
Advanced Highway Maintenance
and Construction Technology

Research Center
Department of Mechanical and Aerospace Engineering

University of California at Davis

Research & Development of Open-Source
Advanced Transportation Management

System Hardware and Software Components

Michael T. Darter, Kin S. Yen,
Travis Swanston, Bahram Ravani &
Ty A. Lasky: Principal Investigator

Federal Report Number: CA09-0981
AHMCT Research Report: UCD-ARR-09-08-31-01

Final Report of Contract: 65A0210, T.O. 06-22

August 31st, 2009

California Department of Transportation
Division of Research and Innovation

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

AHMCT Research Center
University of California at Davis

Research & Development of Open-Source
Advanced Transportation Management System

Hardware and Software Components*

Michael T. Darter, Kin S. Yen,
Travis Swanston, Bahram Ravani &

Ty A. Lasky: Principal Investigator

AHMCT Research Report
UCD-ARR-09-08-31-01

Final Report of Contract 65A0210, T.O. 06-22

Prepared for the California Department of Transportation
Division of Research and Innovation

August 31st, 2009

Affiliations:
1. AHMCT Research Center, Department of Mechanical & Aerospace Engineering, University of
California, Davis, CA 95616-5294

* This report has been prepared in cooperation with the State of California, Business Transportation and
Housing Agency, Department of Transportation, and is based on work supported by Contract Number
65A0210, T.O. 06-22 through the Advanced Highway Maintenance and Construction Technology Research
Center at the University of California at Davis.

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

TECHNICAL REPORT DOCUMENTATION PAGE
TR0003 (REV. 10/98)

1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT’S CATALOG NUMBER

CA09-0981
4. TITLE AND SUBTITLE 5. REPORT DATE

Research & Development of Open-Source Advanced Transportation Man-
agement System Hardware and Software Components

August 31st, 2009

6. PERFORMING ORGANIZATION CODE

AHMCT
7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO.

Michael T. Darter, Kin S. Yen, Travis B. Swanston, Bahram Ravani
& Ty A. Lasky

UCD-ARR-09-08-31-01

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. (TRAIS)

AHMCT Research Center
UCD Dept of Mechanical & Aerospace Engineering 11. CONTRACT OR GRANT NUMBER

Davis, California 95616-5294 65A0210, T.O. 06-22
12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED

California Department of Transportation Final Report
Division of Research & Innovation October 2005 - August 2009
1227 O Street 14. SPONSORING AGENCY CODE

Sacramento, CA 94273-0001
15. SUPPLEMENTAL NOTES

16. ABSTRACT

This is the final report for the study “Research & Development of Open-Source Advanced Transportation
Management System Hardware and Software Components.” The study researched, implemented, and
extended the Intelligent Roadway Information System (IRIS) open-source Advanced Transportation Man-
agement System (ATMS) within the California Department of Transportation (Caltrans) District 10, as a
demonstration of the potential effectiveness of the collaborative open-source development approach be-
tween multiple transportation agencies. The IRIS ATMS was originally developed and open-sourced by
the Minnesota Department of Transportation (Mn/DOT). This study provided the first implementation of
an open-sourced ATMS outside of its agency of origin. The report provides background material and
discusses the study method, testing and validation, IRIS portability, study results, and conclusions and
recommendations.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

ATMS, Open-Source Software (OSS), Transporta-
tion Management Center (TMC), Remote Weather
Information System / Roadway Weather Information
System (RWIS), Highway operations, IRIS, Traffic
Management, Transportation Management

No restrictions. This document is available to the
public through the National Technical Information
Service, Springfield, Virginia 22161.

19. SECURITY CLASSIFICATION (OF THIS REPORT) 20. NUMBER OF PAGES 21. PRICE

Unclassified 112
Reproduction of completed page authorized

i

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Abstract

This is the final report for the study “Research & Development of Open-Source Advanced
Transportation Management System Hardware and Software Components.” The study
researched, implemented, and extended the Intelligent Roadway Information System
(IRIS) open-source Advanced Transportation Management System (ATMS) within the
California Department of Transportation (Caltrans) District 10, as a demonstration of the
potential effectiveness of the collaborative open-source development approach between
multiple transportation agencies. The IRIS ATMS was originally developed and open-
sourced by the Minnesota Department of Transportation (Mn/DOT). This study pro-
vided the first implementation of an open-sourced ATMS outside of its agency of origin.
The report provides background material and discusses the study method, testing and
validation, IRIS portability, study results, and conclusions and recommendations.

iii

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table of Contents

Abstract iii

Table of Contents viii

List of Figures x

List of Tables xi

Disclaimer/Disclosure xiii

Acronyms and Abbreviations xv

Acknowledgments xix

1 Introduction 1

1.1 Document Purpose . 1

1.2 Study Objectives and Motivation . 1

1.3 The Collaborative Approach . 2

1.4 Project History . 2

1.4.1 Project Scope . 3

1.4.2 The History of Caltrans’ Attraction to Mn/DOT’s IRIS 4

1.4.3 Internal Caltrans Project Demonstrations 5

1.4.4 Additional Caltrans IRIS Deployments 5

1.4.5 Study Time-line . 5

1.5 Project Documentation . 8

v

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

2 Method 9

2.1 Study Management . 9

2.1.1 Software Engineering . 9

2.1.2 Project Coordination . 9

2.1.3 Project Management and Communication Tools 10

2.1.4 Release Scheduling . 11

2.1.5 Focus on Reliability . 11

2.2 Requirements Management . 12

2.2.1 Stage 1: Deployment of Primary Feature Set 12

2.2.2 Stage 2: Iterative Refinement and Extension 12

2.3 Cooperative Development Process . 12

2.3.1 Single IRIS Code-base . 13

2.3.2 Distributed Source Repository Management System 14

2.3.3 Typical Development Sequence . 14

3 Testing, Validation, and Verification 17

3.1 Test Plan . 17

3.2 Automated Unit Test Cases . 18

3.3 User Acceptance Tests . 19

3.4 Defect Tracking . 20

3.5 Testing and Verification Results . 20

3.6 Automated Warning System Verification . 20

3.7 IRIS Scalability Testing . 21

3.8 Future Testing and Verification . 22

4 IRIS Portability 25

4.1 Relevance of Portability . 25

4.2 IRIS Modularity . 25

4.3 IRIS Clients Written In Other Software Languages 25

4.4 Configuring IRIS for an Agency . 26

vi

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

4.4.1 System Attributes . 26

4.4.2 Internationalization . 27

4.4.3 Properties Files . 27

4.4.4 User Permissions . 28

4.4.5 Interfacing IRIS with Devices and Software Systems 29

4.4.6 Help System . 29

4.5 IRIS Operating System Portability . 30

5 Results 31

5.1 TMC Operational Safety Enhancements . 31

5.1.1 CMS Safety Enhancements . 31

5.1.2 Automated Warning System Safety Enhancements 33

5.1.3 Functional Integration Safety Enhancements 36

5.2 Functional Enhancements to TMC Operations 36

5.2.1 General Enhancements to TMC Operations 36

5.2.2 Enhancements to TMC Traffic Monitoring 37

5.2.3 Enhancements to TMC CMS Monitoring and Control 37

5.2.4 Enhancements to TMC Video Monitoring and Control 38

5.2.5 Enhancements to TMC Reporting . 38

5.3 IRIS Integration with Proprietary Protocols 39

5.4 Project Contributions to IRIS . 40

5.4.1 Quantitative Contributions to IRIS . 40

5.4.2 Qualitative Contributions to IRIS . 41

5.4.3 Mn/DOT’s Perspective on Study Contributions 44

5.5 Other Study Products . 45

5.5.1 CASPER Field Controller Simulator 45

5.5.2 IRIS Developer Ticket System . 45

5.5.3 Sensor Server . 46

5.5.4 Defect Discovery and Repair . 46

5.5.5 Traffic Server . 47

vii

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

5.5.6 Watchdog . 48

5.6 Costs . 48

5.6.1 Estimating the Free Economic Value of IRIS 49

5.6.2 Component and Functional Area Effort Breakdown 49

5.6.3 Estimated IRIS Maintenance Costs . 50

5.6.4 High-level Cost Comparison of Open and Proprietary ATMS 51

5.7 Effort Estimates for New IRIS Implementations 56

5.8 Future Enhancements . 56

6 Conclusions and Recommendations 59

6.1 Strengths of the Collaborative Approach . 59

6.2 Obstacles and Concerns with the Collaborative Approach 60

6.3 Lessons Learned . 62

6.4 IRIS Strengths and Areas for Improvement 62

6.5 Conclusions . 64

6.6 Recommendations . 65

References 69

Appendices 71

A Functional and Non-functional Requirements 71

B IRIS Installation Verification Procedure 87

viii

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

List of Figures

1.1 Caltrans District Map . 3

2.1 ITS Project Life-cycle Phases and Life-cycle Tasks [20] 10

2.2 Iterative and Incremental Development Model (see Section 2.2.2) 13

2.3 IRIS Source Code Management (see pg. 14) 15

3.1 IRIS Scalability Test Results (see Section 3.7) 23

4.1 IRIS Binary Modules . 26

4.2 IRIS Attribute Editor Form (see Section 4.4.1) 27

4.3 Internationalized IRIS Menu (see pg. 27) . 28

4.4 IRIS User Permissions Configuration Form (see pg. 28) 28

4.5 IRIS Device Driver Configuration Form (see pg. 29) 29

5.1 Caltrans District 10 Simplified Data Flow Diagram 32

5.2 A Portion of the CMS Communication Network Health Report (SignScope) 33

5.3 A Portion of the CMS Communication Network Health Report (SignScope) 33

5.4 List of Real-time Automated Warning System Generated Messages 34

5.5 Verification of CAWS CMS Activated by Mapped Traffic Congestion 35

5.6 Verification of CAWS CMS Activated by Mapped Incident 36

5.7 IRIS integration of incidents, CMS, camera positions, and traffic (see pg. 36) 37

5.8 Screenshot of the Chainsaw Application Log Viewing Tool (see pg. 38) . . . 39

5.9 Sensor Server Architecture and Relationship with IRIS (see pg. 39) 40

5.10 Cumulative SLOC for all IRIS Modules . 42

ix

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

5.11 Collaborative Development: Cumulative IRIS Contributions by Agency . . 43

5.12 Cumulative SLOC for AHMCT-Developed Open ATMS Applications 44

5.13 Traffic Server Relationship with IRIS (see pg. 47) 48

x

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

List of Tables

1.1 Study Timeline . 6

5.1 Quantified Project Results by Component (see Section 5.4.1) 41

5.2 Estimating the Free Economic Value of IRIS 49

5.3 Component and Functional Area Effort Breakdown (see pg. 49) 50

5.4 Open and Proprietary ATMS Acquisition Costs For One Agency 52

5.5 Installation, Configuration, and Customization Costs for Open and Propri-
etary ATMS (see pg. 53) . 53

5.6 Costs: Installation and Configuration Only, i.e. When No Customization
Needed for Open ATMS (see pg. 53) . 53

5.7 Annual Maintenance Costs For One Agency for Open and Proprietary ATMS
(see pg. 54) . 54

5.8 Five-Year Acquisition, Configuration, & Maintenance Costs of Open and
Proprietary ATMS For One Agency (see pg. 55) 55

A.1 Tasks, Functional, and Non-functional Requirements 71

xi

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Disclaimer/Disclosure

The research reported herein was performed as part of the Advanced Highway Main-
tenance & Construction Technology (AHMCT) Research Center, within the Department
of Mechanical and Aerospace Engineering at the University of California Davis, and the
Division of Research and Innovation at the California Department of Transportation. It is
evolutionary and voluntary. It is a cooperative venture of local, State and Federal govern-
ments and universities.

The contents of this report reflect the views of the authors who are responsible for
the facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the State of California, the Federal Highway Ad-
ministration, or the University of California. This report does not constitute a standard,
specification, or regulation.

xiii

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Acronyms and Abbreviations

Acronyms used within this document are defined below.

AHMCT Advanced Highway Maintenance & Construction Technology

AMBER America’s Missing: Broadcast Emergency Response Plan

ATMS Advanced Transportation Management System

AWS Automated Warning System

BSD Berkeley Software Distribution

Caltrans California Department of Transportation

CASPER Controller Array Simulator for Performance and Enhanced Reliability

CAWS Caltrans Automated Warning System

CCB Change Control Board

CMS Changeable/Dynamic Message Sign

COCOMO COnstructive COst MOdel

D1 District 1

D3 District 3

D4 District 4

D5 District 5

D10 District 10

DMS Dynamic Message Sign

DOT Department of Transportation

DRI Division of Research and Innovation

xv

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

FSR Feasibility Study Report

FTE Full Time Equivalent

GNU GNU’s Not Unix

GPL General Public License

GUI Graphical User Interface

HAR Highway Advisory Radio

HP Hewlett-Packard

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I18N Internationalization

IID Iterative and Incremental Development

IP Internet Protocol

IRIS Intelligent Roadway Information System

IT Information Technology

ITS Intelligent Transportation System

JVM Java Virtual Machine

KML Keyhole Markup Language

LDAP Lightweight Directory Access Protocol

M170 Model 170

MDT Montana Department of Transportation

Mn/DOT Minnesota Department of Transportation

MPEG-4 Moving Picture Experts Group 4

NDA Non-Disclosure Agreement

NPE Null Pointer Exception

NTCIP National Transportation Communications for ITS Protocol

OSI Open Source Initiative

OSS Open-Source Software

xvi

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

PeMS Freeway Performance Measurement System

PROM Programmable Read-Only Memory

PTZ Pan Tilt Zoom

RFP Request for Proposal

RHEL Red Hat Enterprise Linux

RMI Remote Method Invocation

RPM RPM Package Manager

RWIS Remote Weather Information System / Roadway Weather Information
System

SDRMS San Diego Ramp Metering System

SLOC Source Lines of Code

SOCCS Satellite Operations Center Command System

SONAR Simple Object Notification And Replication

SQL Structured Query Language

SV170 M170 Programmable Read-Only Memory (PROM) chip

TAG Technical Advisory Group

TCP/IP Transmission Control Protocol / Internet Protocol

TDD Test Driven Development

TMC Transportation Management Center

TRB Transportation Research Board

UCD University of California Davis

UI User Interface

URL Uniform Resource Locator

VDS Vehicle Detector Station

VSL Variable Speed Limit

WisDOT Wisconsin Department of Transportation

x86 commodity Intel, AMD, and compatible microprocessors

xvii

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Acknowledgments

The authors thank the California State Department of Transportation for their support;
in particular, the guidance and review provided by the Open ATMS project team and
Technical Advisory Group (TAG). The authors also acknowledge the dedicated efforts
of the AHMCT development team members. Special thanks to Caltrans Headquarters
Traffic Operations (Stan Slavin, Alan Benson, Maria Hionides, Jeff McRae, and Robert
Copp), Caltrans Division of Research and Innovation (DRI) (Fred Yazdan, Roya Hassas,
Sean Campbell, and Larry Orcutt), Caltrans District 10 (Dinah Bortner, Laurie Jurgens,
John Castro, Mohammad Battah, Veronica Cipponeri, Arlene Cordero, Toni Moon, Joe Sil-
vey, and James Collins), Caltrans District 1 (John Carson, Joe Dower, and Jim Sandford),
Caltrans District 5 (Sherwyn Gilliland, Jacques Van Zeventer, Steven Gee, Julie Gonza-
lez, David Ybarra, Mike Keller), Caltrans District 12 Traffic Operations (Omid Segal and
Morteza Fahrtash), Caltrans Information Technology (IT) (Larry Tjoelker, Margaret Fron-
tella, Todd Larson, and Danial Peck), and finally, the outstanding Mn/DOT team (James
Kranig, Doug Lau, Timothy Johnson, and Ralph Adair).

xix

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Chapter 1

Introduction

1.1 Document Purpose

This document is the final report of the Caltrans IRIS Demonstration study. It summa-
rizes study results, lessons learned, and conclusions, and provides a direction for future
research. The Open ATMS research study is a multi-year research project undertaken
by the Advanced Highway Maintenance & Construction Technology (AHMCT) Research
Center at the University of California, Davis.1

1.2 Study Objectives and Motivation

The objective of this research study was to dramatically reduce present and future ATMS
life-cycle costs. From the original research proposal:

The current Caltrans ATMS is composed of several proprietary single-source compo-
nents. The lack of market competition for these single-source components leads to ever
increasing one-time acquisition costs and yearly maintenance costs. Consequently,
additional ATMS deployment is severely impacted.

Therefore, a robust and reliable ATMS can be designed with an open and modular
architecture using open-source components and commodity hardware with standard
interfaces. As a result, the one-time build-up cost and ongoing maintenance costs
would be dramatically reduced. Now is the right time to investigate the use and de-
ployment of an open-source ATMS throughout Caltrans.

1For AHMCT see http://ahmct.ucdavis.edu

1

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

1.3 The Collaborative Approach

The terms collaborative approach and open-source are used interchangeably throughout this
document. In general, the term open-source is used in many contexts and has multiple
meanings. For our purposes it has three meanings:

1. Legal definition: the Open Source Initiative (OSI) is a non-profit organization that
has legally defined the term open source.2 For a software license to be considered
open-source, it must meet certain legal requirements. Examples of popular open-
source licenses include the General Public License (GPL), Berkeley Software Distribution
(BSD), and Apache license. The legal terms of these licenses differ and are not nec-
essarily interchangeable.

2. Software development methodology: seeks to leverage distributed development
across multiple developers that freely share knowledge about a software project and
seek to improve and refine it. This development methodology strongly encourages
peer review, which is widely used in other engineering practices. The distributed
nature of development also keeps costs low.

3. Approach for building knowledge communities: the legal requirements of open-
source licenses (e.g. source code is freely available) results in the development of
distributed knowledge communities. These communities cooperate and collaborate
to improve the software. The more people that are involved with an open-source
project, the more likely they will contribute, and the stronger the project grows.
This positive feedback cycle benefits the entire knowledge community.

The open-source IRIS project uses the GNU GPL license. For a full discussion of open-
source licenses such as the GPL and BSD licenses, see online sources.3 In summary, the
GPL license stipulates:

• Source code must be publicly available,
• The source code for derivative works (modified GPL applications) must be publicly

available, and
• Derivative works are covered by the GPL.

1.4 Project History

In 2004, the Caltrans Division of Research and Innovation (DRI) initiated a search for in-
novative methods of reducing ATMS costs. Caltrans’ existing ATMS system was effective
when used within 7 of 12 districts:4 3, 4, 6, 7, 8, 11, and 12 (see Figure 1.1). However,

2For the Open Source Initiative (OSI) see http://opensource.org
3See http://en.wikipedia.org/wiki/GPL and http://en.wikipedia.org/wiki/BSD_

licenses
4As of September 2009, the proprietary ATMS system is not yet installed in District 4.

2

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Caltrans was seeking methods of reducing initial and ongoing ATMS costs of this sys-
tem, which was built entirely with proprietary hardware and software components. The
research proposal was granted in February of 2005 (scope 1).

Figure 1.1: Caltrans District Map

1.4.1 Project Scope

Throughout, the focus of the research study has been cost reduction. The study was re-
scoped twice:

1. Original scope: development of an open-source ATMS, 02/2005: AHMCT proposed
to develop a full open-source ATMS with a focus on cost reduction.

2. First re-scope: development of an open database, 02/2006: the goal was to create
an open-source version of the existing proprietary ATMS system database. The re-
search project was essentially on hold, except for some background literature search
and reporting, between December 1st, 2005 and January 3rd, 2007 (13 months),
while lawyers for the University of California and Caltrans attempted to reach agree-
ment on the terms of the Non-Disclosure Agreement (NDA) that the researchers
were required to sign to gain access to the proprietary ATMS source code. Ulti-
mately, after 13 months of discussion, the attorneys could not reach an agreement.

