, among other capabilities. It is a full Java Messaging
Service 1.1 (JMS) provider. It also integrates into J2EE 1.4 containers. It supports a number of
client languages such as Java, C, C++, C#, Ruby, Perl, Python, and PHP. Commercial support is
available. ActiveMQ was originally formed and funded by JP Morgan and Chase to eliminate the
use of proprietary messaging products and associated licensing fees: “Banks spend a lot of
money just to send messages inside their own bank...AMQ should help to commoditize the
messaging industry much like web servers have been commoditized by Apache” [73]. ActiveMQ
is being used in a production environment by JP Morgan as a global trading system consisting of
800 users across five companies and data centers. “We have implementations from multiple
companies running Java, C++, C#, running across Windows, Linux, and Solaris” [73].
ActiveMQ uses the Apache license. For further information, see www.activemq.org.

Apache HTTP Web Server

The Apache HTTP web server is by far the most popular HTTP web server in use (see
Figure 8, pg. 9). Apache was initially developed at the National Center for Supercomputing
Applications at the University of Illinois at Urbana Champaign. The Apache web server is
maintained and developed by the Apache Software Foundation. It uses the Apache license. For
further information, see www.apache.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 80

BSD Operating System

 BSD (Berkeley Software Distribution) is a Unix-like operating system. BSD has forked
into a number of parallel projects such as NetBSD73, FreeBSD74, and OpenBSD75, among others.
These are derivates of the original AT&T Unix distribution from the early 1970s76. The BSD
license is used. For further information, see en.wikipedia.org/wiki/BSD.

Cygwin Unix-like Environment and X-Windows System

 Cygwin (/’sig-win/) is a Unix-like environment for Microsoft Windows. Cygwin/X is an
X-Windows system that runs on Microsoft Windows. Cygwin was developed by an engineer
with Cygnus Solutions. Red Hat purchased Cygnus in 1999. Cygwin/X uses a modified GPL
license. For further information, see cygwin.com.

Drools/JBoss Rules Engine

 Drools is a popular rules engine that implements the Rete algorithm (and descendents).
The current Drools project (version 3) implements a full Rete implementation with optimization
and indexing. It also provides field constraints, conditional elements, agenda management, truth
maintenance, temporal rules, dynamic run-time rules, functions, global data, and a language-
independent engine. It also provides an Eclipse Development Environment plug-in. In October of
2005, members of the Drools project voted to become part of the JBoss Enterprise Middleware
System (JEMS). Drools uses the Apache license. For further information, see
labs.jboss.com/portal/jbossrules.

Eclipse Development Platform

 Eclipse is an extensible development platform. It uses a plug-in architecture that supports
any number of programming languages, including Java, C/C++, Fortran, PHP, Perl, Ruby,
COBOL, UML2, and Python, among others. The plug-in environment is flexible, allowing
diverse development work, such as Wikipedia editing and configuration management. Eclipse
was originally developed by IBM and released using the Common Public License. In 2001,
Borland, IBM, Merant, QNX, Rational Software, Red Hat, SUSE, TogetherSoft, and Webgain
formed the Eclipse Foundation, a not-for-profit corporation to oversee Eclipse development. The
Eclipse Foundation presently has over 115 member companies. It is hosting nine major OSS
projects and more than fifty subprojects. Eclipse uses the Eclipse Public License. For more
information, see www.eclipse.org and www.eclipsemag.net.

EnterpriseDB Database

EnterpriseDB is a relational database system that claims Oracle compatibility, and is based
on the OSS database PostgreSQL. It consists of a database server, replication server, migration

73 See www netbsd.org.
74 See www freebsd.org.
75 See www.openbsd.org.
76 For the BSD family tree, see ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-current/src/share/misc/bsd-family-tree.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 81

toolset, developer studio, debugger, and management server. Sony Online has used EnterpriseDB
and converted more than 150 existing Oracle 9i databases used for online gaming [42].
EnterpriseDB was started in 2004 and is based in New Jersey. They have received significant
venture capital funding. EnterpriseDB uses a dual-license scheme and the GNU GPL license77.
For further information, see www.enterprisedb.com.