3. Second re-scope: implementation and extension of an existing open-source ATMS,
07/2007: in May of 2007, Mn/DOT released the source code of their existing IRIS
ATMS as open-source. This re-scope focused on determining the costs and bene-
fits of implementing and extending5 an existing open-source ATMS within Caltrans.

5Extend is used throughout the document and signifies the addition of new capabilities, improved per-
formance, reliability, portability, etc.

3

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Caltrans District 10 (D10) was selected for the demonstration because it did not have
an existing ATMS system. Therefore, potential benefits provided by the IRIS ATMS
would minimize overlapping functionality in existing systems, providing a net ben-
efit to D10. Extension of IRIS included: 1) interfacing with existing hardware and
software systems, 2) adding features the TMC deemed important for operations,
and 3) fixing defects.

1.4.2 The History of Caltrans’ Attraction to Mn/DOT’s IRIS

The information in this section was provided by Caltrans and Mn/DOT and edited by AHMCT.

In March of 2006, Caltrans and Mn/DOT had discussions about the Opera-
tions Software used within the Mn/DOT TMC. This software (IRIS) had been
developed internally by Mn/DOT. Over the years, Mn/DOT had received
multiple requests from outside agencies about the possibility of making their
IRIS ATMS available to other agencies. Approximately six months prior to the
conversation with Caltrans, Mn/DOT had initiated an approval request for
providing Intelligent Roadway Information System (IRIS) to other agencies.

Mn/DOT had an initial internal meeting to discuss how to proceed and all
agreed that external distribution would be beneficial for Mn/DOT and pro-
vide a cost-effective way for other agencies to obtain a traffic management
system. Mn/DOT developed several distribution and support scenarios and
presented the plan to top management. Mn/DOT decided to license IRIS us-
ing the GNU General Public License (GPL).

Between January and June of 2007, several telephone conversations took place
between Mn/DOT, Washington State Department of Transportation (DOT),
Wisconsin DOT, and Caltrans. In addition, Mn/DOT was gathering infor-
mation about the system capabilities of the existing Caltrans ATMS system
for comparison with IRIS capabilities and requirements. Feature compari-
son was important because Mn/DOT was particularly interested in partnering
with other DOTs for collaborative development of enhancements. For exam-
ple, Caltrans could sponsor the development of a new functional module that
would be used by both agencies.

The Caltrans ATMS system and IRIS had a number of complimentary features.
For example, IRIS did not perform Incident Detection or generate and manage
Incident Response Plans. However, IRIS supports the National Transportation
Communications for ITS Protocol (NTCIP) standard (class A, B, and C) to com-
municate with Changeable/Dynamic Message Sign (CMS). Both the Caltrans
ATMS and IRIS were installed in multiple geographic locations. In addition,
IRIS was being used to remotely run a satellite operations center (St. Cloud)–a
capability that was attractive to Caltrans for server consolidation.

4

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

In July of 2007, the University of California Davis (UCD) Open-ATMS study
was re-scoped to implement and extend IRIS within Caltrans D10 to demon-
strate the feasibility, benefits, and costs of this collaborative approach.

1.4.3 Internal Caltrans Project Demonstrations

The Open ATMS project demonstration to upper management was in October of 2008, at
the D10 headquarters in Stockton, California. The low bandwidth network capabilities
of the IRIS client enabled a second remote demonstration of the D10 system in Decem-
ber of 2008 in Sacramento, California. This included the Chief of the Division of Traffic
Operations and the Chief of the Division of Research & Innovation. The outcome was
positive, resulting in subsequent maintenance funding and the initiation of the Caltrans
IT Feasibility Study Report (FSR) process for subsequent deployment.

1.4.4 Additional Caltrans IRIS Deployments

Based on the positive results from the D10 IRIS deployment, Caltrans decided to add IRIS
test deployments in District 1 (D1) and District 5 (D5) to the demonstration study. IRIS
was activated in D5 on August 12th 2009 and in D1 on August 26th 2009. See Section 5.6.4
for more information.

With the additional IRIS deployments, Caltrans sought to determine the usefulness of
IRIS in additional districts, which potentially had different needs. For example, unlike
D10, Districts 1 and 5 are largely rural. A key concern for Caltrans is reusability–avoiding
highly customized single district solutions that are difficult or impossible for other dis-
tricts to use. High reusability decreases costs and improves reliability. Deployment to
these additional districts provided an opportunity to measure IRIS reusability. See Sec-
tion 2.3.1.

1.4.5 Study Time-line

Significant events during the course of research are noted in Table 1.1 below.

5

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table 1.1: Study Timeline
11/01/2004 Request for Proposal (RFP) from Caltrans.
02/01/2005 Research proposal granted.
10/01/2005 Study starts, initial scope was creation of an open-source ATMS.
11/30/2005 Meeting for scope revision, target replacing database with open-

source.
12/01/2005 NDA negotiation process started between UCD lawyers and Cal-

trans lawyers.
02/23/2006 First revised scope: the open-database–create an open-source version

of the existing ATMS system database.
12/08/2006 Project Task 2 report, ATMS literature review [6].
01/03/2007 After 13 months, the UCD and Caltrans lawyers fail to reach agree-

ment over the NDA that AHMCT software engineers were required
to sign to gain access to the proprietary ATMS source code.

05/25/2007 Mn/DOT releases IRIS source code, version alpha 1, using the GNU
GPL.

06/13/2007 Initial project meeting with D10 in Stockton.
06/23/2007 IRIS client and server building using the alpha 1 code release.
07/17/2007 Revised project scope that details implementation of IRIS within Cal-

trans.
08/20/2007 First AHMCT contribution to the IRIS code-base.
10/02/2007 Requirements Definition Document complete [8].
10/04/2007 Key project team discussions about open-source licensing implica-

tions and issues.
10/10/2007 Mn/DOT IRIS alpha 2 code release.
10/24/2007 Initial Caltrans Traffic Operations and Research team meeting,

downtown Sacramento.
12/20/2007 Researchers received 2 Model 170 (M170) controllers from Caltrans.
12/31/2007 Software Design Document complete [9].
02/04/2008 First AHMCT contribution in the mercurial repository.
05/20/2008 D10 IRIS Release 1: Developer release.
05/30/2008 D10 IRIS Release 2: Rudimentary CMS control, video monitoring,

traffic monitoring.
06/18/2008 D10 IRIS Release 3: Internationalization, free form message entry,

incidents displayed.
06/27/2008 D10 IRIS Release 4: CMS message via free-form and library entries.
07/10/2008 D10 IRIS Release 5: Travel time configured and ready for testing, Pan

Tilt Zoom (PTZ) camera control.
07/21/2008 D10 IRIS Release 6: Free-form messages saved in library, numerous

defects repaired.
07/23/2008 D10 IRIS Release 7: Fixed CMS message centering problem.

continued on next page

6

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Project timeline, continued
09/20/2008 D10 IRIS Release 8: New Caltrans Automated Warning System

(CAWS) driver, CMS control buttons.
10/06/2008 D10 IRIS Release 8.1: System Attributes, CMS on dial-up lines sup-

ported, Roadway tab configured.
10/17/2008 D10 IRIS Release 8.2: Traffic station map improved, support for

model 520 CMS.
10/20/2008 D10 IRIS Release 8.3: Enhanced CAWS functionality, video presets,

video reliability improved.
10/23/2008 Project Demonstration in Stockton.
11/12/2008 D10 IRIS Release 8.4: CAWS now displays which CMS are activated,

mapping improved with street names, CMS preview capability.
11/21/2008 IRIS Demonstration to Division Chief, Traffic Operations.
11/24/2008 D10 IRIS Release 8.5: System Attribute enhancements, initial Quick

Message library, new traffic stations, CAWS enhancements.
12/05/2008 D10 IRIS Release 8.6: Logging enhancements, real-time Keyhole

Markup Language (KML) output for CMS.
12/09/2008 D10 IRIS Release 8.7: Easy access to cell modem re-initialization

page, more descriptive error messages.
12/10/2008 Project Demonstration in Sacramento, including Division Chief, Re-

search & Innovation.
01/07/2008 D10 IRIS Release 8.8: Ability to send a single message to multiple

CMS, ability to blank multiple signs, enhanced CAWS functionality.
03/12/2009 D10 IRIS Release 8.9: SV170 3.4 support, enhanced logging, CAWS

validation, context sensitive help system, numerous defects repaired.
06/16/2009 D10 IRIS Release 9.0: ability to send messages to multiple signs (ad-

hoc and existing sign-groups), CAWS sign grouping, support for
specifiable page on-time, completion of RMI to SONAR conversion,
fonts specified on a per-page basis, smart alpha-numeric sorting, nu-
merous other User Interface (UI) improvements, and defect repairs.
Over 1000 change sets were added compared with R8.9.

06/21/09 D10 IRIS Release 9.0.1: enhanced logging, defect repairs.
06/24/09 D10 IRIS Release 9.0.2: new roles now have multiple permissions per

role, bitmap images can now be sent to signs, defect repairs.
08/10/09 D10 IRIS Release 9.0.3: 50% faster map loading, defect repairs.
08/12/09 D5 IRIS Release 9.0.3. initial install in D5.
08/26/09 D1 IRIS Release 9.0.4: initial install in D1, defects repaired.
09/03/09 D1 IRIS Release 9.0.5: initial install in D10, defects repaired, update

to IRIS V3.96.
10/28/09 D1, D5, D10 IRIS Release 9.0.6: defects repaired, permissions for dif-

ferent classes of users.
11/19/09 D1, D5, D10 IRIS Release 9.0.6a: defect repaired.

7

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

1.5 Project Documentation

For additional insight and background, the reader may consult the documents listed be-
low and in the References section on page 70:

• Study reports and documents:

– Project Task 2 report, ATMS literature review [6],
– Project Task 3 report, D10 operations and equipment [7],
– Project Task 4 report, functional requirements [8],
– Project Task 5 report, IRIS review [9],
– Project Task 6 report, Overview of Caltrans D10 IRIS Demonstration Design [10],
– Implementation and Extension of the IRIS Open-Source Traffic Management

System to Improve Organizational Performance, poster session at the Trans-
portation Research Board (TRB), January 2009 conference [12],

– IRIS Verification Plan Outline and Procedure for the California Department of
Transportation D10 [11, 5].

– Open ATMS proposal: Research & Development of Open-Source Advanced
Traffic Management System Hardware and Software Components [2].

• Web Resources

– This study’s web site: http://iris.ahmct.ucdavis.edu,
– IRIS JavaDoc source code documentation [17],
– IRIS source code documentation: some modules contain additional documen-

tation. See the doc sub-directory within each module’s repository [18],
– Caltrans D10 IRIS Maintenance Manual [4],
– Caltrans D10 IRIS Source Repository [1],
– Mn/DOT IRIS Source Repository [16].

• Mn/DOT Documentation

– Intelligent Roadway Information System (IRIS) As Built System Design Docu-
ment [15].

– IRIS User Manual, April 2008.
– IRIS Administrator’s User Manual.
– IRIS Open Source Software Release Research Project Review of Candidate Li-

censes, March 2007.
– Minnesota Intelligent Roadway Information System (IRIS) High Level Sum-

mary.
– IRIS Software Verification Program Concept Paper Draft, January 15, 2007.
– IRIS Open Source Software Circulation and Licensing Feasibility Study, Final

Report, October, 2007.
– Open Source General Public License Traffic Management Software, Sharing

TMC Software Using an Open Source General Public License Software. Paper
for Intelligent Transportation System (ITS) America conference.

8

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Chapter 2

Method

2.1 Study Management

This section discusses some of the general concepts, processes, and tools used to manage
the study.

2.1.1 Software Engineering

At the highest level, the development process was split into two stages, with slightly
different requirements management processes. The first stage corresponds to Phases 0 - 4
in the ITS project life-cycle, shown in Figure 2.1. This consisted of requirements definition,
design, and the initial implementation within each functional area.

The second project stage used a cyclic development model and corresponds with
Phase 4 of the ITS project life-cycle (see Figure 2.2). Existing features were refined, de-
fects were repaired, and new requirements were generated by users, developers, and
management based on hands-on use of IRIS.

The two-stage approach was particularly effective—the initial set of requirements
were high-level and defined prior to hands-on IRIS use. For developers and operators,
the knowledge and experience gained through Stage 1 hands-on use of IRIS was invalu-
able for Stage 2 requirements definition—most of the Stage 2 requirements would have
been very difficult (or impossible) to define during Stage 1.

2.1.2 Project Coordination

Monthly meetings were used to demonstrate monthly progress in each functional area.
This was particularly valuable during Stage 1 development. Weekly meetings were used
to discuss TMC needs, new and existing requirements, ongoing defects, and the release

9

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 2.1: ITS Project Life-cycle Phases and Life-cycle Tasks [20]

schedule. Weekly meetings involved TMC administrative staff, Caltrans management,
and development staff, and were particularly valuable during Stage 2 development.

2.1.3 Project Management and Communication Tools

The use of a project web site was indispensable for project communication, organization,
and progress tracking. The project web site was implemented using a wiki1, which pro-
vided the ability to create both public and non-public web pages. Access to non-public
pages was controlled with user names and passwords. Later in the project, a ticketing
system2 was used for managing defects, enhancements, and the testing process (see also
section 3.4). Users created trouble tickets when defects were discovered. The wiki and
ticket system provided:

• Access control to non-public content and documents.
• IRIS help system pages: a context-sensitive help system was added to IRIS that is

accessible via the F1 key. Pressing the F1 key in IRIS loads context-specific pages
from the wiki.

1See http://www.mediawiki.org for MediaWiki.
2See http://trac.edgewall.org for Trac.

10

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

• The IRIS Maintenance Manual: an on-line manual and consists of a series of wiki
pages integrated with the maintenance manual.

• Document reference and storage: prior versions of documents were automatically
saved. Procedures, technical documentation, reports, etc. were saved or referenced
in the wiki.

• Creation and management of trouble tickets: using Trac, trouble tickets were created
by end-users, administrators, and software engineers. Trouble tickets are linked
with requirements and were used to generate and track new requirements. Trac
was used to generate management reports and monitor overall project progress.

• Contact information for all project staff.
• Development progress: to-do lists, task completion lists, release notes, problem lists,

etc.

2.1.4 Release Scheduling

Between May of 2008 (release 1) and January of 2009 (release 8.8) there were 16 releases,
averaging a new release every 15 days. This short cycle time resulted in a rapid rate of im-
provement experienced by IRIS users, both in quality and functionality. This encouraged
users to suggest improvements and increased their confidence in the system.

After the 9.0 release in June of 2009, the focus shifted from rapid improvement to
maintenance, focusing on defect repair, stability, and increasing the predictability of re-
leases and improvements. The research project team transitioned into a software Change
Control Board (CCB) team, focused on improved software engineering processes.

2.1.5 Focus on Reliability

An explicit focus was placed on fixing defects first and rapidly. As development pro-
gressed, the defect discovery rate for application declined, which is shown in Figure 5.12
for the Sensor Server application. The development team encouraged users to immedi-
ately report suspected problems. User feedback was an important source of new feature
suggestions. For example, any user confusion over the meaning of button labels resulted
in relabeling. Rapid defect repair was also important for increasing user confidence in the
new system.

Logging of anomalous conditions was invaluable for reconstructing subtle and inter-
mittent problems, finding defects, detecting anomalous conditions, and verifying that
code was executing as intended. The fast-fail approach for detecting and reporting in-
ternal problems was used extensively [22]. The design-by-contract approach using as-
sertions, pre-conditions, and post-conditions was also used extensively during develop-
ment. The combination of logging, fast-fail, and assertions enabled early problem detec-
tion.

11

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

2.2 Requirements Management

2.2.1 Stage 1: Deployment of Primary Feature Set

The first project stage corresponded with phases 0 - 4 in the ITS project life-cycle, shown
in Figure 2.1. This consisted of requirements definition, design, and initial implementa-
tion within each functional area. The primary goal of this project stage was development
and deployment of major system features within each functional area. For this stage, a
top-down waterfall approach was used that defined an initial set of 100 coarse-grained
functional and non-functional requirements[8]. These requirements were subdivided by
prioritized functional area. Requirements definition was based on a survey of D10 sys-
tems [7] and limited knowledge of IRIS source code structure. The goal of these require-
ments was to loosely define functionality desired by IRIS users and TMC management.
During this stage no attempt was made to add new requirements. A design for each
of the major functional areas was created based on IRIS structure and consultation with
Mn/DOT [9, 10]. This stage lasted through approximately release 4 in late June of 2008.
This transition point can also be seen in Figure 5.12, in which the rate of change of code
committed to the repositories slowed, as major features were completed.

2.2.2 Stage 2: Iterative Refinement and Extension

The second project stage used an Iterative and Incremental Development (IID) model
to continuously refine and add features that were generated by users, engineers, and
management from hands-on IRIS use (see Figure 2.2). This stage is characterized by a
bottom-up approach using stakeholder involvement, elicitation, and acceptance.

The primary goal of this stage was user acceptance of IRIS as a replacement for the ex-
isting CMS control application (Satellite Operations Center Command System (SOCCS)).
Achieving this goal was a function of: 1) developing feature parity with SOCCS, and
2) providing excellent reliability.

During this stage, 116 additional requirements were defined, 43 (37%) of which are
future requirements, for use in subsequent project phases.

2.3 Cooperative Development Process

The cooperative software development process between AHMCT and Mn/DOT was a
crucial aspect of the project for the following reasons:

• Understanding the existing design: communication with Mn/DOT was important for
understanding the intent, future direction, and shortcomings of IRIS feature design.

12

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 2.2: Iterative and Incremental Development Model (see Section 2.2.2)

• Effective design of new features: often required extending and generalizing existing
IRIS functionality. Communication with Mn/DOT was essential for understanding
their needs and creating enhancements that would satisfy Mn/DOT, Caltrans, and
future users.

• Resolving problems: it was almost always more efficient to discuss problems with
Mn/DOT before spending effort fixing them. Often, Mn/DOT was aware of the
problem and had either 1) fixed it already, 2) anticipated that it would be fixed in
subsequent releases due to a dependency that had been fixed, 3) were aware of the
problem and were happy if AHMCT fixed it, or 4) were not aware of the problem.
Typically, AHMCT attempted a repair in the last two cases.

• Effortless code merges: agencies contributing code to IRIS are strongly motivated to
make the code merge process for Mn/DOT as effortless as possible. Intelligent and
thoughtful coordination increased the probability that code merges would be effort-
less for Mn/DOT.

2.3.1 Single IRIS Code-base

Caltrans IRIS and Mn/DOT IRIS are built from the same code-base. It is crucial to under-
stand that all agencies share a single code-base. Sharing a single code-base leverages limited
resources for development and testing. Functional differences between IRIS running in
different agencies is primarily due to configuration differences. The official IRIS release is
maintained by the lead software engineers at Mn/DOT. However, each agency maintains
their own (or multiple) source code repositories, as discussed in the next section.

The existence of one code-base does not imply that there is a single source code repository–
in fact, a distributed source control system is used, in which many source repositories can
be spread across multiple organizations or feature sets. This approach has numerous
benefits (see below).

13

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

2.3.2 Distributed Source Repository Management System

The IRIS project uses a distributed source code repository system.3 A distributed repos-
itory is structured so that each developer has an independent and complete repository.
Fragmentation of the source code-base into separate and incompatible versions of IRIS
does not happen because each IRIS developer that makes source code changes forwards
those changes back to the lead engineers at Mn/DOT. Mn/DOT then incorporates these
changes into their repository and subsequently releases new versions of IRIS to other
developers.

A change-set is a discrete bundle of source code changes (which may span multiple
files) and is typically associated with a single enhancement or defect repair. Developers
typically 1) create enhancements and repairs, 2) commit them to the repository as change-
sets, and 3) forward these change-sets to other developers through a repository pull pro-
cess. The centralized repository concept of ”checking-out” source files does not apply to
the distributed source control model. The centralized model uses a cycle of: check-out,
modify, and check-in. The distributed model uses a cycle of pull, modify, commit. The
next section discusses the development process further.

2.3.3 Typical Development Sequence

The cooperative development process between AHMCT and Mn/DOT typically followed
the steps discussed below and diagrammed in Figure 2.3.

• Step A: Development begins with AHMCT pulling (reading) from the public Mn/DOT
IRIS repository shown as arrow A in Figure 2.3. The pull process imports all new
change-sets that have been published by Mn/DOT since the last pull.

• Step B: AHMCT then adds new features, fixes defects, and enhances existing fea-
tures. Each enhancement or defect repair is saved as a single change-set in the local
AHMCT development repository. After enhancements are tested and judged to be
complete, they are published in the public AHMCT IRIS repository. Typically this
occurred approximately every two weeks. The development of enhancements and
new features is substantially coordinated with Mn/DOT. This sometimes involves
daily email and phone conversations discussing design decisions, problems, alter-
native approaches, etc. The AHMCT engineer’s overriding objective is to produce
code that is easy for the lead engineers at Mn/DOT to merge into the main IRIS
repository (Step D below). This is easily achieved if enhancements are well de-
signed, generalized, well tested, and conform to the existing IRIS code syntax.

• Step C: After a set of desired IRIS enhancements are complete, a new Caltrans IRIS
release is 1) built, 2) tested by developers, 3) tested by users (acceptance testing),
and 4) installed on the production system.

3See http://www.selenic.com/mercurial for the source management system used by IRIS.

14

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

• Step D: When Mn/DOT is ready, they pull (read) change-sets from the public AHMCT
IRIS repository and merge it with their IRIS repository. High-quality code that con-
forms with or elegantly extended the existing IRIS design is typically easy to merge.

• Step E: When the lead engineers at Mn/DOT accumulate a significant number of
enhancements, they release a new version of IRIS and publish it in their public IRIS
repository.

• Step F: Mn/DOT installs a new version of IRIS in their TMC.

AHMCT

Public IRIS
Repository

AHMCT
IRIS

Development
Repositories

Mn/DOT
IRIS

Development
Repositories

Caltrans
IRIS

Release

Mn/DOT
IRIS

Release

A

B C

D

E FMn/DOT
Public IRIS
Repository

IRIS Source Code Management

Figure 2.3: IRIS Source Code Management (see pg. 14)

15

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Chapter 3

Testing, Validation, and Verification

Validation and verification were both performed. The validation process determines if
the right enhancement was built (are we building the right thing?). Validation depends on
user needs and is defined through discussion with users and requirements definition.
Validation is performed against the defined requirements and through user acceptance
tests.

The verification process determines if the enhancement is built according to specifica-
tions. Verification depends on requirements definition, unit tests, developer testing, and
user acceptance tests. The ultimate form of verification is long-term use of the feature or
system in the production system.

3.1 Test Plan

Testing and verification were both performed as follows:

• Automated unit test cases: were used. See Section 3.2.
• Unit testing during development: was used during development of new and enhanced

features. This effort was part of the development process.
• System testing during development: was used extensively during development of new

and enhanced features. CASPER was used to simulate multiple CMS (see Sec-
tion 5.5.1 for CASPER). The real-time traffic and incident feeds were also used for
testing. The production cameras were used for system testing. This effort was part
of the development process.

• Logging: was used to detect anomalous conditions during development and in pro-
duction. This effort was part of the development process. Logging was invaluable.
See Section 2.1.5.

• New-release system testing: new releases were tested on the test and development
machines. This effort was part of the development process. See Appendix B for

17

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

the procedure. In addition, a verification plan outline was developed for future
use [5, 11].

• Automated Warning System (AWS) verification: substantial CAWS verification was
performed. See Section 3.6.

• Formal user acceptance: test cases were used. See Section 3.3.

System and feature validation were performed as follows:

• Requirements discussion: before requirements were implemented, features were dis-
cussed with TMC administrators and end-users. This was particularly important
for user-interface enhancements.

• Feature prototyping: some features (e.g. CAWS enhancements) were prototyped and
shown to TMC staff. This was important for complex features with a strong user-
interface dependence.

• User acceptance: the ultimate system validation was through user acceptance and
use of IRIS. The existing CMS control application (SOCCS) was always available for
use. The goal was voluntary user migration to IRIS as a result of enhanced reliability,
features, and efficiency.

• Formal user acceptance: test cases were used. See Section 3.3.

Building and verifying a new IRIS production release typically follows these steps:

1. On the test or development server, performed by a software engineer: automated
unit tests, ad-hoc integration testing, predefined test cases (e.g. CAWS test cases),
and user acceptance test cases.

2. On the test server, by a software engineer: ad-hoc integration and unit tests which
are typically a function of improvements in the new release.

3. On the test server, by a District user: end-user acceptance tests.

4. On the production server, by a software engineer or administrator: the procedure
defined in the appendix–see Section B.

5. On the production server, by a software engineer: some tests may need to be exe-
cuted which are difficult (or impossible) to execute on the test system.

6. On the production server, by a District user: some tests may need to be executed
which are difficult (or impossible) to execute on the test system.

3.2 Automated Unit Test Cases

Automated test cases are used during development and provides a mechanism for soft-
ware engineers to execute numerous test cases and automatically determine if each test

18

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

passed or failed. As of January 2010, the IRIS code-base had 481 automated test cases
and the Caltrans IRIS applications (CASPER, Sensor Server, Trafserver), contain an ad-
ditional 470 automated test cases. The development of these test cases was integral to
the development of the associated code. This approach is often identified as Test Driven
Development (TDD).

Presently, automated test cases are used primarily to unit test classes that provide
basic functionality to other classes (convenience classes). Test cases were constructed
for static methods. This was particularly effective for convenience classes because many
other classes and methods depend on them for results. Automated unit test cases are also
useful for regression testing.

IRIS uses the JUnit1 test case framework for automated tests. These test case are run
by software engineers during the development process. The example below shows two
test cases related to the NTCIP Dynamic Message Sign (DMS) protocol. The first test case
should fail, and the second test case should pass. If either of these test cases does not
perform as expected, the system will halt automated testing.

assertFalse(MultiString.isEquivalent("[fo2]LINE1", "[fo1]LINE1"));
assertTrue(MultiString.isEquivalent("LINE1[nl][nl]", "LINE1"));

3.3 User Acceptance Tests

User acceptance tests were used for verification and validation. Test cases were developed
by software engineers and executed by both district users and developers. Test cases
were developed for each defect or enhancement. User acceptance of a new release was
dependent on all test cases for a release successfully passing. The total time required for
all personnel for user acceptance testing, per release, was typically less than 12 hours. A
sample user acceptance test case is shown here:

• Ticket Number: UNR 270

– Ticket description: Defect, sensorserver is returning the wrong error message
when the remote phone line is busy. Operators need to know the current status
of field hardware so problems can be diagnosed.

– IRIS Version: 9.0.6
– Test case description: verify error message is correct when the field modem is

busy.
– Test procedure:

1. Have an admin configure IRIS to call a local phone that is off the hook (so
it will be busy).

2. Send a get-message request to the CMS.

1For JUnit, see http://www.junit.org

19

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

3. At the completion of step #2, verify that the error message returned states
that the remote modem is busy. This will be in the ’Current Operation’
field.

– Test case executed:

∗ MD pass, 10/27/2009, 9.0.6, software engineer
∗ MB pass, 10/29/2009, 9.0.6, D10
∗ JD pass, 11/2/2009, 9.0.6, D1

3.4 Defect Tracking

Defect tracking and logging evolved significantly over the course of the project. Initially,
defects were loosely tracked via a task log on a project wiki page. This method was
used for approximately 12 months. During this time approximately 200+ significant code
defects were repaired. An equal number of minor defects and problems were fixed.

Starting in March of 2009, a software ticketing system was used (Trac2) to log defects,
enhancements and tasks. This ticketing system is maintained by Caltrans and facilitates
communication within Caltrans and between Caltrans and AHMCT. This ticketing sys-
tem tracks Caltrans-specific tasks, requirements and defects.

Starting in June of 2009, an additional ticketing system (also Trac) was deployed. It
is used primarily to facilitate communication between IRIS software engineers in differ-
ent agencies. For example, between AHMCT and Mn/DOT. The use of these ticketing
systems substantially improved defect and task tracking, reporting and communication.

3.5 Testing and Verification Results

The end result of the strong focus on reliability, combined with testing, verification, and
defect repair was a reliable mission critical ATMS. For CMS operations, during 9 months
of 24x7 TMC operation, there were 5 service outages. One was due to a configuration
error, three were due to D10 networking problems, and one was due to a Sensor Server
defect.

3.6 Automated Warning System Verification

CAWS is an automated warning system developed by Caltrans, that uses data from RWIS
(wind speed, visibility), combined with speed sensor data, to automatically generate CMS
messages. IRIS sends these messages to CMS on 30 second intervals. The following test
process was used to verify IRIS CAWS functionality:

2See http://trac.edgewall.org for Trac.

20

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

1. Automated unit tests: were used for testing at the method level.
2. Lab testing of CAWS functionality: a test matrix of 10 different message types (100+

test cases) was used to test message overwrite functionality. For example, one test
case verifies that an operator message does not overwrite a CAWS generated mes-
sage. Developer effort to execute these test cases was approximately 6 hours, per
release.

3. End-to-end verification: a test-bed was used to compare actual IRIS message out-
put with the real-time CAWS generated messages over the course of 4 weeks. Ap-
proximately 1400 CAWS messages were sent to simulated signs. The CASPER field
controller simulator and the watchdog application (see Section 5.5.6) were used for
this purpose. Logged messages were then compared with expected messages. As a
result of the validation process, one subtle defect was discovered and fixed before
it occurred in production. Total testing and development effort for this verification
was approximately 4 weeks.

4. Incremental IRIS control: IRIS was initially used to control a single CMS in the TMC
for approximately one week. This provided operators with an opportunity to gain
experience with the new UI and administrators the opportunity to verify the new
CAWS functionality was operating as expected.

5. Full IRIS control: all CAWS CMS were enabled for full IRIS control.
6. Operator acceptance tests: were developed late in the project and verified by IRIS

administrators and users. These involved generated test messages deployed on sim-
ulated CMS.

3.7 IRIS Scalability Testing

To quantify IRIS scalability, testing was performed with 50 simultaneous IRIS clients.
Memory and processor utilization were monitored every 60 seconds during the test. The
results are shown in Figure 3.1.

Excluding the mapping issue discussed below, there are no known scalability issues
that would limit IRIS use in small, large, or very large transportation agencies. Based on
the test results below, a very large transportation agency could effectively run IRIS on a
$1,000 commodity server with no performance degradation.

The one known IRIS scalability issue limits client map sizes to approximately 5 Megabytes,
which is a relatively small map. This limits the number of lines on the map, not the size
of the geographic area the map covers. The work-around for this limitation is to simplify
the map (using line simplification) to eliminate unnecessary line segments, which reduces
the map size. This limitation is due to the use of a non-scalable data structure in the IRIS
client code. Mapping enhancements have been discussed and are desired by Caltrans and
Mn/DOT.

The scalability testing used a $1,000 commodity x86 server with modest capabilities:
an Intel Core Duo (2 cores), running at 2.4 GHz, with 2 Gigabytes of memory. In March

21

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

of 2009, a new machine with similar capabilities costs less than $1,000. The server was
executing:

• Apache web server,
• CASPER field simulator,
• Sensor Server,
• IRIS server,
• IRIS video servlet,
• Lightweight Directory Access Protocol (LDAP) directory server,
• PostgreSQL database,
• Apache Tomcat server,
• Traffic Server.

Total memory usage across all applications with 50 simultaneous users was 811 MBytes.
Memory usage within the IRIS server application with 50 users was less than 140 MBytes
and was proportional to the number of users (O(n)). Total processor utilization was very
modest at less than 20 percent. From these results, it appears that a single relatively
low-end IRIS server will easily support substantially more than 50 simultaneous users.

3.8 Future Testing and Verification

Comprehensive testing and verification are crucial for defect discovery, both in the devel-
opment process and during verification before deployment. Looking towards the future,
enhancing IRIS’ test and verification capabilities is crucial, particularly as more agen-
cies become involved. Improving IRIS testing and verification capabilities would be very
beneficial 1) during developing, 2) for verification before deployment, and 3) during de-
ployment. The following testing-related features are desirable:

• Automated end-to-end test cases: would enable automatic testing of existing function-
ality by executing end-to-end operations (e.g. sending a CMS message to a simu-
lated CMS) and verifying the results. This would be useful for developers following
completion of new features and enhancements and merging code from other devel-
opers. New features would require new or modified test cases. Release builds could
be regression tested prior to release. Presently, end-to-end testing is performed man-
ually by developers and user acceptance tests.

• Simulated traffic: the ability to feed IRIS with simulated traffic would enable testing
of traffic dependent functionality, such as travel time generation, Vehicle Detector
Station (VDS) status, and ramp meter functionality. This would enable regression
testing in these areas. The ability to ”capture” live traffic and feed it into the traffic
simulator would also be useful for debugging problems and possibly for operator
training.

22

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 3.1: IRIS Scalability Test Results (see Section 3.7)

• Simulated incidents: may be useful for supporting future features such as incident
management.

• Real-time verification: would be useful for notifying operators of critical system fail-
ures in real-time.

• District 3 NTCIP sign testing: was performed but results were inclusive. District
3 has a small number of CMS that support the NTCIP communications standard
(or a variant). One of these signs was briefly tested with IRIS and results were
inconclusive: either the CMS in question does not support the NTCIP class A, B, or
C standards, or there was a serial server communication problem. Further testing is
required.

23

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Chapter 4

IRIS Portability

4.1 Relevance of Portability

Implementing an open ATMS in a transportation agency at low cost is a function of porta-
bility. A high degree of portability keeps implementation costs low. Software is portable
to a new agency to the extent that the effort to transport and adapt it is less than the cost
of redevelopment [19].

4.2 IRIS Modularity

Modularity is an important aspect of portability. Modular designs localize dependencies
and facilitate testing, defect repair, and portability. IRIS binary modules are shown in
Figure 4.1. Each binary module shown in the future is created from a set of source code
modules (name-spaces). For example, the binary IRIS client module consists of many
source code modules such as: camera, detector, dms, incidents, roads, security, widget,
etc.

4.3 IRIS Clients Written In Other Software Languages

The IRIS server uses the Simple Object Notification And Replication (SONAR) commu-
nication protocol to communicate with the client. IRIS clients using the SONAR proto-
col can be written in other programming languages. For example, for testing purposes
Mn/DOT developed a Python SONAR client. In the future, the development of IRIS
clients in other languages on other platforms may be useful.

SONAR is a communication protocol developed by Mn/DOT as a replacement for
Remote Method Invocation (RMI), the original communication protocol used in IRIS.

25

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

IRIS Client

Mapbean

Trafmap

Tdxml

Video

Log

Sonar

Shapes

Scheduler

IRIS Server

GeoKit

Common

Figure 4.1: IRIS Binary Modules

SONAR was developed to address reliability, configurability, security, and performance
issues with RMI. The Mn/DOT conversion of all IRIS RMI code to SONAR code was
complete in June of 2009 (version 9.0) and was an important milestone for IRIS. See also
Section 5.5.4 and the time-line in Section 1.4.5.

4.4 Configuring IRIS for an Agency

Configuring IRIS behavior and appearance for an agency is achieved with system at-
tributes, internationalization, properties files, user permissions, and device drivers. The
help system may also be customized per agency. Ideally, IRIS source code contains no
agency-specific code (or as little as possible), with customization and feature availability
controlled with settings and attributes.

4.4.1 System Attributes

System attributes are the primary means of tailoring IRIS. Attribute values are stored in
the database and editable at run-time using the editor shown in Figure 4.2. Attributes
are edited by administrators and have a specified name, type, value, and description. A
type may be an integer, floating point, boolean, string, or enumerated type. Examples

26

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

of attributes are communication time-out values, file locations, the HyperText Transfer
Protocol (HTTP) address of the AWS message file, etc. An overall design goal is that all
agency-specific behavior and configuration be specified with system attributes.

Figure 4.2: IRIS Attribute Editor Form (see Section 4.4.1)

4.4.2 Internationalization

Agency-specific nomenclature is defined in a single file that maps each standard term (e.g.
’DMS’) to the agency-specific term (e.g. ’CMS’). Figure 4.3 shows a menu that contains
the agency-specific term ’CMS’ in the Caltrans release of IRIS. In the Mn/DOT release, the
same menu shows the Mn/DOT term (’DMS’). Another example is ’alert’ versus ’AMBER
Alert’. The current message bundles define 50 agency-specific strings.

4.4.3 Properties Files

Properties files define agency specific run-time constants. These are specified by devel-
opers during the build process. They may also be modified at run-time by system admin-
istrators. For example, the Internet Protocol (IP) address of the LDAP server.

27

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 4.3: Internationalized IRIS Menu (see pg. 27)

4.4.4 User Permissions

User permissions control access to features. Access is controlled through read, write,
delete, and create privileges. The role configuration form is shown in Figure 4.4. Defined
roles are assigned to each user.

Figure 4.4: IRIS User Permissions Configuration Form (see pg. 28)

28

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

4.4.5 Interfacing IRIS with Devices and Software Systems

The driver interface connects IRIS with external hardware and software systems. The
user interface is shown in Figure 4.5. IRIS contains open-source drivers for some common
hardware devices, such as the Wavetronix SmartSensordriver [23], SmartSensor HD, and
NTCIP class A, B and C drivers. These were developed by Mn/DOT. For a discussion of
integrating IRIS with proprietary protocols, see Section 5.3.

Interfacing with external software systems is also possible through the driver inter-
face. For example, IRIS integration with the CAWS system and with the proprietary Cal-
trans CMS protocol were implemented as drivers. See Section 5.7 for effort estimates for
hardware drivers.

Figure 4.5: IRIS Device Driver Configuration Form (see pg. 29)

4.4.6 Help System

The help system loads a context-sensitive web page when the F1 key is pressed. Agen-
cies specify which Uniform Resource Locator (URL) is loaded for each client form. This
mechanism provides the ability for agencies to share generic help system pages with other
agencies or develop customized help pages, depending on context. For example, the help
page for the System Attribute form is likely to be agency specific, with instructions for
administrators.

29

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

4.5 IRIS Operating System Portability

The IRIS client is a Java application and executes on computers running the Microsoft
Windows and Linux operating systems. The Java Virtual Machine (JVM) must be in-
stalled. The IRIS client should run on Apple Mac machines without problems; however,
to date, this has not been tested.

The IRIS server is a Java application and executes on computers running the Linux op-
erating system. To date, Red Hat’s Fedora1, Red Hat Enterprise Linux (RHEL)2, and Cen-
tOS3 have been used. The Ubuntu4 server distribution was tested early in the project—
minor database incompatibilities were discovered. Using Ubuntu or other Linux distri-
butions would require testing and (likely) some development effort. The PostgreSQL
database, an integral component, runs on Windows and other platforms, and does not
inherently limit IRIS portability.