GCC GNU Compiler Collection

 The GNU compiler collection is a set of tools and libraries for developing applications
written in a variety of programming languages, including C, C++, Object-C, Fortran, Java, Ada,
Pascal, Cobol, Modula-2/3, PL/1, and others. Back-end code generation supports many
processors (30+)78. The GNU GPL license is used. For additional information, see gcc.gnu.org.

JBoss J2EE Application Server

 The JBoss Application Server (/Jay-Boss/) is a Java Platform Enterprise Edition (J2EE)
server. It implements the full Java EE set of services, and Sun Microsystems Inc. has certified
that it is J2EE 1.4 compliant. It is implemented using Java and is therefore portable to any
operating system that supports a Java virtual machine. It has clustering, fail-over, load-balancing,
and distributed deployment abilities. It has a large and active user base and is one of the most-
used J2EE implementations. Red Hat purchased JBoss Inc. in 2006. JBoss uses the GNU LGPL
license. For further information, see www.jboss.org. Note that a number of other OSS J2EE
servers are available such as JOnAS79, and GlassFish80, and Apache Geronimo81, among others.

Jena Semantic Modeling Framework

 Jena is a development framework for building applications that use semantic modeling to
structure and share information. See Appendix E (pg. 93) for a discussion of semantic modeling.
Jena is written in Java. It enables Java applications to read, write, and manipulate RDF, RDF-S,
and OWL. It also provides in-memory and persistent database storage of classes, properties, and
objects. It also provides a SPARQL query engine and a rule-based inference engine. Jena is
developed by HP Labs, and uses the Jena license. For further information, see
jena.sourceforge.net.

Linux Operating System

Linux is a Unix-like operating system, and has the largest OSS user and developer
community. Commercial support is healthy and hundreds of distributions are available82 from
commercial and non-commercial organizations. Linux has been ported to dozens of hardware
platforms from watches to real-time application-specific processors to super-computers. A

77 Appendix D describes dual copyright licensing (pg. 89).
78 For GCC backend support, see gcc.gnu.org/backends html.
79 For the JOnAS Java J2EE server, see jonas.objectweb.org.
80 For the GlassFish Java J2EE server, see glassfish.dev.java net.
81 For Geronimo, see geronimo.apache.org.
82 For Linux distributions, see distrowatch.com

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 82

relatively large number of applications are available on Linux. Popular distributions include:
Ubuntu83, Mandriva84, Novell’s SUSE85, Red Hat’s Fedora86, and Debian87. Many of the OSS
projects listed below are bundled with these Linux distributions. The first version of Linux was
placed on the Internet in 1991 by Linus Torvalds, a computer science student in Helsinki,
Finland. Torvalds continues to guide development. Linux uses the GPL license. For further
information, see en.wikipedia.org/wiki/Linux.

MapServer Internet Map Server

 MapServer is a server that renders (on-the-fly) GIS data from a variety of sources into
raster and vector images. Supported input data includes SHP, PostgreSQL, Oracle Spatial,
ArcSDE, WMS layers, JPG, GIF, and others, along with formats supported by GDAL88 and
OGR89. Directly-supported development languages include PHP, Python, Perl, Ruby, Java, and
C#, among others. MapServer was developed by the University of Minnesota in cooperation with
NASA and the Minnesota Department of Natural Resources. MapServer uses the MapServer
license. For further information, see mapserver.gis.umn.edu.

MediaWiki Collaboration Application

 MediaWiki is a web collaboration application that enables users to view, edit, and
structure content which is available for others on a web server. The most popular example is
Wikipedia, a free web encyclopedia (see pg. 3). Wikipedia is an example of the more general
wiki (/WICK-ee/) concept. The wiki concept was created by Ward Cunningham in 1994 and was
inspired in part by HyperCard style applications. MediaWiki is written in PHP and uses MySQL.
Many wiki servers are available. MediaWiki is licensed with the GPL license. For further
information, see www.mediawiki.org/wiki/MediaWiki.

Mono .NET Application Framework

Mono is a framework and set of development tools that enable Microsoft .NET applications
to be developed and deployed on Linux, Solaris, Mac OS X, Unix, and Windows. It maintains
source and binary compatibility across platforms. Mono is based on ECMA and ISO C# and CLI
standards. The Mono project was created by Miguel de Icaza in 2001 (de Icaza also created the
GNOME desktop for Linux). Version 1.0 was released in 2004. Mono uses the GPL and LGPL
licenses. Novell Inc. presently leads the project. For further information, see www.mono-
project.com.