1For Fedora see http://fedoraproject.org
2For Red Hat Enterprise Linux (RHEL) see http://redhat.com
3For CentOS see http://centos.org
4For Ubuntu, see http://ubuntu.com

30

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Chapter 5

Results

The study implemented, extended, and enhanced the IRIS open-source ATMS within Cal-
trans D10. IRIS was developed and released as open-source by Mn/DOT in May of 2007.
The Caltrans implementation is the first outside of Minnesota. The D10 TMC used IRIS in
parallel with the existing CMS control applications (e.g. SOCCS) and supporting traffic
management software. Results are discussed below.

5.1 TMC Operational Safety Enhancements

Safety enhancements for TMC operations are substantial and are discussed below.

5.1.1 CMS Safety Enhancements

IRIS provides the following enhancements to TMC safety that the existing system (SOCCS)
did not.

• Periodic CMS polling: IRIS automatically polls CMS on a periodic basis. The polling
frequency is presently every 10 minutes and is specified with a system attribute.
This time is expected to be decreased as D10 optimizes their wireless communica-
tion budget. This feature enables operators to determine at a glance what messages
are presently on the signs. If a CMS power or communication failure occurred, op-
erators would know something was wrong (within the polling frequency time) by
glancing at the CMS status within IRIS. This increases TMC awareness and respon-
siveness to problems.

• CMS communication network health reports: three reports were developed to track
network health over time on the wireless and dial-up networks. D10 personnel
use these reports to monitor and diagnose network problems. The first report is a

31

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

CMS

Video
Cameras

Traffic
Detectors

CAWS
Messages

TMC Operators

CHP
Incident

Feed

RWIS

Field
Systems

Statewide
CMS Status

SOCCSIRIS

Google
Earth

Figure 5.1: Caltrans District 10 Simplified Data Flow Diagram

graphical report (SignScope) and is shown in Figures 5.2 and 5.3. The second re-
port (tabular) tracks communication operations in detail. The third report (tabular)
tracks cumulative network error statistics over time.

• Enhanced AMBER Alerts: IRIS provides the ability for operators to send AMBER
alert messages that optionally do not overwrite existing operator messages. This
feature is implemented using the IRIS message priority scheme, in which lower
priority messages do not overwrite higher priority messages. For example, operator
messages have a higher priority than travel time messages, but lower than CAWS
messages. CAWS and operator messages always overwrite alert messages. In the
existing SOCCS system, when an operator sends a single sign message to multiple
signs, it always overwrites existing sign messages.

32

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.2: A Portion of the CMS Communication Network Health Report (SignScope)

Figure 5.3: A Portion of the CMS Communication Network Health Report (SignScope)

5.1.2 Automated Warning System Safety Enhancements

IRIS integration with CAWS provides significant safety enhancements for D10 operations
via a message priority scheme, user interface enhancements, failure notification, and test-
ing.

IRIS Message Priority Safety Enhancements

The default IRIS behavior for overwriting deployed CAWS messages was changed com-
pared with the existing D10 CMS control application (SOCCS). SOCCS allows opera-
tors to overwrite deployed CAWS messages without a warning message or other safety
mechanism to alert the operator that they are replacing a CAWS message. For further
information on the designed behavior of the SOCCS system see [3].

33

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

IRIS handles CAWS and operator messages differently than the SOCCS system. IRIS
CAWS support was implemented using a message priority scheme that assigns a higher
priority to CAWS messages than operator messages. This insures that new CAWS mes-
sages will overwrite existing operator messages and operator messages do not overwrite
existing CAWS messages by default. An operator may only overwrite a deployed CAWS
message if the following actions are taken:

1. The CMS must be deactivated from CAWS control using a check-box,
2. The CMS must be blanked, and
3. The new operator message must be sent to the CMS.

CAWS User Interface Safety Enhancements

User interface enhancements were added to the IRIS client to provide visual safety infor-
mation for operators:

1. CAWS toolbar: displays a list of operator deactivated CMS which is visible to all
operators.

2. Current CAWS messages form: displays the current CAWS messages that should
be displayed on activated CMS (see Figure 5.4). This form enables administrators
and operators to verify that the correct CAWS messages have been successfully de-
ployed (or blanked). The form is accessible via a button on the CAWS toolbar.

Figure 5.4: List of Real-time Automated Warning System Generated Messages

3. CMS categorization: the user interface provides a list of CMS that are marked as
CAWS controlled and another list of all CMS that contain deployed CAWS mes-
sages. This enables the operator to rapidly determine the state of CAWS CMS, error
states, and message state.

34

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

4. CAWS CMS map integration with real-time traffic: CAWS-activated CMS are dis-
played on the map, along with real-time traffic conditions. This is important for
verifying traffic-related CAWS messages. Figure 5.5 shows a CAWS CMS activated
by traffic, with the congested traffic detectors visible beyond the CMS. Figure 5.6
shows a CAWS CMS activated by incident-related traffic. The incident is visible on
the map as the circle (near the CMS).

Figure 5.5: Verification of CAWS CMS Activated by Mapped Traffic Congestion

CAWS Failure Notification and Logging Safety Enhancements

If IRIS is unable to send a CAWS message to a CMS, an email is generated and sent to
a predefined list of recipients. TMC staff are therefore aware of transient failures due to
communication, configuration, or other problems. IRIS also logs failures, successes, and
expected CAWS messages. The SOCCS system does not perform these actions.

CAWS Testing Safety Enhancements

Significant testing-related enhancements were made to improve CAWS safety. See Sec-
tion 3.6.

35

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.6: Verification of CAWS CMS Activated by Mapped Incident

5.1.3 Functional Integration Safety Enhancements

The map-based integration of CMS, real-time traffic, incident locations, video cameras,
and RWIS stations (future), can provide operational benefits, enabling operators to see
functional relationships that would otherwise be difficult to realize using separate appli-
cations (see Figure 5.7).

5.2 Functional Enhancements to TMC Operations

The IRIS implementation in D10 provided the TMC with the following operational en-
hancements:

5.2.1 General Enhancements to TMC Operations

• User authentication using an LDAP authentication application server. The authenti-
cation server may be shared across all IRIS installations within Caltrans, or installed
per district. Alternatively, an existing LDAP server may be used.

• User permissions: IRIS supports read, write, view, and delete permissions that are
specified for each functional area (CMS, cameras, system attributes, etc.). See Fig-
ure 4.4. D10 uses permissions to enable operator administrator editing of message

36

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.7: IRIS integration of incidents, CMS, camera positions, and traffic (see pg. 36)

libraries, but enable read-only access for operators. Also, permissions are used to
assign read-only IRIS login accounts, which are used by non-operators to view the
status of district traffic operations.

5.2.2 Enhancements to TMC Traffic Monitoring

Prior to IRIS, D10 used Freeway Performance Measurement System (PeMS) to monitor
real-time traffic.

• Map integrated monitoring of real-time traffic speed, density, and flow. Other map
elements include CMS, incidents, cameras, and roads. This enables operator moni-
toring of relationships between traffic and CAWS messages and incidents.

5.2.3 Enhancements to TMC CMS Monitoring and Control

Prior to IRIS, D10 used SOCCS and the legacy SignView application to monitor and con-
trol CMS.

• Generation of travel time messages supporting multiple destinations and message
display formats.

• CMS integrated with mapping and other functional areas.

37

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

• Support for multiple editable fonts and characters.
• Ability to send a CMS message to predefined groups of CMS.
• Ability to save free-form CMS messages to a message library.
• A prioritized CMS message hierarchy, e.g., travel time messages do not supersede

operator messages.
• Ability to perform CMS operations (blank, send, query message) on predefined and

ad-hoc groups of signs.
• Identification of the CMS message author.

5.2.4 Enhancements to TMC Video Monitoring and Control

Prior to IRIS, D10 used Windows Media Player to monitor and control video cameras.

• Ability to view camera streams, integrated with mapping and other functional ar-
eas.

• PTZ control of cameras, including joystick control at each client.

5.2.5 Enhancements to TMC Reporting

Prior to IRIS, D10 used SOCCS for CMS reporting. However, D10 had no way of deter-
mining who made changes or when they were made. D10 also did not have the ability
to view log files using Graphical User Interface (GUI) tools—accessing and viewing the
log files was difficult, cumbersome, and unreliable. In addition, the message author was
logged simply as ’TMC,’ not the name of the operator who sent the message.

• CMS activity reports:

– Sorted by time period (last hour, last day, last week, last month, etc.),
– Sorted by message author (last hour, last day, last week, last month, etc.),
– Sorted by sign number (last hour, last day, last week, last month, etc.),
– Automatically generated report displaying calculated number of messages per

month. Previously, this was a manual counting process.

• CMS network communication health reports. See Figures 5.2 and 5.3. Previously,
D10 had no way to monitor communication network performance or outages.

• Ability to view IRIS application logs using a GUI tool. See Figure 5.8.
• Comprehensive logging: who activated and deactivated CMS from CAWS control,

operator log-in history, etc.

38

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.8: Screenshot of the Chainsaw Application Log Viewing Tool (see pg. 38)

5.3 IRIS Integration with Proprietary Protocols

The collaborative open-source approach requires integrated software code to be publicly
available [21]. This may be problematic for proprietary software that can not be publi-
cized for licensing, security, or competitive reasons. For example, the Caltrans San Diego
Ramp Metering System (SDRMS) and CMS protocols both have issues which preclude
releasing them as open-source.

A solution to this integration problem is the creation of a stand-alone server that inter-
faces with IRIS using an open-source protocol, and with field elements using the propri-
etary protocol. This architecture is shown in Figure 5.9. Integration with future propri-
etary protocols should use this same approach. The Sensor Server application is designed
to support multiple protocols, with each protocol localized in its own name-space. The
framework consists of 18 Java classes that would be reused by subsequent protocols. The
new open-sourced DMSLite protocol was added to IRIS for communication between IRIS
and the Sensor Server.

The effort to develop a stand-alone application and additional protocol is larger than
the effort to integrate a single existing protocol with IRIS. The availability of the Sensor
Server framework for integration of subsequent proprietary protocols is anticipated to
reduce the effort. See Section 5.6 for a discussion of associated costs.

39

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

SensorServerIRIS
Application

Server

170170

Terminal
Server

CAWS Messages

IRIS
Clients

Dial-up
Modem

Cell
Modem

Proprietary
CMS

Protocol

Dial-up
Modem

Open
DMSLite
Protocol

Field Hardware

Caltrans IRIS

Figure 5.9: Sensor Server Architecture and Relationship with IRIS (see pg. 39)

5.4 Project Contributions to IRIS

The software code developed during the study was contributed back to the open-source
IRIS project. These contributions benefit other agencies using IRIS, such as Mn/DOT,
Wisconsin Department of Transportation (WisDOT), and Montana Department of Transportation
(MDT). Typically, contributions are automatically merged into the existing IRIS code base
by the source control system, provided they are 1) of high code quality and 2) elegantly
extend the IRIS design (see Section 2.3.3). The value of study contributions to the IRIS
project is discussed below 1) quantitatively, 2) qualitatively, and 3) from Mn/DOT’s per-
spective.

5.4.1 Quantitative Contributions to IRIS

Table 5.1 shows development hours, Source Lines of Code (SLOC), and cumulative SLOC1

for each developed application and a calculated SLOC estimate for AHMCT IRIS contri-
butions, based on cumulative SLOC extracted from AHMCT source code repositories.

1Cumulative SLOC is the total number of lines of code including all prior modifications.

40

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.10 illustrates cumulative SLOC history for all of the IRIS repositories. SLOC
was calculated as the number of new lines of code in each repository change set.

Figure 5.11 shows the cumulative repository contributions by Mn/DOT and AHMCT
to the IRIS repositories.2 This figure shows the increased contribution rate (line slope) to
IRIS, as a result of collaboration. Additional agencies are anticipated to provide a higher
rate of improvement.

Figure 5.12 shows cumulative SLOC for the applications developed by AHMCT. The
large increase in cumulative SLOC for Sensor Server near the end of the project is largely
due to code reorganization to increase modularity.

The authors hope that the values shown here for hours, SLOC, and cumulative SLOC
can serve as a guide for agencies in the future that are estimating schedules and resources.
For reference, AHMCT development staff had no experience with IRIS at the onset of the
project.

Table 5.1: Quantified Project Results by Component (see Section 5.4.1)
Development Cumulative

Component Component Function Hours SLOC SLOC
casper Controller simulator 40 2,000 5,333

sensorserver Sensor Server 2,200 10,300 50,815
common Common library 190 5,600 13,423
trafserver Traffic server 160 1,500 23,600
watchdog AWS validation 40 318 486

iris AHMCT IRIS contributions 2200 14,000 (est.) 54,200
Total AHMCT 4830 33,718 147,857

5.4.2 Qualitative Contributions to IRIS

Project contributions to IRIS fall into three categories: 1) stand-alone applications devel-
oped specifically for D10, 2) IRIS enhancements, and 3) new IRIS features.

• Stand-alone Applications Developed by AHMCT:

– CASPER: an application that simulates multiple field controllers. This was
used for testing and verification. See Section 5.5.1.

– Sensor Server: an application that communicates with CMS field elements us-
ing a proprietary protocol. See Section 5.5.3.

– Traffic Server: an application that interfaces with existing D10 systems and
provides real-time traffic data to IRIS. See Section 5.5.5.

– Watchdog: an application that performs AWS verification. See Section 5.5.6.

2These statistics were generated from the D10 8.9 release.

41

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.10: Cumulative SLOC for all IRIS Modules
(see pg. 40)

• IRIS Enhancements Contributed by AHMCT:

– Build process: the IRIS build process was enhanced with build-all and clean-all
functionality and module version verification.

– RPM Package Manager (RPM) functionality: the build process optionally cre-
ates RPM files which greatly simplify installation of IRIS and all stand-alone
applications. IRIS applications can be installed or uninstalled with a single
operating system command.

– Free-form CMS message entry: this feature was requested by D10, and the
initial implementation was performed by Mn/DOT. There were subsequent
enhancements by AHMCT and Mn/DOT. This feature is used in both TMCs.

– Incident generalization: incident functionality was generalized, making it eas-
ier for other agencies to extend incident functionality.

– Video interface enhancements: PTZ controls and preset buttons were added to
the video interface.

– Defect discovery and repair: AHMCT detected and repaired a number of de-
fects, which resulted in increased reliability. See Section 5.5.4.

• New IRIS Features Contributed by AHMCT:

– Internationalization: provides the ability for agencies to override default nam-
ing for on-screen menu items, button text, and labels. This is a significant con-
tribution, as it allows agencies to configure and customize aspects of IRIS with-
out modifying the code-base. See Section 4.4.2 and Figure 4.3.

42

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.11: Collaborative Development: Cumulative IRIS Contributions by Agency

– System Attributes: system-wide setting are stored in a database and editable
by administrators. See Section 4.4.1 and Figure 4.2.

– Quick Message Library: the ability to specify a predefined CMS message by
ID was added. This capability allows operators to quickly specify complete
predefined messages with associated fonts, and send the message.

– AWS support: AWS functionality was added to IRIS to provide D10 with inte-
grated support of their existing CAWS system. This functionality was subse-
quently enhanced by Mn/DOT. Presently only D10 is using this functionality.
With additional development (e.g. integration with RWIS), other agencies may
find it valuable.

– Automated unit tests: were added to the build process. This enables software
engineers to easily execute numerous unit tests during development. See Sec-
tion 3.2.

– Google Earth support: the IRIS server periodically writes a static KML file for
use by Google Earth clients. This enables the display of real-time messages on
CMS embedded in the Google Earth map. KML output for additional func-
tional areas is possible.

– Help System: context-sensitive help system functionality was added to IRIS.
When the user presses the F1 key, a web browser is launched that displays a
web page specific to the user’s current form. The help system uses Hyper-
Text Markup Language (HTML) URLs that are specified in the agency-specific
Internationalization (I18N) message files. This enables agencies to develop
their own help pages or leverage existing pages from other agencies.

– Up-time Logging: the IRIS server logs critical system information every 60 sec-

43

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Figure 5.12: Cumulative SLOC for AHMCT-Developed Open ATMS Applications
(see pg. 40)

onds. This log is used to monitor processor usage, memory usage, the number
of users, etc. It is also used to evaluate the effects of system changes across new
versions of IRIS, the database, JVM, etc.

5.4.3 Mn/DOT’s Perspective on Study Contributions

From Mn/DOT’s perspective, what were the advantages and disadvantages of the study?
Mn/DOT reported that...

This collaboration was the first effort to deploy IRIS in a non-Mn/DOT set-
ting, following the decision to make IRIS available on an open-source General
Public License (GPL) basis. Mn/DOT needed to make significant modifica-
tions to the IRIS code, in close cooperation with the AHMCT staff, to make
IRIS more suited to adaptation to different traffic management systems, field
devices and geographic locations.

The IRIS code modification effort required a fairly significant amount of
Mn/DOT staff time where these resources are very much in demand for ongo-
ing development and support of our Freeway Management Operations. The
result was a temporary disadvantage of having to postpone desired enhance-
ments of IRIS. However, once completed, the effort directly resulted in im-
mediate benefits to the IRIS code by making it easier to maintain, easier to
develop enhancements, easier to install in new locations, and generally more

44

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

powerful and stable.
Therefore, rather than being a disadvantage, the IRIS modification efforts

were essentially an investment in IRIS that will reap future benefits from the
collaboration of multiple entities in further development of the IRIS software.
It is now easier to add features and fix problems. Also, having other people
and agencies familiar with the code base gives us additional confidence that
IRIS can be maintained and continually improved into the future. This is es-
sentially the goal of all open-source software efforts.3

5.5 Other Study Products

Study products not covered elsewhere are discussed here. This includes software appli-
cations that are not a part of the Mn/DOT IRIS distribution but are a part of the Caltrans
IRIS distribution, a ticket system shared by developers, and others.

5.5.1 CASPER Field Controller Simulator

The Controller Array Simulator for Performance and Enhanced Reliability (CASPER)
field controller simulator was developed for simulating multiple field controllers using
multiple protocols. This enabled end-to-end system testing of IRIS CAWS functionality.
It also enabled testing of CMS functionality that otherwise would be untestable, such as
AMBER alerts.

CASPER is used for simulating CMS on both dial-up modems and cell modems. It
is also used to simulate various error conditions (e.g. returning incorrect messages, not
responding, etc.). The ability to reliably and repeatedly test using these conditions is
invaluable for improving the reliability of developed code.

CASPER supports multiple protocols. Code for each protocol is placed in a dedi-
cated name-space. Each simulated field controller is associated with a single Transmis-
sion Control Protocol / Internet Protocol (TCP/IP) port. CASPER supports any number
of simultaneous field controllers, each on a different port. The architecture supports the
development of different types of field controllers (not just 170s).

5.5.2 IRIS Developer Ticket System

The researchers installed and currently maintain a ticket tracking system for use by IRIS
developers across all agencies.4 The goals of this system are to facilitate information flow
among IRIS developers and provide:

3Reported by Mn/DOT in January of 2010.
4For the IRIS developer ticket system see http://iris.ahmct.ucdavis.edu

45

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

• Defect tracking and history.
• Enhance request tracking, history, discussion, plans.
• Link repository change sets with detailed ticket histories.
• Provide a resource for others to evaluate IRIS reliability, progress, development

pace, etc.

The contents of the IRIS software engineer ticket tracking system are covered by the GNU
Free Documentation License (GFDL), and the system is presently hosted by AHMCT. It
is anticipated that the ticket system will move to Mn/DOT’s IRIS server.

The Trac ticket system is being used. There is the possibility of future interoperabil-
ity with the Caltrans Trac system and other agencies that have their own ticket tracking
system. During the course of the project, the Caltrans IRIS Trac system was used to track
hours, requirements, tasks, and defect repairs that were specific to the Caltrans implemen-
tation of IRIS. Caltrans’ pioneering use of a ticketing system was extremely beneficial to
the project and served as an example of effectiveness for the IRIS developer ticket sys-
tem. Agencies adopting and contributing to IRIS should adopt an internal ticket tracking
system for agency-specific development and issues.

5.5.3 Sensor Server

The Sensor Server is a stand-alone application developed to interface IRIS with CMS field
controllers. It uses a generalized architecture with the goal of supporting additional pro-
prietary protocols. Sensor Server was developed as a stand-alone application for licensing
reasons (see Section 5.3). The open-source DMSLite protocol is used between IRIS and the
Sensor Server, and a proprietary CMS protocol is used to directly communicate with field
controllers. See Section 5.3 for a discussion of proprietary protocols. See Figure 5.9 for the
CMS architecture.

Sensor Server Reusability

How reusable is Sensor Server code for another proprietary protocol, such as ramp me-
tering? Approximately 50% of Sensor Server code is protocol-specific, and 50% is general
framework code. A rough estimate for developing a new protocol using the Sensor Server
framework would then be about 50% of the development effort of the original code. In
terms of additional effort, some retrofitting of the original framework code would in-
evitably be necessary.

5.5.4 Defect Discovery and Repair

The collaborative approach had a positive effect on defect discovery and repair. In gen-
eral, it was found that developing and executing IRIS in multiple environments by multi-

46

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

ple developers enhanced reliability by exposing defects and nuisance problems that oth-
erwise would have been difficult to detect. Reliability was also enhanced by multiple de-
velopers viewing and discussing the same code. Examples of types of defects that were
encountered are discussed below. The intent is to document different classes of typical
problems.

• Database compatibility issues: initially, AHMCT was using two Linux distributions5

for development (Ubuntu and Fedora). Minor database compatibility problems in
Structured Query Language (SQL) statements were uncovered when running IRIS
on Ubuntu. Generalized SQL statements were created that worked with IRIS run-
ning on both platforms, which enhanced reliability.

• External file dependency: the IRIS client required the existence of an optional file to
successfully start. This problem can be classified as a configuration nuisance prob-
lem. AHMCT produced a patch that enabled the client to start without availability
of the external file. This is also an example of failing badly6.

• Missing property file values: this nuisance problem can also be classified as failing-
badly. Optional values within property files were incorrectly required to have val-
ues, or the server would not start.

• Null Pointer Exceptions (NPEs): a number of NPE errors were fixed. These were
due to differences in configuration files and maps and were therefore not visible to
Mn/DOT. The repaired defects increased reliability.

• RMI-related problems: these nuisance problems were visible to both Mn/DOT and
AHMCT. Mn/DOT’s long-term development schedule included elimination of these
defects by replacing all client-side RMI code with SONAR code. This was completed
in June of 2009 with release 9.0. Due to the nature of the repair (the SONAR con-
version), AHMCT was dependent on Mn/DOT to resolve the problem. This is an
example of a dependency that complicates collaborative development.

• Video reliability problems: the reliability of video streams on slower networks was
impacted due to assumptions in the video code about network delays. Resolution
involved adjusting a timeout value and verifying performance with lab testing of
various simulated network delays.

5.5.5 Traffic Server

The traffic server is a stand-alone application that receives real-time traffic data from the
existing D10 infrastructure (see Figure 5.13). The data is re-formatted, queued, and sent
to the connected IRIS server using the Wavetronix SmartSensor protocol. The IRIS server
reads the traffic data using its open-source Wavetronix driver. IRIS then displays the real-
time traffic data on a map. The Traffic Server can also be used to feed simulated traffic to
IRIS.

5For Linux distribution see http://en.wikipedia.org/wiki/Linux_distribution
6For failing badly and failing well see http://en.wikipedia.org/wiki/Failing_well

47

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

5.5.6 Watchdog

Watchdog is a stand-alone application that was developed to perform CAWS testing and
verification. It compares new messages generated by the CAWS system with CAWS mes-
sages actually sent to the CMS. Discrepancies are flagged as potential defects. Several
subtle and difficult defects were detected using this application that otherwise would
have been extremely difficult to detect.

Traffic Server

UDP

Loop Hardware

Data Collector

IRIS Clients

Cell Modem

Caltrans IRIS

Field Hardware

Cell Modem

Microwave
Detector

IRIS
Application

Server
Daily

Traffic
Archive

UDPUDP

TRAFDAT

Wavetronix
SmartSensor

Protocol

Figure 5.13: Traffic Server Relationship with IRIS (see pg. 47)

5.6 Costs

This section covers effort and cost issues from different perspectives. The total dollar
value of IRIS and developed project components are estimated based on the number of
lines of software code. A component cost breakdown is provided to facilitate estimates for
future projects of similar magnitude. IRIS maintenance costs are estimated, and finally,
a high-level cost comparison between the open collaborative approach and proprietary

48

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

approach is made.

5.6.1 Estimating the Free Economic Value of IRIS

IRIS can be downloaded for free by anyone. What is the economic value in dollars of a free
download? In other words, if IRIS was developed from scratch, what would be the total
incurred development cost? This question can be answered using the COnstructive COst
MOdel (COCOMO) model on existing software projects. The SLOCCount tool7 uses the
COCOMO model to estimate hours and development costs for existing software, using
developed Source Lines of Code (SLOC) as an input. The calculated estimates for casper,
sensorserver, common, trafserver, and IRIS are shown in Table 5.2. The dollar values are
based on a U.S. Bureau of Labor Statistics average salary of $75,662 for a U.S. software
developer in July 2008, with an assumed overhead rate of 2.4. The values in Table 5.2
represent estimates of the effort and cost required to develop these applications, using
industry averages. The values in Table 5.2 do not represent actual hours or costs to Mn/DOT or
Caltrans.

A key conclusion from the results in Table 5.2 is that the collaborative open-source
model of ITS software development can result in agencies receiving much more software
economic value than they spend. Caltrans gained a total of $4,239,300 in software from
the Open ATMS project and spent approximately $400,000 to get it. In other words, Cal-
trans gained approximately ten times what they spent in terms of software dollars. Using the
traditional proprietary model, agencies must spend $1 to gain $1 of software.

Table 5.2: Estimating the Free Economic Value of IRIS
SLOCCount SLOCCount

Application Application Function SLOCCount Estimated Estimated
SLOC Hours Cost

(not actual hours) (not $ spent)
casper Controller simulator 1,296 539 $47,682

sensorserver Sensor server 5,801 2,651 $230,037
common Common library 3,377 1,486 $130,340
trafserver Traffic server 936 384 $33,881

iris IRIS client and server 83,792 43,493 $3,797,360
Total 95,202 48,553 $4,239,300

5.6.2 Component and Functional Area Effort Breakdown

Table 5.3 shows the effort breakdown by functional area and application.

7For SLOCCount information and assumptions see http://www.dwheeler.com/sloccount

49

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

5.6.3 Estimated IRIS Maintenance Costs

At a minimum, maintenance for transportation districts or agencies should include the
items below:

1. Support:

(a) Problem resolution,
(b) Answering questions from district administrators and maintenance personnel,
(c) Updating the IRIS Maintenance Manual in subsequent releases,
(d) Updating the ticket tracking system and preparing any reports,
(e) Training for new features in subsequent releases.

2. Development:

(a) Synchronization with new Mn/DOT IRIS releases,
(b) Defect diagnosis and repair,
(c) Consultation with Mn/DOT and other developers as needed,
(d) Development of minor enhancements,
(e) Updating the ticket tracking system and new feature documentation,
(f) Collaboration with Mn/DOT, forwarding code changes.
(g) Building, testing, installing new releases.

The support effort described here is expected to scale to some degree—that is, the
required effort (per district) to support multiple districts would be less than the required
effort to support one.

Table 5.3: Component and Functional Area Effort Breakdown (see pg. 49)
Component Description Hours Percent
casper Field controller simulator 64 1
common Common module 300 4
sensorserver Sensor Server application (proprietary protocols only) 1,107 16
trafserver Traffic server application 160 2
watchdog Verification application 40 1
IRIS Traffic extensions 80 1
IRIS CMS extensions 1,369 20
IRIS CAWS extensions 673 10
IRIS Video extensions 225 3
IRIS Incident extensions 160 2
IRIS Logging 80 1
IRIS Mapping 440 6
IRIS General 382 6
Development Total 5,080 73
Everything else Reports, user manuals, presentations, training, support 1,838 27
Total hours 6,918 100

50

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Item 2d, ”Development of minor enhancements” is important to elaborate. Because
IRIS is an open-source project, contributing some amount of features and defect repairs
back into the IRIS source code is important. An open-source product like IRIS does not
remain static. The rate of improvement is high (see Figure 5.10). Ongoing maintenance
would require some level of consultation with Mn/DOT for problem resolution and dis-
cussion of issues with new releases. Professional etiquette requires that if any agency
is using Mn/DOT’s scarce developer time, something should be contributed back to the
IRIS code-base. This is particularly important considering that any transportation agency
receives updates and enhancements from Mn/DOT for free. Contributing back to the IRIS
code base will help assure Mn/DOT’s continued active and valuable development of
IRIS.

The estimated effort to provide maintenance to a Caltrans district the size of D10 is
expected to range from one-half to one Full Time Equivalent (FTE), depending on the
desired level of contributions back to the IRIS project.

5.6.4 High-level Cost Comparison of Open and Proprietary ATMS

This section provides a cost comparison between two ATMS development approaches,
based on actual costs incurred by Caltrans for the IRIS system and the existing propri-
etary ATMS used in 7 of 12 districts. Each of the following life-cycle cost components is
discussed below:

• Acquisition costs (Table 5.4),
• Installation, configuration, and customization costs (Tables 5.5 and 5.6),
• Annual maintenance costs (Table 5.7), and
• Total five-year cost estimate which incorporates the above three costs (Table 5.8).

The goal of this cost comparison is to outline differences between the open-source col-
laborative approach and the proprietary approach presently used by Caltrans and other
DOTs. No attempt is made to compare the feature sets of these systems, which are some-
what different and complimentary. For example, the existing Caltrans ATMS system
supports adaptive ramp metering, incident detection, and incident response, while IRIS
supports travel time generation, Variable Speed Limits (VSLs), lane control signs, and
visualization of historic traffic data (TRAFDAT).

Acquisition Costs

Acquisition costs show a 98% cost reduction for the open ATMS approach. Acquisition
costs are shown in Table 5.4. Table notes are listed below.

1. Server hardware acquisition cost: for IRIS, a single commodity x86 server with a
redundant drive array. The 2007 cost was $4,500 for an 8-core Hewlett-Packard (HP)

51

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

system with 4 GBytes of memory and a 1 TB drive array. This included 5 years of
24x7 on-site hardware support. Note that in terms of hardware, this system is over-
specified. IRIS will run very well on a low-priced desktop commodity x86 machine
(see Section 3.7). For the ATMS system, the numbers for acquisition costs in Table 5.4
are based on actual Caltrans costs [2].

2. Backup server hardware acquisition cost: same as above.

3. Client acquisition costs are for 5 workstations. The use of existing commodity x86
workstations, quite feasible at least for IRIS, would eliminate this cost item.

4. Server software license cost: this represents the cost for all the software licenses
required for the application and database server. With their existing proprietary
ATMS system, Caltrans typically prefers to use separate machines for the applica-
tion and database server, which may increase hardware and software costs further.

5. Software system support: this is an optional cost item and was not purchased for
D10. It represents the cost for 24x7 operating system support provided by either a
consultant or vendor.

6. Backup server software license cost: this represents the cost for all the software
licenses required for a backup application and database server.

7. Single software development license cost: this is the cost of software licenses to
support a single development environment. For multiple districts, this cost item
may be shared. For example, Caltrans shares 3 development environments across 7
districts. For the Open ATMS, the acquisition costs for development and run-time
software for IRIS are $0. This includes the database (PostgreSQL), server operat-
ing system (Linux), run-time environment (Java, Apache), and development tools
(OpenJDK, Ant, Mercurial). For the proprietary ATMS system, these costs were es-
timated based on discussions with vendors and Caltrans estimates [2].

Table 5.4: Open and Proprietary ATMS Acquisition Costs For One Agency
Note Acquisition Cost Components Open ATMS Proprietary ATMS

1 Server hardware acquisition $4,500 $150,000
2 Backup server hardware acquisition $4,500 $150,000
3 Client workstations (5) acquisition 5x $1,500 5x $1,500
4 Server software license cost $0 $239,000
5 Software system support, unlimited, 24x7 $1300 included
6 Backup server software license cost $0 $239,000
7 Single software development license cost $0 $269,000

Total Acquisition Cost $17,800 $1,054,500
Cost Reduction (%) 98%

52

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Installation, Configuration, and Customization Costs

Estimated installation, configuration, and customization costs for two Caltrans districts
are shown in Table 5.5. This table is not meant to provide a comparison of these costs
between the open and proprietary approach. This cost category is not expected to differ
substantially between the two approaches. The researchers stipulate that approximately
the same effort would be required to add a new feature to both systems. There may be
a slight cost advantage for the open-source approach due to 1) the high code quality and
design encouraged by the open-source approach, and 2) low barriers to entry, encourag-
ing competitive bidding from many firms and the elimination of sole-source contracts.
Table notes are listed below.

Table 5.5: Installation, Configuration, and Customization Costs for Open and Proprietary
ATMS (see pg. 53)

Installation, Configuration, Customization Open ATMS Proprietary ATMS
1 D4 installation, configuration, customization Not applicable $750,000
2 D10 installation, configuration, customization $350,000 Not applicable

1. District 4 (D4) proprietary ATMS installation, configuration, and customization: for
installation of the existing Caltrans ATMS system within District 4, which is a large
urban district. The cost represents significant enhancements made to the ATMS
system. The existing ATMS system contains functionality not available in IRIS, such
as adaptive ramp metering, incident detection, and incident response.

2. D10 IRIS installation, configuration, and customization: cost is the effort required
to install and configure the existing IRIS applications in Caltrans District 10. The
numerous enhancements completed are the subject of this report.

Costs for Installation and Configuration Only

Table 5.6: Costs: Installation and Configuration Only, i.e. When No Customization
Needed for Open ATMS (see pg. 53)

Installation, Configuration Open ATMS
1 D1 installation and configuration $6,000
2 D5 installation and configuration $6,000

For future planning purposes, Table 5.6 provides the approximate cost for installation
and configuration of IRIS in two Caltrans districts. These rural districts were configured
for the CMS portion of IRIS; they were not configured for and did not use the other com-
ponents of IRIS. Table 5.6 serves as a cost guide for entities that can use existing drivers
in IRIS, i.e. districts or agencies that would need no customization. Of course, configu-
ration costs will vary based on a number of factors, including: urban vs. rural, number

53

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

and diversity of field elements, and existing state of configuration information. However,
the experience in the current research project for configuring the two Caltrans districts
provides a solid basis to assume that the general configuration costs can be expected in
the same order of magnitude as those indicated in Table 5.6. Table notes are listed below.

1. D1 IRIS installation and configuration: cost is the effort required to install and con-
figure the existing IRIS applications for CMS use in Caltrans District 1, a small rural
district. The ongoing IRIS installation in D1 is a trial and for evaluation purposes.
Activated functionality included CMS (approximately 20), mapping, and defined
roads. This was a configuration effort and required no modification or customiza-
tion to IRIS, other than the repair of defects discovered related to dial-up modem
use.

2. D5 IRIS installation and configuration: cost is the effort required to install and con-
figure the existing IRIS applications for CMS use in Caltrans District 5, a small rural
district. The ongoing IRIS installation in D5 is a trial and for evaluation purposes.
Activated functionality included CMS, mapping, and defined roads. This was a
configuration effort and required no modification or customization to IRIS.

Annual Maintenance Costs

Annual maintenance costs are shown in Table 5.7. Annual costs are projected to be re-
duced 68% - 86%. Table notes are listed below.

Table 5.7: Annual Maintenance Costs For One Agency for Open and Proprietary ATMS
(see pg. 54)

Annual Maintenance Cost Components Open ATMS Proprietary ATMS
1 Server hardware maintenance $200 $30,000
2 Software license cost $0 $60,000
3 Maintenance cost, personnel .5 - 1 FTE 2.5 - 3 FTE

Total Annual Maintenance Cost $75,200 - $150,200 $465,000 - $540,000
Cost Reduction (%) 68% - 86%

1. Server hardware maintenance: for the commodity x86 8 core HP system running
IRIS was $500 for 5 years, and was included with the initial system purchase. This
included 24x7 support and hardware replacement. For the proprietary ATMS, these
costs were estimated based on Caltrans estimates [2].

2. Annual software license costs: for the IRIS system is $0. This includes the database
(PostgreSQL), server operating system (Linux), run-time environment (Java, Apache,
LDAP server), and development tools (OpenJDK, Ant, Mercurial). For the propri-
etary ATMS, this includes the Oracle database server, Tibco SmartSockets, Sun’s
Java, GenSym G2, and R/T.

54

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

3. Maintenance cost for personnel: for purposes here, one FTE is assumed to be $150k
per year, which includes overhead. 8 The annual personnel maintenance costs are
the most difficult to estimate, particularly because IRIS and the proprietary ATMS
system have different feature sets. The intent here is to give an order-of-magnitude
estimate for maintenance costs, and discuss comparison points. A key considera-
tion is that IRIS software maintenance costs are shared with Mn/DOT and other
agencies. Maintenance costs include the repair and detection of defects, which are
shared by multiple contributing agencies. This network effect is anticipated to re-
duce maintenance costs, particularly as more agencies actively contribute to IRIS.
For comparison, Mn/DOT has 2 FTE maintaining 1 production IRIS server, which is
terms of size, is equivalent to the largest Caltrans district. Very little time is spent by
these engineers performing system administration. The bulk of their time is spent
1) adding new features, and 2) fixing defects. The free availability of the source code
eliminates vendor lock-in 9 and is anticipated to keep maintenance costs competitive.
See Section 5.6.3 for more information.

Five Year Costs

A 5-year cost comparison is shown in Table 5.8, with a 72% cost reduction for the open-
source approach. This conservative comparison assumes the same customization costs
for both approaches, and a high estimate for the annual personnel cost.

Table 5.8: Five-Year Acquisition, Configuration, & Maintenance Costs of Open and Pro-
prietary ATMS For One Agency (see pg. 55)

Cost Open ATMS Proprietary ATMS
Acquisition $17,800 $1,054,500
Configuration and customization $350,000 $350,000
Year 1 maintenance $150,200 $540,000
Year 2 maintenance $150,200 $540,000
Year 3 maintenance $150,200 $540,000
Year 4 maintenance $150,200 $540,000
Year 5 maintenance $150,200 $540,000
Total 5 Year Cost $1,118,800 $4,104,500
Cost Reduction (%) 72%

Effort For Additional Caltrans IRIS Deployments

Late in the project, Caltrans requested that IRIS be deployed for testing in additional
districts. IRIS was activated in D5 on August 12th, 2009 and in D1 on August 26th, 2009.

8The U.S. Bureau of Labor Statistics average salary for a U.S. software developer in July of 2008 was
$75,662. An overhead rate of 100%, would result in approximately $150k.

9Lock-in can subsequently require non-competitive fees for continued use of the system.

55

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

The same IRIS code-base is used for all Caltrans districts (and Mn/DOT). No cus-
tomized code was developed for these two additional IRIS deployments. Installation,
configuration, and training time was less than two weeks per district. These deployments
presently use CMS functionality, with no video or traffic monitoring capabilities. Illus-
trating the flexibility of IRIS, the D5 IRIS server is remotely located in the District 3 (D3)
Rancho Cordova TMC. Deployments in additional districts, using similar capabilities are
expected to require less than two weeks of effort per installation.