83 See www.ubuntu.com.
84 See www mandriva.com.
85 See www novell.com/linux.
86 See fedora.redhat.com.
87 See www.debian.org.
88 For GDAL, the Geospatial Data Abstraction Library, see www remotesensing.org/gdal.
89 For OGR, see ogr.maptools.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 83

Mozilla Firefox Web Brower

 Firefox is a web browser available on Windows, Mac OS X, and Linux. It supports more
than 40 languages. It provides features similar to Microsoft’s Internet Explorer web browser, in
addition to a tabbed interface. Firefox is a derivative of the original Netscape Communicator web
browser and is the result of Netscape’s decision in 1998 to provide an open-source browser (see
pg. 9). It is maintained and developed by the not-for-profit Mozilla Foundation. For further
information, see www.mozilla.com.

Mozilla Thunderbird Email Application

 Thunderbird is an email client available on Windows, Mac OS X, and Linux. It supports
more than 30 languages. It supports the IMAP and POP mail protocols, importing from
Microsoft Outlook, spam filters, customization, and security features. It is developed and
maintained by the Mozilla Foundation. It uses the Mozilla Public License. For further
information, see www.mozilla.com.

MySQL Database

 MySQL (/My’ Ess Queue Ell/) is a very popular open-source database. It supports a large
number of operating systems and development languages. MySQL is developed, maintained, and
owned by MySQL AB, a Swedish company. The first version was released in 1995. MySQL
uses the GPL license. For additional information, see www.mysql.com.

OpenSSH Communications Tools

 OpenSSH (Open Secure Shell) is a toolset that provides encrypted secure access between
computers. It is an open-source descendent of Secure Shell, which became a proprietary product.
It uses the OpenSSH license. For further information, see www.openssh.com.

OpenSSL Secure Sockets Layer Tools

OpenSSL (Open Secure Sockets Layer) is a toolset that provides secure encrypted
communication between computers at the socket level. OpenSSL is based on work done by Eric
Young and Tim Hudson prior to their being hired by RSA Security Inc. It uses the OpenSSL
license. For further information, see www.openssl.org.

Open Office Business Productivity Suite

Open Office is a productivity suite of applications that includes a word processor,
spreadsheet, database, drawing program, and presentation package. It is available on Windows,
Linux, Mac OS X, FreeBSD, and Solaris. Open Office is compatible with Microsoft Office, but
also supports the Open Document Format (ODF) that is being standardized by OASIS90 as a
public document format. Open Office is available in 60+ languages, and is a descendent of Star

90 For OASIS, see www.oasis-open.org.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 84

Office, which was developed by StarDivision, a German company started in 1986. StarDivision
was purchased in 1999 by Sun Microsystems Inc., who initially offered Star Office as a free
download for personal use. In 2000, Sun released the Open Office source code under an open-
source license and created the Open Office organization to sponsor development and
maintenance. Open Office uses the GNU LGPL license. For further information, see
www.openoffice.org.

Perl, Python, and PHP Software Development Languages

 Perl, Python, and PHP are software development languages that are often lumped
together under the general category of scripting languages. They are interpreted procedural
object-oriented programming languages used for a diverse variety of tasks, and are sometimes
referred to as “duct tape languages” because of their diverse abilities. They are available on
almost all operating system platforms. They use the GPL, Python, and PHP licenses respectively.
For further information, see www.perl.org, www.python.org, and www.php.net.

PostGIS GIS Database Extension

 PostGIS is a GIS spatial extension for the PostgreSQL object-relational database91. It
adds support for spatial objects (points, lines, polygons, etc.), spatial indexing (r-trees), analytical
functions, predicates, operators, coordinate re-projection, and data import and export. It was
developed by Refractions Research Inc. The first version was released in 2001. PostGIS uses the
GPL license. For additional information, see www.refractions.net.