5.7 Effort Estimates for New IRIS Implementations

For new IRIS implementations, the following rough effort estimates may be useful. The
effort estimate assumes engineer familiarity with the code-base, database, development
tools, and operating system:

• Effort for a new IRIS installation: 1 to 3 weeks of configuration time. This includes
server installation, configuration, map building, field element configuration, setting
up user permissions, etc. This does not include any development effort. The instal-
lation and configuration of IRIS within Caltrans D1 and D5 required approximately
2 weeks per district.

• Effort for developing new hardware device drivers: 1 to 3 weeks of development
and testing time per protocol. This assumes that the new protocol is well-defined
and no UI enhancements are required.

Crucial questions for new implementations:

• How many new hardware devices need to be integrated with IRIS?
• How many existing software systems need to be integrated with IRIS?
• How many user interface enhancements need to be made? Are they extensive?

Integrating with hardware or software systems that use a proprietary protocol needs
special consideration. Approximately 50% of the code in the developed Sensor Server
application is reusable for the implementation of other proprietary protocols, e.g. propri-
etary ramp metering such as SDRMS. See Section 5.3 for more information.

5.8 Future Enhancements

Through the course of the study, desirable requirements were identified. Of 216 total
requirements, 43 were identified as future requirements to be completed in a subsequent
phase. See Appendix A for a complete list of requirements. A few of these are discussed
below:

56

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

• Highway Advisory Radio (HAR): integration of HAR functionality with IRIS is a high
priority. Requirements 160 and 96-105 are specific to HAR. HAR integration is
anticipated to provide a dedicated tab, showing the locations of stations on the map.
The IRIS UI would provide the ability to activate stations and view their status. The
hours estimate is presently 2-6 weeks of effort.

• Remote Weather Information System / Roadway Weather Information System (RWIS): in-
tegration of RWIS functionality with IRIS is anticipated to provide a dedicated RWIS
tab, with stations located on the map. Real-time station data would be provided by
the UI. This data would be used by operators to confirm the accuracy of CAWS mes-
sages. For example, when a ”high wind advisory” message is displayed, operators
could view real-time RWIS wind speeds. See requirements 75-82 and 147.

• AWS message generation: both Caltrans and Mn/DOT anticipate the need to generate
AWS messages within IRIS as a function of RWIS inputs (precipitation, wind speed,
visibility, etc.), traffic (speed), time of day, etc.

• Reading traffic data directly from field elements: D1, D5, and D10 have expressed in-
terest in reading traffic data directly from field elements. This data would then
potentially be forwarded to other systems that need the data, such as PeMS.

• Real-time verification: requirement 217 discusses ongoing verification of correct sys-
tem behavior, especially as related to CAWS functionality. A real-time application
would alert operators if critical failures occurred (in real-time), such as a failure to
read from the CAWS, or network failures.

• Improved mapping: has been discussed by Caltrans and Mn/DOT. Additional layers,
the ability to label layers, display raster images, improved scalability, etc. would all
be beneficial.

• Improved cut-over to backup machine: the ability of administrators to switch operations
to the IRIS backup machine in less than 30 seconds. Presently, this is a 10 minute
effort.

• Automated end-to-end test cases: would augment testing and be particularly useful
during development to detect regression problems.

• TMCAL: requirement 195 discusses integration with the TMCAL system.
• Traffic Signals: requirement 97 discusses IRIS integration with traffic signals using a

Caltrans protocol.
• Ramp Metering: requirements 64-74 discuss IRIS integration with the Caltrans SDRMS

ramp metering protocol. IRIS uses Mn/DOT’s ramp metering protocol.
• Moving Picture Experts Group 4 (MPEG-4): requirement 57 discusses adding MPEG-4

support to IRIS video functionality.
• Monitoring and Control of Portable CMS: requirement 274 would add IRIS support for

monitoring and control of portable CMS.
• Center-to-Center Functionality: requirement 278 targets adding center-to-center func-

tionality to IRIS. This would provide the ability for IRIS servers to communicate
between each other, exchanging information that users in other (adjacent) districts
would find useful. For example, field element status (e.g. CMS, traffic, RWIS, in-
cidents, etc.), CMS message scheduling, travel times, map updates, etc. Remote

57

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

control of field elements such as CMS would also provide a certain amount of re-
dundancy. Ideally, if IRIS servers were deployed across Caltrans districts, an oper-
ator located in any district could view and possibly control field elements in other
districts if necessary.

• IRIS integration with existing ATMS reporting functionality was explored and initial
work was performed. This is anticipated to commence in the future.

58

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Chapter 6

Conclusions and Recommendations

6.1 Strengths of the Collaborative Approach

Over the course of the study, benefits and strengths of the open-source collaborative ap-
proach were observed. Many of these benefits are well known in the open-source com-
munity and not specific to the IRIS project. Some strengths include:

• Enhanced defect discovery: a key benefit of the collaborative approach. Numerous de-
fects were discovered and repaired by both Mn/DOT and AHMCT over 18 months.
Defect detection and repair was roughly doubled. The use of two ticketing systems
was crucial for tracking problems across time and between agencies. This increases
reliability (see Section 5.5.4).

• Lower Legal Friction: the freely-available source code nearly eliminated legal friction.
Future IRIS developers are not required to sign NDA agreements or submit to other
forms of legal entanglement. This lowers costs and barriers to entry. This was expe-
rienced first-hand by the research team—in the first project scope, lawyers from the
University and Caltrans failed to reach an agreement over the proprietary ATMS
NDA terms after 18 months of discussion, approximately the amount of time spent on
AHMCT IRIS development. See Section 1.4.5.

• Low barriers to entry: the freely-available source code lowers barriers to entry. Any
engineer in any organization can contribute enhancements and repairs. The re-
search team used a total of five individuals to contribute enhancements to the project.
It is extremely unlikely this would have been possible if a restrictive NDA would
have been required. If Caltrans staff from any division or consultants want to con-
tribute to the code-base, there is nothing standing in their way. This lowers costs,
increases innovation, and contributes to the rate of improvement. Moreover, the
nature of the GPL license assures contributors that their enhancements will remain
freely-available to others and reduces (or eliminates) information hiding [14].

• Ease of integrating research findings: the combination of freely-available source code
and zero initial software costs lowers entry barriers for transportation researchers.

59

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Moreover, the ease with which enhancements can be merged into the open-source
project and subsequently deployed in production encourages researchers to develop
production-quality deployable research. For university research, this increases trans-
portation student interest and involvement with real-world projects, and may in-
crease innovation across the transportation field as a whole.

• Development process transparency: the availability of the source code increases the
transparency of the development process. This can have a positive impact on budget
projections and cost estimates.

• Increased ability to customize: the availability of the source code enables customiza-
tion to meet specific needs. The desire to have source code enhancements merged
into the IRIS source tree encourages software engineers to create generalized fea-
tures. These tendencies—specialization and generalization—are both encouraged
by the open-source development process. Over time, this process tends to encour-
age user-driven enhancements that fit within a generalized design. This can benefit
portability and reliability.

• Zero licensing costs: enables an organization to reallocate resources for adding new
features or integrating other systems. This increases agency responsiveness to pub-
lic transportation needs.

• Multiple collaborative scenarios: are possible. The current Open ATMS study used
the development expertise of a third party (AHMCT) to provide integration and
enhancement work that was guided both by the customer (D10) and Caltrans head-
quarters. The involvement of contributions of private contractors, multiple trans-
portation agencies, universities, and Federal government organizations is possible.
Given the internationalization enhancements to IRIS, international agency and re-
searcher involvement is also possible. The nature of the GPL license assures stake-
holders that contributions will be available to everyone in the future.

• The network effect: as more people become involved with open-source projects, a
network effect develops, in which a single contribution benefits more and more
people. This has the potential of reducing development costs further.

6.2 Obstacles and Concerns with the Collaborative Approach

Concerns and obstacles were encountered during the course of the project. In particular:

• Understanding open-source: may be a primary difficulty. Understanding the legal
obligations of the GPL may be difficult to communicate to management. Also, ex-
plaining other differences from the traditional model, such as the importance of
building an open-source community, can be a challenge.

• Development dependencies: may arise which are unavoidable. Critical path depen-
dencies that involve other agencies should be carefully considered and planned for.

• Coordination and planning: become even more crucial when coordinating activities
across several agencies. Three to four features were implemented twice, due to

60

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

engineers in different agencies knowingly working on the same (or related) code,
resulting in 20% to 30% additional effort for that feature. In all other cases this was
avoided through schedule coordination. However, if multiple agencies have over-
lapping deadlines that depend on modifying the same code, schedule coordination
is crucial to avoid extra effort. In general, multiple engineers working simultane-
ously on the same code was found to work well if minor changes were being made.
If one engineer was making major changes, other engineers usually had to manually
merge their changes. In general, frequent code merging between agencies lowers
these risks.

• Caltrans dependence on other agencies due to a single IRIS source code-base: IRIS was de-
veloped by Mn/DOT for Mn/DOT. During the course of the study, many agency
specific dependencies were discovered and generalized. Agency specific dependen-
cies included assumed constants, URLs, file names, device terminology (e.g. DMS
versus CMS), protocols, algorithms, etc. All of these agency specific dependencies
were eliminated, as part of the development process. This resulted the generalization
of the source code, capabilities, and configuration options. This beneficial process is
expected to continue as other agencies adopt IRIS.

• Caltrans dependence on other agencies to fix defects due to a single IRIS source code-base:
during the course of the study, if a critical defect was discovered, the availability of
the source code enabled AHMCT to fix all problems. Consultation with Mn/DOT
facilitated solving complex problems. Repair of low priority defects was often per-
formed by either AHMCT or Mn/DOT.

• Limitation of Liability: was an issue identified by Mn/DOT prior to open-sourcing
IRIS. The GPL license explicitly states that the software covered by the license has
no warranty and the developers have no liability.1 However, these are legal issues
and legal council should be sought to address these concerns.2

• Integration with existing systems: should be carefully considered if the communi-
cations protocol is proprietary. Proprietary code covered by NDAs, patents, etc.,
probably can not be directly integrated into IRIS. This type of integration proba-
bly needs to be implemented using stand-alone servers communicating with inter-
process communication. The current research effort developed general methodolo-
gies and specific implementations for this approach.

• Scarcity of IRIS engineers: may be an issue for some agencies. Presently, there are
approximately a total of four active IRIS developers. Increasing the number of en-
gineers with deep IRIS knowledge was one of the factors motivating Mn/DOT to
open-source IRIS. However, the researchers do not see this as a substantial concern–
three developers were trained during the course of this project and the effort re-
quired is modest. The researchers also provided support for four other developers
from other agencies (a DOT, a university, and a consultant), in addition to providing
extensive online documentation for other developers. These training and support

1For the GPL see http://www.gnu.org/licenses/gpl-2.0.txt and http://www.gnu.org/
copyleft/gpl.html

2For information on how GPL V3 differs from V2, see http://www.gnu.org/licenses/
quick-guide-gplv3.html

61

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

efforts were not a burden and considered part of the collaborative open-source de-
velopment model. The researchers think that the free availability of the source code
and the collaborative nature of open-source development reduce these risks relative
to the same risks on a proprietary software project, particularly for those covered by
restrictive NDAs. In addition, hiring engineers on the open-market with Linux and
Java experience is common.

6.3 Lessons Learned

• Planning is crucial: the two-stage development process was found to be effective (see
Section 2.2). In terms of planning, it is straightforward to write user level functional
requirements. Estimating the design and implementation effort involved is difficult
without deep hands-on knowledge of the existing code. It’s difficult to gain this
knowledge without first doing development. Considerable skepticism is in order
for initial effort estimates if the existing code-base and design are not well under-
stood. As knowledge of the existing software increases, effort estimates improve.
The use of a ticketing system that tracks hours is highly recommended for keeping
effort estimates predictable. A go-slow approach may be the most efficient, where
targeting a series of goals for completion is first achieved before long-term overarch-
ing plans are made. During the course of development, many new needs and areas
that can be improved will be discovered. At this point, a more guided, top-down
process may be beneficial and superior for planning. See 5.7 for effort estimates.

• Excellent quality contributions: from others deserve excellent contributions in return.
• End-user feedback: Frequent and detailed feedback from end-users (TMC operators)

is crucial for: discovering defects, adjusting UI elements to eliminate confusion
or problems, and determining the relative importance (priority) of enhancements.
This was crucial for the software engineers and D10 TMC management. The soft-
ware engineers found that on-site visits with TMC personnel are crucial for effective
feedback. If the feedback process is effective, operators are more likely to suggest
improvements and identify problems because they have confidence that improve-
ments will be made.

6.4 IRIS Strengths and Areas for Improvement

Over the course of 18 months, IRIS’ strengths and areas that would benefit from improve-
ment were identified. Some noteworthy IRIS strengths are:

• Rate of improvement: since May of 2007, the rate of improvement has been high. For
example, the first version (alpha1) did not build (due to recursive build problems),
and portions of the user interface were fragile. These problems have been solved

62

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

and subsequently many new features have been added, all RMI code has been re-
moved (boosting performance and reliability), and many implicit Mn/DOT-specific
configuration assumptions have been generalized. The rate of improvement is ex-
pected to remain high, with additional contributions from future agencies contribut-
ing to the rate of improvement.

• Ability to tailor: the availability of the source code enables agencies to customize and
tailor IRIS for their specific needs. System attributes, internationalization, the help
system, and property files all provide configuration flexibility. Code enhancements
and modifications that are contributed back into the code-base are more valuable if
they are generalized and can be used by other agencies.

• Scalability: testing results indicate that IRIS can support many simultaneous users
(see Section 3.7).

• Reusability: is high as a result of 1) a single source code-base, 2) an emphasis on con-
figurability, and 3) use and testing by multiple agencies. High reusability decreases
costs and improves reliability.

• Reliability: is high. Over the course of 18 months, the D10 IRIS server did not fail.
Networking and configuration problems are much more likely to be the source of
any concern, due to this high reliability.

• Strength of lead agency: Successful open-source projects have strong leadership. As
demonstrated on this project, Mn/DOT has a very strong commitment to IRIS qual-
ity, continued development and improvement. The IRIS team at Mn/DOT was par-
ticularly responsive, flexible, highly-skilled, motivated, and demonstrated strong
leadership during the project.

• The IRIS driver interface: is flexible and well-designed. This facilitates interfacing
IRIS with hardware and external software systems.

Areas that would benefit from improvement are:

• Mapping: IRIS would benefit from enhanced map functionality. This includes: sup-
port for large map files (see Section 3.7), support for raster layers, attribute labeling,
spatial search, and other enhancements.

• Data loader: the ability for new agencies to load infrastructure data into IRIS in bulk
would reduce the initial system configuration effort. Without bulk data loading,
IRIS is configured and loaded with data through the client user interface. How-
ever, this is a one-time effort and presently can be done through manual database
commands, if necessary.

• End-to-end automated test cases: both the development process and the reliability of
deployed releases would benefit from development of automated end-to-end test
cases. The automated test cases would be executed after each new enhancement
(or defect repair) was incorporated into the code-base. This would help ensure that
new features don’t break existing features. If many agencies are using IRIS, this
capability may become crucial. See Section 3.8.

63

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

• User interface refinement: The IRIS client would benefit from user interface refine-
ments that increase consistency and reliability: for individual IRIS users, the client
occasionally freezes, requiring that individual user to restart the client. When this
happens, no other users are effected; i.e. only the one client freezes, and the server
is unaffected. The level of reliability experienced on the IRIS server has been very
high, with almost no down time in more than 19 months. Achieving and maintain-
ing this same level of reliability on the client is important.

6.5 Conclusions

The goal of this study was to dramatically reduce initial and ongoing ATMS life-cycle
costs. A collaborative approach was used that implemented an existing open-source
ATMS within Caltrans District 10 (D10), using commodity x86 hardware.

Compared with the use of a proprietary ATMS, this approach was found to be ex-
tremely effective at providing an ATMS system with substantial capabilities at minimal
cost. D10 acquisition costs were 98% less than the existing proprietary ATMS (see Sec-
tion sec:acquisitioncosts). Annual maintenance costs are anticipated to be 68% to 86%
less than the existing proprietary ATMS. Annual personnel maintenance costs are es-
timated to be 1/5 to 1/3 of the current system, primarily due to 1) the ability to share
maintenance efforts across contributing agencies, and 2) the unrestricted availability of
source code, which is anticipated to keep maintenance costs competitively low by lower-
ing barriers to entry and eliminating the need for sole-source contracts. A total 5-year cost
comparison for a single agency shows a 72% cost reduction for the open-source approach.

There is no evidence that these cost savings would result in inferior software, features,
reliability, or innovation for systemic reasons. The evidence is strong that the collabora-
tive open-source approach would strengthen results in these dimensions.

IRIS was shown to be very scalable, easily supporting 50+ simultaneous users on a
single, modest, commodity server, priced at less than $1,000.

Server reliability has been high over the last 19 months, with zero service outages due
to IRIS server defects. Networking and configuration problems were responsible for any
service outages. The client defects resulting in occasional freezing and premature client
closure need to be addressed and do not appear to be a result of systemic problems with
the collaborative approach.

There is strong evidence that the open-source approach will strengthen innovation,
providing a means for researchers to deploy research directly into a production system
with minimal overhead. These innovations would be immediately available to all agen-
cies using IRIS.

Districts 10, 5, and 1 have shown a strong ability and willingness to transition to pro-
viding their own routine IRIS problem resolution and support. The potential of sharing
this technical information and know-how with others in the IRIS community encourages

64

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

the incubation of internal technical expertise.

Agencies are faced with a difficult choice: nurture in-house software development ex-
pertise, with associated risks and without economies of scale, or benefit from economies
of scale by purchasing access to a proprietary ATMS and giving up internal technical ex-
pertise and control. The open-source approach cuts a middle path by enabling DOTs to
nurture and develop in-house expertise while leveraging the benefits of shared develop-
ment and economies of scale with other organizations. It also enables the possibility of
using third parties to develop and maintain the system, while keeping bidding competi-
tive. This project used the development expertise of a third party (AHMCT) to perform
integration and enhancement work.

The combination of unhindered access to existing and future source code (stipulated
by the GPL license) provides a new pathway for public transportation agencies to inter-
act with the private sector. Enhancements to IRIS source code (derivative works) must
be publicly shared, enabling a public agency to hire a private consultant for integration
and enhancement tasks, free of legal entanglements and NDAs. This mechanism enables
preservation of public ownership and allows the private sector to contribute with trans-
parency.

The positive results from this study and the dynamic rapidly evolving nature of the
ITS field are strong indicators for future positive developments. For ongoing work and
progress in these areas, see the project web site.3

6.6 Recommendations

This report has discussed results and conclusions from a multi-year research demonstra-
tion study that implemented and extended an existing open-source ATMS within Cal-
trans District 10.

Software can be viewed as a product or a type of knowledge [6]. Viewing software as
a type of knowledge naturally prompts questions of how best to extend, share, preserve,
and expand that knowledge. Encouraging and supporting collaboration is crucial—if
collaboration is not easy, people will not do it. The benefits observed in this study are the
result of low-friction collaboration.

As the benefits observed during the course of this research study are attractive, the
following recommendations may be useful. They are intended to achieve the benefits
discussed above.

• Technical recommendations:

– Promote and encourage the use of software development languages that have
strong cross-platform capabilities. For example, Java applications can be de-

3For the project web site see http://iris.ahmct.ucdavis.edu

65

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

veloped on and moved between many different operating systems. Scripting
languages such as Python, Perl, and PHP have strong cross-platform capabili-
ties. Platform specific languages like C# are less portable. Portability provides
a path for server applications to be migrated to open-source operating systems,
which lowers costs.

– Use end-to-end encryption for communication with security-sensitive field el-
ements, such as CMS.