PostgreSQL Database

 PostgreSQL (/post-gress-Q-L/) is a powerful object-relational database. It supports multi-
version concurrency control (MVCC), foreign keys, joins, views, triggers, and stored procedures.
It supports a large number of operating systems and development languages. PostgreSQL was
created at the University of California Berkeley by computer science professor Michael
Stonebraker and his students, as a subsequent version of the Ingres database system. The first
version was released in 1991. PostgreSQL uses the BSD license. For additional information, see
www.postgresql.org.

Protégé Ontology Editor

 Protégé is a semantic ontology editor used to create and edit W3C semantic ontology
files, such as RDF files. It is used to create properties and classes, and instances of these. It has
the ability to generate Java stubs. Protégé is a project at Stanford University and has 52,000
registered users. Protégé uses the Open Content License. For further information, see
protege.stanford.edu.

91 For a summary of OSS GIS, see http://www refractions net/white papers/oss briefing/2006-06-OSS-Briefing.pdf

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 85

Rdesktop Remote Desktop Client

 Rdesktop is a remote desktop client that uses the Remote Desktop Protocol (RDP). It runs
on Linux/BSD and is used to connect to machines running an RDP server (e.g. Windows XP
Professional, Windows 2000 Server, etc.). It supports disk redirection, sound transfer, and
parallel and serial port traffic. Rdesktop was originally written by Matthew Chapman. Rdesktop
uses the GPL license. For further information, see www.rdesktop.org.

Samba File and Print Services

 Samba provides file and printer sharing services for a number of computing clients,
including Microsoft Windows. This enables Linux and BSD servers to transparently act as
Windows file servers. Samba uses the GPL License. For further information, see
www.samba.org.

VNC Remote Desktop Client and Server

 The VNC (Virtual Network Computing) protocol is used by a number of client and server
tools to provide remote access to networked machines. It is similar to the RDP approach. VNC
was originally developed by AT&T and is licensed with the GPL license. It runs on many
operating systems (Linux, Solaris, HP-UX, Windows) and a number of commercial variants
provide additional functionality. For additional information, see en.wikipedia.org/wiki/VNC and
www.realvnc.com

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 87

APPENDIX C:
RELEVANT STANDARDS ORGANIZATIONS AND STANDARDS

The U.S. Department of Transportation has designated the organizations below as
responsible for developing ITS standards. More than 100 ITS standards have already been
defined. The U.S. DOT ITS Standards web page may be found at
http://www.standards.its.dot.gov/

• American Association of State Highway and Transportation Officials (AASHTO):
http://www.transportation.org/

• American National Standards Institute (ANSI), Accredited Standards Committee
(ASC) X12: http://www.x12.org/

• American Society for Testing & Materials (ASTM): http://www.astm.org

• Institute of Electrical and Electronics Engineers (IEEE): http://www.ieee.org

• Institute of Transportation Engineers (ITE):
http://www.ite.org/standards/index.asp

• National Electrical Manufacturers Association (NEMA): http://www.nema.org/

• Society of Automotive Engineers (SAE): http://www.sae.org

The following also specify additional relevant standards:

• Open Geospatial Consortium, an international nonprofit consensus standards
organization that developed standards for location and geospatial applications. See
http://www.opengeospatial.org/

The standards shown in Table 14 may be of interest for ATMS development. Note that
Appendix E discusses semantic modeling standards.

Table 14: Standards of potential use for Caltrans ATMS

Category Organization Standards
2D vector data W3C SVG

Extensible Markup
Language W3C XML, XML Namespaces, XInclude, XLink, XPath, XQuery, XSLT

Semantic modeling W3C RDF, RDF-S, OWL, SPARQL, Dublin Core
Sensor web enablement OGC SensorML, SOS, TransducerML, SPS

Spatial data Google Inc. KML
Spatial data and services OGC WMS, WFS, GML, OpenGIS Web Services Common Specification

Transducer interface
standards IEEE IEEE P1451

Content management IDEAlliance ICE 2.0 Specification
Web services W3C WSDL, XML Schema, SOAP

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 89

APPENDIX D:
OPEN-SOURCE LICENSE SUMMARIES

This section summarizes the general open-source license concepts, and provides a brief
summary of the more commonly-used open-source licenses. The reader is cautioned to review
the specifics of each license directly at the reference provided, in order to understand the
implications and obligations imposed by each license. The authors are not attorneys, and make
no claims as to the accuracy or completeness of the summaries provided here.

Software code developed by open-source projects is typically protected by a copyright
license with special properties such as granting users access to source code. Many open-source
licenses stipulate that derivative works must be licensed with the same license as the original.
This guarantees availability of derivative source for the community. This type of copyright
license is often called copyleft.92 Some of the more popular open-source licenses are discussed
below. In general, a copyright is a legal right granted to the author of a creative work to control
reproduction and distribution. Copyright law has a long history that originated in England in
1710. The goal of copyright law is to encourage authors to invest in producing creative works,
from which society at large benefits. The United States Copyright Act of 1976 grants authors
five exclusive rights: reproduction, development of derivatives, distribution, public performance,
and public display [69]. In addition, any of the author’s rights may be transferred—this is the key
to understanding open-source copyright licenses and how they grant users rights. Open-source
licenses preserve the ability of users to modify and reproduce software by transferring various
rights to users, such as rights to view, modify, and distribute the software. The open-source
license is a key innovation that was created by Richard Stallman in 1983 with the GPL (see
pg. 10). 93

 A natural question arises—why is a special copyright license necessary? How is using an
open-source license like the GPL different from releasing a work into the public domain? All
non-copyrighted and expired copyrighted works are considered to be in the public domain.
Software written by United States government employees as part of their employment
automatically enters the public domain. In general, releasing a work into the public domain
means no laws restrict its use, modification, or reproduction. This means that software released
into the public domain can be modified and the modified version can be copyrighted and
withdrawn from the public domain. This is seen as problematic by many in the open-source
community and was the initial motivation for Stallman to create the GPL. The GPL requires
derivative works to be licensed with the GPL, effectively granting community access to
derivative source code. Note that some OSS licenses do not require derived works to be
distributed using the original license (e.g. the BSD-style licenses).

 Dual-licensing is a key concept in the commercial open-source community. Copyright
owners may grant any number of licenses to their work. Commercial open-source corporations
sometimes use dual-licensing to simultaneously offer GPL and (for a fee) a commercial license.
Examples are EnterpriseDB, MySQL, and Trolltech, among others. For example, Trolltech offers
a GPL-licensed version of their software product Qt, which under the terms of the GPL requires

92 For a detailed explanation of copyleft, see www.gnu.org/copyleft.
93 For a comprehensive list of frequently asked questions, see www.gnu.org/licenses/gpl-faq html.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 90

a project using Qt to also be licensed using the GPL, opening its source code. Customers may
also purchase a Qt commercial license that does not require customers linking code with Qt to
divulge their project’s source code.94

The OSI (Open Source Initiate) defines criteria that software licenses must comply with
to be considered “open source.” This generally means an open-source license must grant users
the right to freely copy, use, and modify the software. It also stipulates that derivate works must
be licensed under the same terms as the original.95 A few of the more popular OSS licenses are
briefly discussed below. The OSI maintains a complete list of OSS licenses that meet the OSI’s
open-source license standards.96 The OSI web site also contains a listing of each license’s text.

Apache License

The Apache license is used by the Apache Software Foundation and their projects, including
the Apache Web Server. It is considered a permissive license and does not require publication of
source code for derivative works. For further information, see http://www.apache.org/licenses/.

BSD License

The BSD license was originally developed for and used with BSD, a Unix-like operating
system released by the University of California, Berkeley. It is the 2nd-most popular type of
license. It is considered permissive because it specifies few restrictions. It does not require
publication of source code for derivative works. The BSD license therefore is not considered a
copyleft license. The non-restrictive nature of the BSD license has enabled a number of
commercial products to incorporate BSD software code, including Sun’s Solaris, Apple’s Mac
OS X, and portions of Microsoft Windows. The BSD license is similar to the MIT license. For
further information, see http://www.opensource.org/licenses/bsd-license.php.

Creative Commons Licenses

Creative Commons is a non-profit organization started in 2001. It was inspired by the Free
Software Foundation and the GNU GPL. However, unlike the GPL, Creative Common licenses
are not specific to software, and they offer a number of copyright licenses for sharing images,
audio, video, text, software, data, etc. For further information, see creativecommons.org.