– Eliminate the use of proprietary protocols, which:

1. Are potential security risks, if protocol secrecy is used to provide security,
otherwise known as ”security through obscurity.” This approach was dis-
credited in 1883 [13].

2. Encourage information hording, which reduces innovation.
3. Increase lock-in and lack of choice, which increases costs.
4. Cannot be open-sourced.

• For projects that would benefit from inter-agency cooperation and the shared devel-
opment model:

– Take concrete steps to support collaboration, such as using open-source li-
censes for software code.

– Collaborate with other agencies.
– If possible, use and extend existing open-source transportation projects, rather

than starting from scratch. This lowers development risk.

• For existing proprietary projects built with proprietary software:

– Investigate replacing individual components with open-source versions. For
example, replacing a proprietary database with MySQL or PostgreSQL. There
are also proprietary products built on top of open-source products. For exam-
ple, EnterpriseDB offers Oracle application compatibility for an order of mag-
nitude less cost than Oracle.

– Investigate building new components with open-source applications. The open-
source applications would communicate with proprietary applications using
inter-process communication, as was done on this project.

– Investigate open-sourcing existing proprietary applications. Other transporta-
tion agencies may be interested in your application and be willing to con-
tribute.

• For new projects:

– Consider using an open-source license, particularly with consultants. This
increases transparency, and guarantees that derivative works remain open-
source, regardless of who works on them.

– Monitor ongoing project progress via the source code repository. The contents
of the repository reveal much about development progress (see Figure 5.10,
Figure 5.11, and Figure 5.12).

– Use bug tracking software, e.g. Trac or Bugzilla, from the outset of the project.

66

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

– Avoid using hardware that uses proprietary protocols. This increases the diffi-
culty and complexity of interfacing the hardware with an open-source applica-
tion.

• For agencies considering IRIS:

– Start with small-scale enhancements and increment based on success. The ac-
curacy of effort estimates should increase over time.

– Select the highest-priority functional area, with a goal of getting IRIS up and
running.

– Discuss short and long-term plans with IRIS software engineers and get feed-
back and ideas from them.

– Download the IRIS source and try it out—there is zero risk.

– Ensure (perhaps contractually) that enhancements made to IRIS will be coor-
dinated with the IRIS lead engineers (Mn/DOT). If this is done correctly, the
enhancements will be effortlessly incorporated into the main IRIS code-base
by Mn/DOT. This collaborative process requires extra effort during the design
and implementation phases, perhaps 10%-30%. However, ensuring that new
enhancements are incorporated into the main IRIS code-base has these bene-
fits:

1. Enhancements must meet quality standards to be incorporated into the
main IRIS code-base.

2. Enhancements incorporated into the code-base are much more likely to be
generalized features, if possible.

3. Enhancements incorporated can be directly used by other agencies, in-
creasing the likelihood they will be used, which encourages subsequent
enhancements from other agencies.

4. Enhancements incorporated into the code-base do not have to be manu-
ally re-merged with each subsequent IRIS release, which lowers software
maintenance costs.

67

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

References

[1] AHMCT, University of California. Caltrans IRIS Repository. URL http://iris.
ahmct.ucdavis.edu/hg. Accessed Mar, 2009.

[2] AHMCT, University of California, Davis. Research & Development of Open-Source
Advanced Traffic Management System Hardware and Software Components. Tech-
nical Report TS-517, AHMCT, February 2005.

[3] AHMCT, University of California, Davis. Caltrans SOCCS Design Description, . URL
http://iris.ahmct.ucdavis.edu/SOCCS_Design_Description.pdf. Ac-
cessed March, 2010.

[4] AHMCT, University of California, Davis. AHMCT Open ATMS Project Wiki, . URL
http://iris.ahmct.ucdavis.edu/mediawiki. Accessed Mar, 2009.

[5] M.T. Darter, S.M. Donecker, K.S. Yen, B. Ravani, and T.A. Lasky. IRIS Verification
Procedure for the California Department of Transportation District 10. Technical
report, AHMCT, March 2000. URL http://www.ahmct.ucdavis.edu.

[6] M.T. Darter, K.S. Yen, B. Ravani, and T.A. Lasky. Literature Review of National De-
velopments in ATMS and Open-Source Software. Technical Report UCD-ARR-06-
12-08-01, AHMCT, December 2006. URL http://www.ahmct.ucdavis.edu.

[7] M.T. Darter, S.M. Donecker, K.S. Yen, B. Ravani, and T.A. Lasky. Review of Cal-
trans District 10 Transportation Management Center Operations and Equipment.
Technical Report UCD-ARR-07-09-30-01, AHMCT, September 2007. URL http:
//www.ahmct.ucdavis.edu.

[8] M.T. Darter, S.M. Donecker, K.S. Yen, B. Ravani, and T.A. Lasky. Review of Mn/IRIS
and Caltrans District 10 TMC Compatibility and Functional Requirements for D10
IRIS Demonstration Study. Technical Report UCD-ARR-07-09-30-02, AHMCT,
September 2007. URL http://www.ahmct.ucdavis.edu.

[9] M.T. Darter, S.M. Donecker, K.S. Yen, B. Ravani, and T.A. Lasky. Review of Mn/IRIS
Software and Test Cases for Caltrans District 10 IRIS Demonstration Study. Tech-
nical Report UCD-ARR-07-12-31-01, AHMCT, December 2007. URL http://www.
ahmct.ucdavis.edu.

69

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

[10] M.T. Darter, S.M. Donecker, K.S. Yen, B. Ravani, and T.A. Lasky. Overview of Cal-
trans District 10 IRIS Demonstration Design. Technical Report UCD-ARR-07-12-31-
02, AHMCT, December 2007. URL http://www.ahmct.ucdavis.edu.

[11] M.T. Darter, S.M. Donecker, K.S. Yen, B. Ravani, and T.A. Lasky. IRIS Verification
Plan for the California Department of Transportation District 10. Technical report,
AHMCT, March 2009. URL http://www.ahmct.ucdavis.edu.

[12] M.T. Darter, T.A. Lasky, D. Lau, C. Gregory, and B. Ravani. Implementation and
extension of the iris open-source traffic management system to improve organiza-
tional performance. In Transportation Research Board 88th Annual Meeting Proceedings,
Washington, D.C., 2009.

[13] Auguste Kerckhoff. La cryptographie militaire. Journal des Sciences Militaires, (5):
5–38, January 1883. URL http://petitcolas.net/fabien/kerckhoffs/.

[14] Josh Lerner and Jean Tirole. Some Simple Economics of Open Source. The Journal of
Industrial Economics, 50(2):197–234, March 2003.

[15] Minnesota Department of Transportation. Intelligent Roadway Information System
(IRIS) As Built System Design Document. Technical report, Minnesota Department
of Transportation, June 2007.

[16] Minnesota Department of Transportation. Mn/DOT IRIS Repository. URL http:
//iris.dot.state.mn.us/hg. Accessed Mar, 2009.

[17] Minnesota Department of Transportation IRIS Project. Mn/DOT IRIS JavaDoc, De-
cember 2007.

[18] Minnesota Department of Transportation IRIS Project. Mn/DOT IRIS source code,
December 2007.

[19] J. D. Mooney. Strategies for supporting application portability. Computer, 23(11):
59–70, November 1990.

[20] California Department ofTransportation. Systems Engineering Guidebook For ITS.
Technical report, Caltrans, February 2005.

[21] Open Source Initiative. The Open Source Definition. URL http://opensource.
org/docs/osd. Accessed Jan, 2009.

[22] Jim Shore. Fail fast [software debugging]. Software, IEEE, 21(5):21–25, September
2004. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1331296.

[23] Wavetronix LLC. SS105 SmartSensor Data Protocol V2.02, February 2004. URL
http://www.wavetronix.com/.

70

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Appendix A

Functional and Non-functional
Requirements

This appendix lists tickets in the Caltrans IRIS ticket system. This includes tasks, defect
tickets, and functional and non-functional requirements. See Section 2.2 on page 12 for a
discussion of requirements. This list was generated in January of 2010. For an updated
list, see the ticket system.

Table A.1: Tasks, Functional, and Non-functional Requirements.

Ticket Component Description Status

1 Traffic Traffic-related functionality will be used as-is
within the IRIS client.

closed

2 Traffic The IRIS client will display a D10 map. closed
3 Traffic D10 IRIS will receive UDP/IP packets from a D10

router, containing real-time traffic data from induc-
tive loop and microwave traffic detectors.

closed

4 Traffic D10 IRIS will format real-time traffic data received
from a D10 router for input into IRIS.

closed

5 Traffic IRIS traffic-related functionality shall operate as-is. closed
6 Traffic Real-time traffic data from microwave and induc-

tive loop detectors will be used by IRIS.
closed

7 Traffic (optional) The IRIS TRAFDAT applications will be
implemented.

new

8 Traffic If implemented, the IRIS TRAFDAT applications
will operate as-is.

new

9 Traffic If TRAFDAT is implemented, D10 IRIS-specific
TRAFDAT reports and plots are anticipated, de-
pending on sub-task priority. For example, TRAF-
DAT reports specific to CAWS.

new

10 Traffic D10 IRIS is not anticipated to impact existing D10
hardware or software performance.

closed

11 Traffic D10 IRIS will use the existing IRIS database schema
as-is.

closed

Continued on Next Page. . .

71

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

12 Traffic D10 IRIS will use existing IRIS data formats wher-
ever possible.

closed

13 Traffic Developed traffic functionality will use existing
IRIS features to monitor reliable operation (e.g. the
event log database).

closed

14 Traffic AHMCT and D10 will test developed functionality
both in the laboratory and in the field.

closed

15 Traffic D10 IRIS traffic functionality will operate in paral-
lel with existing D10 traffic management software.

closed

16 Traffic D10 IRIS and existing D10 TMC functionality are
not interdependent in any way.

closed

17 Traffic D10 IRIS will use, and be dependent on existing
IRIS and D10 security features.

closed

18 Traffic Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

closed

19 CMS (optional) D10 IRIS will indicate to TMC operators
the origin of CMS messages (see the background
section for potential message origin).

closed

20 CMS D10 IRIS shall use existing IRIS functionality, such
as support for the NTCIP protocol.

closed

21 CMS D10 IRIS shall support CMS on dial-up lines. closed
22 CMS D10 IRIS shall support CMS connected to the TMC

via D10s cell modems.
closed

23 CMS D10 IRIS will not use existing IRIS serial tunneling
functionality.

closed

24 CMS D10 IRIS shall implement the CMS protocol in an
application separate from IRIS.

closed

25 CMS D10 IRIS shall support CMS that use the Caltrans
CMS protocol.

closed

26 CMS D10 IRIS shall interface with CMS on dial-up lines
through a terminal server, as in the existing D10
SOCCS system.

closed

27 CMS The D10 IRIS UI shall function as is (see the Back-
ground section above).

closed

28 CMS D10 IRIS shall receive and process D10 traffic man-
agement software generated messages (CAWS)
and display them on the CMS.

closed

29 CMS Developed CMS applications and functionality
shall comply with the existing protocol, to the ex-
tent possible.

closed

30 CMS Developed NTCIP applications and IRIS function-
ality shall comply with the existing protocol, to the
extent possible.

closed

31 CMS Developed CMS functionality will support a subset
of the full Caltrans CMS protocol.

closed

32 CMS Developed CMS functionality will use existing IRIS
features to monitor reliable operation (e.g. the
event log database).

closed

Continued on Next Page. . .

72

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

33 CMS AHMCT will test developed functionality both in
the laboratory and in the field.

closed

34 CMS AHMCT will develop a formal internal CMS pro-
tocol document using information from 1) verbal
communication with Caltrans engineers, 2) from
viewing previously developed SOCCS source code,
3) from internal Caltrans documentation, and 4)
from testing of AHMCT-developed code.

closed

35 CMS Existing D10 traffic management software and
CAWS applications are not expected to change.

closed

36 CMS Existing D10 CMS control (the SOCCS system) will
act as a backup CMS control system.

closed

37 CMS Existing CMS code will not be shared outside of
AHMCT or Caltrans.

closed

38 CMS The CMS protocol will not be shared outside of
AHMCT or Caltrans.

closed

39 CMS Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

closed

40 CMS Existing CMS code is copyrighted by Caltrans. closed
41 CMS Existing CMS code is not subject to the GNUs Gen-

eral Public License (GPL) copyright.
closed

42 CMS Newly-developed code that uses the CMS protocol
will not be released outside of AHMCT or Caltrans.

closed

43 CMS Newly-developed code that uses the CMS protocol
shall not be copyrighted with the GPL.

closed

44 Incidents D10 IRIS shall use existing IRIS mapping UI func-
tionality.

closed

45 Incidents D10 IRIS shall convert the California Highway Pa-
trol (CHP) eXtensible Markup Language (XML) file
into a data format supported by IRIS.

closed

46 Incidents D10 IRIS shall periodically read real-time CHP in-
cident data.

closed

47 Incidents CHP incident data will be read from a web server
as an XML file via HyperText Transfer Protocol
(HTTP).

closed

48 Incidents D10 IRIS incident mapping functionality shall op-
erate as-is.

closed

49 Incidents D10 IRIS will perform geographic coordinate trans-
lation between supplied CHP mapping coordinate
system (Thomas Brothers XY) and the coordinate
system used by IRIS (Universal Transverse Merca-
tor (UTM)).

closed

50 Incidents Developed incident mapping functionality will use
existing IRIS features to monitor reliable operation
(e.g. the event log database).

closed

51 Incidents IRIS incident mapping is independent of any exist-
ing D10 systems and operations.

closed

Continued on Next Page. . .

73

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

52 Incidents Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

closed

53 CCTV The IRIS user interface will be used as is. closed
54 CCTV D10 IRIS shall support video monitoring of D10 IP-

based cameras.
closed

55 CCTV D10 IRIS shall support TMC-based camera control
of D10 IP-based cameras that support motion con-
trol.

closed

56 CCTV (optional) D10 IRIS shall support video monitoring
of the existing D10 channel City of Stockton analog
system.

closed

57 CCTV (optional) D10 IRIS may support Moving Picture
Experts Group 4 (MPEG-4) encoding, pending
other priorities.

new

58 CCTV D10 IRIS shall use primarily M-JPEG or MPEG-4
for digital video encoding.

closed

59 CCTV Developed video functionality will use existing
IRIS features to monitor reliable operation (e.g. the
event log database).

closed

60 CCTV AHMCT will test developed functionality both in
the laboratory and in the field.

closed

61 CCTV Any developed D10 IRIS video monitoring func-
tionality providing City of Stockton video monitor-
ing is anticipated to operate in parallel with exist-
ing D10 City of Stockton systems.

closed

62 CCTV Any developed D10 IRIS video control functional-
ity providing control of existing City of Stockton
cameras is anticipated to operate in parallel with
existing D10 City of Stockton systems.

closed

63 CCTV Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

closed

64 Ramp Metering D10 IRIS enhancements to IRIS supporting multi-
ple ramp meter protocols will be modular to the
extent possible, anticipating the addition of future
ramp meter protocols to the IRIS project.

new

65 Ramp Metering D10 IRIS shall use IRIS ramp metering functional-
ity as is, with the exception of the communications
protocol.

new

66 Ramp Metering D10 IRIS may support a subset of IRIS ramp me-
tering functionality, depending on the priority of
other Requirements.

new

67 Ramp Metering D10 IRIS shall use the SDRMS protocol. new
68 Ramp Metering The in-field controller shall support and conform

to the SDRMS protocol.
new

69 Ramp Metering Implemented modules or applications within D10
IRIS shall support and conform to the SDRMS pro-
tocol.

new

Continued on Next Page. . .

74

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

70 Ramp Metering Developed ramp meter functionality will support a
subset of the full SDRMS protocol.

new

71 Ramp Metering Developed ramp meter functionality will use exist-
ing IRIS features to monitor reliable operation (e.g.
the event log database).

new

72 Ramp Metering AHMCT will test developed functionality both in
the laboratory and in the field.

new

73 Ramp Metering D10 IRIS ramp meter testing will involve lab test-
ing, field testing, and TMC testing.

new

74 Ramp Metering Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

new

75 RWIS Weather Stations and Sensors: D10 IRIS UI en-
hancements to IRIS will be consistent with the ex-
isting UI.

new

76 RWIS D10 IRIS will receive weather station data from an
existing D10 traffic management software server.

new

77 RWIS D10 IRIS shall display the locations of weather sta-
tions on the System map.

new

78 RWIS The D10 IRIS map shall indicate current wind
speed and visibility measurements.

new

79 RWIS Developed weather station functionality will use
existing IRIS features to monitor reliable operation
(e.g. the event log database).

new

80 RWIS AHMCT will test developed functionality both in
the laboratory and in the field.

new

81 RWIS Existing D10 weather station functionality will not
be dependent on D10 IRIS.

new

82 RWIS Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

new

83 Reports Event Logging: D10 IRIS logging shall be consis-
tent with the existing UI.

closed

84 IRIS Reports D10 IRIS shall log trigger-based weather station
events, e.g., visibility and wind speed reaching
trigger values.

new

85 Reports D10 IRIS shall log other sensor events that are rel-
evant to D10, according to their relative sub-task
priority.

closed

86 Reports D10 IRIS shall use the existing IRIS log database
schema.

closed

87 Reports D10 IRIS shall add additional events and devices
specific to D10 as needed.

closed

88 Reports Logging functionality will use existing IRIS fea-
tures to monitor reliable operation (e.g. assertion
reporting, the event log database).

closed

Continued on Next Page. . .

75

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

89 Reports Logging functionality is used in most functional ar-
eas and will therefore be tested across those func-
tional areas, both in the laboratory and in the field
where appropriate.

closed

90 Reports Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

closed

91 HAR HAR and EMS: (deferred) D10 IRIS UI enhance-
ments to IRIS will be consistent with the existing
UI.

new

92 HAR (deferred) D10 IRIS shall interface to the Quixote
DR2000 SIM module.

new

93 HAR (deferred) D10 IRIS shall interface to the Quixote
DR2000 SIM module over the TMC local area net-
work.

new

94 HAR (deferred) D10 IRIS shall display HAR and extin-
guishable message sign locations on the IRIS sys-
tem map.

new

95 HAR (deferred) D10 IRIS shall display current HAR mes-
sages for each HAR unit. The message display may
be symbolic or literal. For example ’WAV Msg 14’
or ’Slow Speed Ahead’.

new

96 HAR Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

new

97 HAR (deferred) D10 IRIS shall support non-realtime
monitoring of traffic signals using the Caltrans
Central Signal Control System (CTNet) protocol.

new

98 HAR (deferred) D10 IRIS shall support real-time moni-
toring of traffic signals using the CTNet protocol.

new

99 HAR (deferred) D10 IRIS shall support real-time control
of traffic signals using the CTNet protocol.

new

100 HAR Software source code will be maintained in a
source control repository to support ongoing and
future software maintenance.

new

101 CMS Ability for operators to easily create and send free-
form CMS messages.

closed

102 CMS Ability for operators to send messages to CMS con-
nected via terminal server and modem i.e. dial-up.

closed

103 CAWS Operators need existing D10 CAWS functionality
integrated with IRIS. IRIS should read the real-time
CAWS messages (via HTTP) and send the mes-
sages to CMS.

closed

104 CMS Operators need the ability to view CMS history in
report(s).

closed

105 CMS Operators need the ability to specify a font per
CMS message.

closed

Continued on Next Page. . .