GPL License

The GPL (GNU Public License) was developed and released by Richard Stallman and the
GNU project in 1989, and is a critically important innovation for the open-source community.
The GPL is a copyleft license—derivative works are also covered by the GPL. This quality is
often referred to as a viral quality because improvements encourage more improvements, all of
which are covered by the GPL. This is also true for code that links with libraries covered by the

94 For Trolltech licensing, see www.trolltech.com/company/about/businessmodel.
95 For OSI’s Open Source Definition, see www.opensource.org/docs/definition.php.
96 For OSI approved licenses, see: www.opensource.org/licenses.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 91

GPL. Code that links with GPL-covered code must be licensed with the GPL. For further
information, see www.gnu.org/licenses/gpl.txt.

LGPL License

The LGPL (Lesser GNU Public License) is a GNU project license that was originally
called the Library GNU Public License. It is similar to the GPL license discussed above, but does
not affect the license of code linked with LGPL code. It is therefore more permissive than the
GPL license. This enables (and encourages) proprietary applications to link with existing LGPL
libraries. Code covered by the LGPL is copyleft protected—derivatives are covered by the LGPL
and the associated source code must be released. Examples of LGPL code are the GNU C library
and many of JBoss’ products. For further information, see www.gnu.org/licenses/lgpl.html.

Mozilla Public License

 The Mozilla Public License was created by the Mozilla Foundation to cover foundation
software. It is considered a hybrid of the BSD and GPL. For further information, see
www.mozilla.org/MPL.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 93

APPENDIX E:
STANDARDIZING DATA FORMATS USING

SEMANTIC WEB AND MODELING STANDARDS
 This appendix briefly introduces semantic modeling—a new and important technology

that is particularly relevant to ITS and ATMS applications. ITS and ATMS applications are
fundamentally concerned with sharing information between computer applications that may be
located across cities, counties, and districts. Sharing information requires standards. The W3C
(World Wide Web Consortium) has developed a group of standards, for defining structured
information, that are commonly referred to as the semantic web [32,110]. Figure 37 shows how
these standards are organized into a so-called semantic stack.

The term semantic web can be misleading because the associated standards are
fundamentally about syntax, and their use transcends the World Wide Web. The bottom three
layers of Figure 37 identify standards for character formatting (Unicode), resource naming and
location across a network (URI), and document structure (XML, Namespaces, and XML
Schema). For our purposes, the fourth and fifth layers are the most interesting—they define
modeling standards used to structure data, and are discussed below. These include RDF
(Resource Description Framework), RDF Schema, and OWL (Web Ontology Language), among
others. The sixth layer defines a powerful query language known as SPARQL (SPARQL
Protocol and RDF Query Language). Higher levels of the semantic stack define functionality that
may be useful for ATMS rule-based systems (see the Jena Semantic Web Framework as
discussed on pg. 81).

The fourth and fifth layers of the semantic stack define standards for modeling and
structuring data. These include RDF, RDF Schema, and OWL, among others. Constructed
models are essentially object-oriented and enable the definition of complex classes, properties,
and objects. It is important to note that these standards enable much more sophisticated modeling
than is possible with traditional object-oriented programming languages (e.g. Java, C++, C#,
etc.) or object relational databases. The standards support sophisticated modeling with
cardinality constraints, property and class hierarchies, data constraints, and, most importantly,
the ability to define and use models distributed over the network. These capabilities are
particularly relevant for ITS and ATMS applications, which depend on shared data between
agencies and many different types of sensors and hardware.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 94

Figure 37: Semantic stack [34]
A practical example of semantic modeling may be helpful. Physical assets such as VDS

(vehicle detector station), CMS (changeable message sign), culverts, etc., share many properties
such as location, highway number, county, installation date, inspection date, etc. These
properties, associated classes, and objects are typically defined using a database or a
programming language such as Java, PHP, or C++. A better alternative instead is to define these
properties, classes, and objects using a standardized W3C format such as OWL, which is based
on XML (eXtensible Markup Language). For example, the code below defines a single property
named countyID which is a W3C-defined string (via the Uniform Resource Identifier [URI]
http://www.w3.org/2001/XMLSchema#string), and is used by two classes: Culvert and VDS. The
code below was created using the Protégé open-source ontology editor discussed in Appendix B
(pg. 84).

<owl:DatatypeProperty rdf:about="#countyID">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#VDS"/>
 <owl:Class rdf:about="#Culvert"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
</owl:DatatypeProperty>

The countyID property defined above is in a nonproprietary format (OWL), is independent of

any particular database or language, and would therefore be easy to share with other districts,
cities, and states. The countyID property defined above can be used by instances of OWL-defined
classes. Figure 38 shows a sample UML asset management class hierarchy. The following code
defines a portion of this class hierarchy, shown below:

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 95

<owl:Class rdf:ID="AssetThing"/>
<owl:Class rdf:ID="StationaryThing">
 <rdfs:subClassOf rdf:resource="#AssetThing"/>
</owl:Class>
<owl:Class rdf:ID="VDS">
 <rdfs:subClassOf rdf:resource="# StationaryThing"/>
</owl:Class>

The OWL code below (also developed in Protégé) shows an instance of a VDS class

containing an instance of the countyID property:

<VDS rdf:ID="vds-313618">
 <countyID rdf:datatype="http://www.w3.org/2001/XMLSchema#string">8</countyID>
 <cal_pm rdf:datatype="http://www.w3.org/2001/XMLSchema#float">80.76</cal_pm>
 <locatedIn rdf:resource="#Caltrans_8"/>
</Culvert>

In summary, semantic modeling of a problem domain (e.g. ATMS) uses W3C standards to

define classes, properties, and their instances. Classes and properties are typically defined by
domain experts and software engineers using ontology editors (e.g. Protégé). These definitions
are stored in OWL or RDF Schema files, and define the content and structure of application data.
They can be shared with other agencies interested in building interoperable systems. Software
developers use the semantic definitions to build applications. Semantic toolkits (e.g. Jena, see
pg. 81) can be used to read semantic definitions directly, enable persistent database storage, and
integrate with procedural languages like Java. Development of rule-based semantic applications
is also supported. One of the key benefits of this approach is that the essence of the system—
class and property definitions—is defined in a non-proprietary standardized format that is
independent of any particular operating system, database product, or software vendor. This
promotes interoperability and reduces lock-in.

Copyright 2011, AHMCT Research Center, UC Davis

Literature Review of National Developments in ATMS and Open-Source Software

 96

Sample UML Class Hierarchy

AssetThing

StationaryThing MobileThing

VehicleVDS Culvert

CulvertEndTreatment

CMSGuardrail

owl:Thing

Region

District

Figure 38: Sample UML class hierarchy

Copyright 2011, AHMCT Research Center, UC Davis

	Title Page
	Tech Documentation Page
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	DISCLAIMER/DISCLOSURE
	LIST OF ACRONYMS AND ABBREVIATIONS
	ACKNOWLEDGEMENTS
	EXECUTIVE SUMMARY
	Purpose
	What is Open-Source Software?
	Current Developments in Open-Source Software
	How is Open-Source Software Different?
	What are Open-Source Software Strengths?
	What are Open-Source Software Concerns?
	What is ATMS?
	ATMS History
	ITS Standards
	ATMS Trends
	Case Studies of ITS Software Projects Using Open-Source Software
	Case Studies of ITS Open-Source Software Projects
	Case Studies of ITS Hardware Projects Using Open-Source Software
	Case Studies of ITS Open-Source Hardware Projects
	Conclusions

	SECTION 1: INTRODUCTION
	SECTION 2: HOW AND WHY TECHNOLOGY MARKETS CHANGE
	Innovations Are Sustaining or Disruptive
	Characteristics of Disruptive Products
	The Product Lifecycle
	Changes in Product Lifecycle
	Commoditization of the Computer Hardware Market

	SECTION 3: HISTORY OF OPEN-SOURCE SOFTWARE
	Open-Source Software Growth
	Definition of Open-Source Software
	History of Open-Source Software
	Recent Developments

	SECTION 4: HOW OPEN-SOURCE SOFTWARE IS DIFFERENT
	Software Engineering
	Differentiating and Non-Differentiating Software
	Types of Software Development
	Software and Lock-in
	The Open-Source Development Process
	Innovation and Open-Source Software
	Typical Open-Source Development Environment

	SECTION 5: OPEN-SOURCE SOFTWARE STRENGTHS
	Reduced Lock-In
	Reliability
	Security
	Efficiency
	Healthy ITS Markets
	Use of Standards

	SECTION 6: OPEN-SOURCE SOFTWARE CONCERNS
	Enough Trained Staff
	Inconsistent Quality
	Support

	SECTION 7: HISTORICAL DEVELOPMENTS IN ATMS
	Birth of Intelligent Transportation Systems
	ITS Standards
	International ITS Efforts
	ATMS Goals and Benefits
	ITS/ATMS Milestones
	ATMS Trends

	SECTION 8: CASE STUDIES OF ITS SOFTWARE PROJECTS USING OPEN-SOURCE SOFTWARE
	Virginia Department of Transportation Web-based Congestion Monitoring ATMS
	Oklahoma Department of Transportation Statewide Distributed Low-Cost ITS
	Minnesota Department of Transportation IRIS Intelligent Roadway Information System
	FAA Real-time Enhanced Air Traffic Management System
	U.S. DOT Weather-Related Road Hazards Assessment and Monitoring System
	Pennsylvania State Hourly Mesonet
	Los Angeles County Regional ITS Integration Project
	University of Maryland RITIS System
	 Virginia Department of Transportation Incident Management System

	SECTION 9: CASE STUDIES OF ITS OPEN-SOURCE SOFTWARE PROJECTS
	Massachusetts Institute of Technology MITSIMLab Traffic Simulator
	Federal Highway Administration Next Generation Simulation
	U.S. DOT Open-Source TEXAS Intersection Simulation Model
	University of Washington Urban Simulation and Modeling Project
	TRB IDEA Program Dynamic Timetable Generator
	Oregon Tri-County Metropolitan Transportation District TimeTable Publisher

	SECTION 10: CASE STUDIES OF ITS HARDWARE PROJECTS USING OPEN-SOURCE SOFTWARE
	Peek Traffic Inc. Linux-Based Commercial Traffic Data Recorder
	City of Valencia, Spain Video Streaming System for Urban Traffic Control

	SECTION 11: CASE STUDIES OF ITS OPEN-SOURCE HARDWARE PROJECTS
	U.S. DOT Advanced Transportation Controller
	European ERTICO Global System for Telematics Open System

	SECTION 12: CONCLUSIONS
	Summary
	Conclusion

	REFERENCES
	APPENDIX A: LOCK-IN: WHY DOES A DATABASE COST MORE THAN AN OPERATING SYSTEM?
	APPENDIX B: PARTIAL DIRECTORY OF MAINSTREAM OPEN-SOURCE SOFTWARE APPLICATIONS
	Apache ActiveMQ Messaging Middleware
	Apache HTTP Web Server
	BSD Operating System
	Cygwin Unix-like Environment and X-Windows System
	Drools/JBoss Rules Engine
	Eclipse Development Platform
	EnterpriseDB Database
	GCC GNU Compiler Collection
	JBoss J2EE Application Server
	Jena Semantic Modeling Framework
	Linux Operating System
	MapServer Internet Map Server
	MediaWiki Collaboration Application
	Mono .NET Application Framework
	Mozilla Firefox Web Brower
	Mozilla Thunderbird Email Application
	MySQL Database
	OpenSSH Communications Tools
	OpenSSL Secure Sockets Layer Tools
	Open Office Business Productivity Suite
	Perl, Python, and PHP Software Development Languages
	PostGIS GIS Database Extension
	PostgreSQL Database
	Protégé Ontology Editor
	Rdesktop Remote Desktop Client
	Samba File and Print Services
	VNC Remote Desktop Client and Server

	APPENDIX C: RELEVANT STANDARDS ORGANIZATIONS AND STANDARDS
	APPENDIX D: OPEN-SOURCE LICENSE SUMMARIES
	Apache License
	BSD License
	Creative Commons Licenses
	GPL License
	LGPL License
	Mozilla Public License

	APPENDIX E: STANDARDIZING DATA FORMATS USING SEMANTIC WEB AND MODELING STANDARDS