76

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

106 CMS Operators need the ability to quickly specify exist-
ing library messages by ID and send them to the
CMS. This functionality will populate the message
line fields and font field using existing messages
from a quick message library.

closed

107 CMS Ability for operators to easily send a single CMS
message to an ad-hoc grouping of signs. The mes-
sage can be 1) quick message, 2) free-form, or 3)
from message line library.

closed

108 CMS Each CMS message that is sent needs to be archived
in a database for future reference and reporting.

closed

109 CMS Easy access to CMS message history (via queries)
for various time periods. For example, last 24
hours, last 7 days, last 30 days, etc.

closed

110 CMS Ability to generate a CMS activity report sorted by
CMS, for CMS activity over a fixed time frame.

closed

111 CMS Display CMS messages with identity of originating
system (SOCCS, IRIS).

closed

112 CMS Instant View of CMS status including failed. closed
113 CMS Spreadsheet type view of CMS closed
114 CMS Somewhat easy to Add, Modify, Delete, CMS in-

cluding all configuration, including whether part
of CAWS.

closed

115 CMS Ability to view and edit which CMS belong to
which sign groups within a single dialog box: e.g.
show/edit which CMSs belong to Star Campaign
sign group.

new

116 CAWS Easily identify if a CMS is in CAWS. closed
117 CMS Add the ability for operators to see easily if a mes-

sage is mis-sized before it is sent to the sign.
new

118 CMS Ability to re-initialize Model 170 controller. closed
119 CMS Ability to re-Initialize cell modem. closed
120 CMS Handles Model 520 closed
121 CMS Easy update (view) of CMS message closed
122 Maps Improve IRIS mapping new
123 CMS Allow selection of pre-existing group of CMSs eas-

ily to send same message (Custom or Library).
closed

124 CMS Message simulation / preview ability without
sending the message to the CMS.

closed

125 CMS Extend message preview (#127) to show selected
font

closed

126 CMS CMS Message Width Warning. new
127 User Accounts Easy to add new User and specify permissions. closed
128 CMS Ability to edit Library/CMS group name; Or to

copy group with new name
new

129 CMS Ability to spell check messages, including abbrevi-
ations.

new

130 CMS Ability to display network health over time. closed
131 CMS Contains Message Library that is easy to edit closed
Continued on Next Page. . .

77

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

132 CMS Save free form messages into message library. closed
133 Amber Alerts Ability for AMBER Alerts to overwrite operator

messages already on the sign.
closed

134 Maps Ability for clicked map element to provide ID in-
formation.

closed

135 CMS Multiple users can simultaneously use CMS func-
tionality.

closed

136 Maps Display persistent map labels that can be turned on
and off. Presently, users must hover over streets to
determine the street name via a popup balloon.

new

137 Travel Time Travel time calculation uses traffic history if detec-
tor data unavailable

new

138 CCTV Video plays indefinitely closed
139 CCTV Provide user option to play video indefinitely or

specified time.
closed

140 User Accounts Provide LDAP administration capabilities via IRIS,
so admins can add new user names remotely.

new

141 CCTV Ability to display video on video wall. closed
142 RWIS Display RWIS real-time data on RWIS map tab. new
143 Ramp Metering SDRMS ramp metering support. new
144 Travel Time D10 traffic detector display working reliably in

IRIS, so that travel time message generation works
reliably.

closed

145 Incidents Display IRIS incidents reliably. Presently there ap-
pears to be some kind of parse problem within IRIS
of the CHP XML feed.

closed

146 User Accounts IRIS configured with different capabilities for dif-
ferent users.

closed

147 Maps Display street names in balloon user hovers over
with the mouse.

closed

148 Travel Time Perform MITTENS vs IRIS travel time comparison. new
149 IRIS UI Display symbolic roadway information: on/off

ramps, VDS, etc.
closed

150 CMS CMS text messages need to be vertically centered. closed
151 CCTV Users need preset views for camera positions: 4

minimum, 6 prefered. This includes zoom settings.
closed

152 CCTV High speed flashing issue w/ cameras. closed
153 CAWS Add ability for operator CMS messages to over-

write existing CAWS messages.
closed

154 Travel Time Calculation and display of travel times. closed
155 HAR Users needs to locate HAR stations on the map,

monitor status, activate messages.
new

156 EMS Users need to locate EMS (extinguishable message
sign) station on the map, monitor status, activate
signs.

new

157 Traffic Users need to monitor status, upload parameters,
locate signals on map.

new

158 General IRIS Server verifies database version is correct on
startup.

closed

Continued on Next Page. . .

78

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

159 CMS Ability to type CMS messages in free form. closed
160 CMS Add the ability for CMS free form messages to dis-

play message completion possibilities as a function
of what the user has typed and available entries in
the libraries. This is often called ”type ahead abil-
ity” or ”predictive text”.

new

161 WIM Add integration with Weigh in Motion system. new
162 CAWS D10 needs to know IRIS CAWS functionality has

been tested and validated (see also #103).
closed

163 CMS Determine if the error message from the 170 ’In-
valid Response Code’ should be handled differ-
ently than it presently is.

closed

164 CMS Ability to change CMS polling time w/o rebuilding
IRIS.

closed

165 Travel Time Activate message start/stop time for travel time
messages for a CMS w/ SV170 V3.4.

Requirements

166 General Increase the robustness of the IRIS client and server
to networking problems.

closed

167 Maps Improve existing maps used in IRIS. closed
168 General Ability to run the IRIS client on the IRIS server ma-

chine.
closed

169 Incidents Users need to know IRIS has been validated for in-
cident reliability compared with existing systems.
See also #145.

closed

170 CMS Add vertical space between 2 line CMS message
lines. Is there a statewide standard?

closed

171 Traffic Enhance IRIS lane numbering so that it conforms
to Caltrans convention, rather than Mn/DOT con-
vention.

new

172 CMS Add ability for other districts to see IRIS placed
messages via the DRI Google Earth state-wide sys-
tem (Sean Campbell’s sytsem).

new

173 Maps Add ability for operators to search for street names. new
174 CMS Add queueing for modems to sensorserver. This is

a reliability feature. For example, sending an AM-
BER alert to all CMS on dial-up should queue on
the modem line.

closed

175 Documentation D10 take over Requirements–D10 needs sufficient
documents and knowledge transfer to maintain
IRIS, diagnose problems, etc.

Requirements

176 Maps Display latitude and longitude, or UTM X, Y coor-
dinates of mouse pointer in a toolbar.

closed

177 Maps Ability for operators to see content of the Lakes and
Streams layers in IRIS.

new

178 Amber Alerts Provide ability for AMBER Alerts to be sent to a
predefined list of CMS. Each CMS could be in-
cluded or excluded from this list.

closed

Continued on Next Page. . .

79

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

179 CAWS Add a new CMS message category ’CAWS’ and
CMS radio button in DMSDispatcher that would
group together all CMS w/ deployed CAWS mes-
sages.

closed

180 CMS Provide the ability for an operator to leave a note,
per CMS, that other operators could see.

new

181 CMS Provide recent event history, per CMS, inside the
IRIS client.

new

182 CAWS Provide a toolbar which lists all CMS that have
been removed from CAWS control.

closed

183 CAWS Have deactivated CAWS CMS automatically reac-
tivated after a certain time period.

closed

184 CMS Add the ability for IRIS users to specify a font per
message page in multipage messages. Presently a
single font is used for all pages.

closed

185 Incidents Add ability for operators to see incidents from the
restricted incident ”media feed” rather than public
CHP feed.

new

186 Incidents Use incident feed from future CAD system, which
will be available in 3-5 years.

new

187 CAWS Add existing CAWS traffic management software
functionality to IRIS

new

188 Traffic Add the ability to read real-time traffic data di-
rectly from detectors

new

189 CMS IRIS connects to TMCAL for logging. new
190 CMS Add a new report that shows the number of CMS

messages sent per month
closed

191 CMS Produce a periodic report that is readable in
GoogleEarth and Google Maps (kml/kmz files).

closed

192 IRIS Client The IRIS client needs to fit on a smaller screen closed
193 CMS CMS reporting that stores tabular report indefi-

nitely.
closed

194 CAWS Add auto-action 1: if a CMS is removed from
CAWS control (deactivated) and if the sign is sent
a blank message, IRIS automatically reactivates the
sign.

closed

195 CAWS Add auto-action 2: if IRIS has a CAWS message to
send and the sign is deactivated and blank, IRIS
automatically reactivates the sign and IRIS sends
the CAWS message.

closed

196 CMS Ability to generate a report showing the contents
of the IRIS Quick Message Library, sorted by ID.

closed

197 CMS Validate IRIS communications reliability compared
with SOCCS. Users need to know IRIS communica-
tion reliability relative to SOCCS.

closed

198 CAWS Add ability for administrators to specify the num-
ber of retry attempts for CAWS failures and regular
message retry attempts.

closed

Continued on Next Page. . .

80

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

199 CMS Ability for operators to specify a page display time
per page for multi-page messages in the quick mes-
sage library. Presently the default page display
time (2.5 secs) is being used for all messages.

closed

200 CMS Add message preview capability for 1) Amber
alerts and 2) Quick Message Library. Also, add the
ability to see the 2nd page of message previews.

closed

201 CMS Users need an easy way to clear all CMS message
comboboxes on all pages.

closed

202 IRIS Client Users need ready access to an online help system
based on the current screen (context).

closed

203 IRIS Client Enhance user permissions to be group based,
rather than role based (like in the ATMS system).
Groups would contain multiple roles.

closed

204 IRIS Client Add ability to easily open controller page in web
browser. This will be done via adding a button to
the controller dialog box that opens the URL of the
controller in a web browser.

new

205 IRIS Add ability to track administrative changes: a new
log would indicate who, when, and what adminis-
trative change was made. E.g. for tracking when
CAWS was enabled/disabled.

new

206 CMS Ability for IRIS administrators to change CMS field
controller IP addresses within the IRIS client.

new

207 IRIS Quantitatively track IRIS server uptime and scala-
bility. Origin of request: AHMCT, Mn/DOT, Jeff
Mcrae, scalability charts for final report.

closed

208 Reports Users need the ability to view IRIS logs from sen-
sorserver, trafserver, iris, casper, etc. in a GUI based
log viewer that provides filtering and sorting ca-
pabilities. This facilitates IRIS administration and
problem determination and resolution.

closed

209 IRIS UI Add menu item in IRIS that when clicked links to
the Trac management sytsem.

closed

210 Reports Format all IRIS logs so they can be read by a GUI
log viewing tool such as Apache Chainsaw.

closed

211 CAWS Add the ability for IRIS to perform real-time val-
idation of critical system functions such as vali-
dating that CAWS messages were sent, the mes-
sage file was received, etc. A watchdog application
would alert operators if critical failures such as a
failure to read the CAWS message file.

new

212 CMS Add a simple user interface to the sensorserver ap-
plication, that would contain a combobox for cms
selection, buttons for sending messages, reinitializ-
ing, getting status, etc. The focus is in providing an
application for use in the field for testing CMS.

new

213 User Accounts Create New User closed
Continued on Next Page. . .

81

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

214 User Accounts Enhance logging to display login information and
reason for failure

closed

215 User Accounts Create Trac User George Anzo closed
216 CCTV Operator asked if there was a problem with video–

couldn’t see video feed
closed

217 General Resolve boot configuration issues with D10 IRIS
server

closed

218 CMS R8.9 sensorserver cumulative comm report prob-
lem

Requirements

219 CCTV TMC can’t see video stream from cameras closed
220 CMS fix sensorserver SV170 parse defect related to time-

outs
closed

221 CMS In sensorserver, fix zero-f defect. closed
222 CMS Create one or more simulated CMS for testing and

operator training
closed

223 Reports Create IRIS uptime log closed
224 CMS Updating sensorserver to support SV3.4 closed
225 CMS Fix unusual timeout defect between IRIS and sen-

sorserver
closed

226 CAWS Enhance caws log to include blank messages. closed
227 CAWS Fix defect: skipping of sending CAWS messages at

4AM.
closed

228 IRIS Client Add context sensitive help system to the IRIS client closed
229 IRIS Client Add new help menu item that loads the IRIS Trac

system web page
closed

230 SONAR Merge w/ IRIS 3.80-88 (SONAR conversion) closed
231 CMS Change operation timeout from 10sec to 20sec in

Iris server
closed

232 General TMC operator can’t find posted message in the log closed
233 CMS cms 81 not on google map closed
234 CMS Icons out of place new
235 Maps Adjust CMS sign icon locations closed
236 CAWS Identify CAWS CMS by triggers; eg weather,

speed, or both
new

237 Maps Zoom and/or move all Map views closed
238 CMS Adjust sensorserver timeout closed
239 User Accounts ADD NEW USER closed
240 Traffic Resolve VDS detector force fail problem closed
241 CAWS CAWS validation on CMS V39 closed
242 IRIS IRIS client disconnect from server due to SSL MAC

exception
closed

243 IRIS IRIS client disconnect from server due to
client/server communication mismatch

closed

244 CMS Can’t create a message with a 3rd line on the 2nd
page

closed

245 CMS Ad-hoc multi-selection in IRIS 9 is more difficult new
246 Maps Operators can’t zoom the map closed
247 CMS IRIS client crashes while performing CMS selec-

tion.
closed

Continued on Next Page. . .

82

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

248 CAWS CMS that have been blanked by CAWS are incor-
rectly classifed

closed

249 CMS CMS message author incorrectly changes to ’Oth-
erSystem’

closed

250 IRIS Users can’t log in closed
251 IRIS Client Client window Size and location persistence new
252 Reports CAWS blank messages being double-logged closed
253 Incidents Integration of IRIS with TMCAL new
254 CMS Load new quick message library that contains page

on times
closed

255 CCTV Video from cameras not visible in IRIS client closed
256 Maps Map street name hover text not visible in client new
257 IRIS Merging with IRIS 3.90.0 closed
258 IRIS GetStatus requests are generating extra log mes-

sages
closed

259 IRIS Merging with IRIS 3.91.0 closed
260 IRIS UI Message preview not correctly displaying quick

messages
closed

261 CMS Design improvement for code that calculates CMS
text position

closed

262 IRIS Merging with IRIS 3.92 and 3.93 closed
263 CMS Editable CMS line comboboxes should have stan-

dard click behavior
closed

264 IRIS Client Zoom button on the toolbar permanently become
gray and unclickable

closed

265 IRIS Reports No Active Cameras 0 / 7 new
266 Reports Reduced size of D10 maps by 50% closed
267 IRIS Client Synchornization issue in client on startup. closed
268 CMS OtherSystem message is categorized as CAWS De-

ployed
closed

269 IRIS Reports Duplicate message logging due to page on-time closed
270 CMS Sensorserver is returning the wrong error message

when a phone line is busy
closed

271 IRIS Client The ’blank’ and ’send’ buttons are intermittently
not activating when pressed

closed

272 CMS Terminal server modem connection problem in
sensorserver

closed

273 CMS Ability to schedule CMS messages with a specifi-
able frequency

new

274 CMS Monitoring and control of portable CMS new
275 Maps Add a more detailed street map for D5 IRIS new
276 CMS Enable the message duration combobox new
277 IRIS Reports Add ability to send single page flashing messags new
278 IRIS Add center-to-center (C2C) functionality to IRIS new
279 CAWS Can’t override CAWS blank message closed
280 CMS Add ability to perform periodic ’get message’ re-

quest for dial-up modems
new

281 CMS Add a confirmation dialog-box after the user
presses the Send button

closed

Continued on Next Page. . .

83

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

282 Traffic Add support for microwave traffic detectors for D1 new
283 IRIS Update to IRIS 3.94, 3.95, 3.96 closed
284 CMS Message author name not updating correctly in

CMS Chooser
closed

285 CMS Accurate memory of CMS messages in sen-
sorserver

new

286 User Accounts Edit User List closed
287 Maps Add KML output for additional field elements new
289 CMS Ability to specify all CMS configuration informa-

tion via the IRIS client
Reopened

290 CMS Rapid flashing of DMS page preview closed
291 CMS Communication problem with new CMS V60 closed
292 General D1 IRIS server move closed
293 CMS Connection timeout on CMS # V27 closed
294 IRIS Null handling conformity closed
295 IRIS Client Correct font combobox behavior closed
296 IRIS Client Correct quick message library combobox behavior closed
298 IRIS Client IRIS client froze and can’t close new
299 IRIS Release 9.0.6 closed
300 User Accounts Create IRIS account for John Castro closed
301 IRIS Client CMS message lines being incorrectly trimmed closed
302 IRIS Release 9.0.5 closed
303 IRIS UI IRIS logout and log back in new
304 CMS CMS missing in Chooser catogries new
305 IRIS Changing THe IP address for IRIS server new
306 User Accounts Creat New IRIS user John A Ragusa Design
307 User Accounts Create new IRIS user Laura C Williams Design
308 IRIS Client The IRIS client needs to fit on a non-huge screen new
309 CMS CMS reinitialization message is not clearing cached

message
closed

310 CMS CMS message bitmap corruption issue new
311 CMS Users should not be able to specify a page on-time

less than the minimum allowed
Development

312 User Accounts Create new user Open
313 Maps Map not visible when the user changes to Cameras

tab
new

314 CMS CMS ’get message’ button behavior is incorrect closed
315 CMS Vertical CMS message centering is incorrect. closed
316 IRIS Reports Update D10 CAWS reports closed
317 IRIS Install A complete backup system for IRIS - D10 Development
318 IRIS Admins can easily lock themselves out when mod-

ifying permissions
Open

319 IRIS Client Need appropriate error message for users without
any roles

new

320 IRIS Client IRIS client freezes if a wrong user name / password
was entered

new

321 IRIS Client Client login failure with EOF message new
322 CMS Vertical centering regression Development
Continued on Next Page. . .

84

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Table A.1 – Continued

Ticket Component Description Status

323 IRIS Merge w/ Mn/DOT releases for R9.0.7 new
324 IRIS Client Make spreadsheet type view of CMS editable and

sortable
new

325 CMS Sensorserver threading issue for modem CMS closed
326 CCTV Operator can’t use camera PTZ, presets, zoom closed
327 Maps Can’t see CMS map icons if logged in as ’view-

only’ user
new

328 CAWS Incorrect CMS blanking behavior for failed CMS new
329 CMS Correct response to detection of power cycle events Design
330 CCTV Camera Control seems to work intermittently new
331 CMS Client crashes sometimes during multi-selection new
332 Maps Pink Screen Map new
333 Maps No CMS Icons closed
334 General Release 9.0.7 composite ticket new
335 General Cumulative communication statistics is not run-

ning
new

85

Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

Appendix B

IRIS Installation Verification Procedure

The verification procedure below is used by a developer or system administrator on the
production server after installing an IRIS release and before executing verification tests.
For information on the larger test procedure, see Section 3.

These instructions are intended for use by developers or system administrators who understand
IRIS and the operating system. If a step does not make complete sense, then stop and find someone
that can explain it.

1. Verify the new release on the development machine:

(a) Start the iris client.

(b) Verify release number and date have been incremented: Help, About.

(c) Verify the CAWS driver is turned off or on (as desired): System Attribute Edi-
tor.

(d) Verify: travel time messages are turned on or off as desired.

(e) Verify: IRIS user permissions are as expected for all users.

(f) Verify: each functional area: traffic, CMS, incidents, video.

(g) Verify: check the client and server logs, for warning messages for missing sys-
tem attributes and other warning messages.

2. Verify the new release on the production machine after installation:

• Verify installation file dates and versions:

– Verify symbolic links point to the correct directory version for: client, server,
sensorserver, trafserver.

– ls -lt /usr/share/java/tms/irisserver
– ls -lt /usr/share/java/tms/sensorserver
– ls -lt /usr/share/java/tms/trafserver
– ls -lt /var/www/html/iris-client

87

Copyright 2011, AHMCT Research Center, UC Davis

65A0210, T.O. 06-22 , August 31st, 2009, Research & Development of Open-Source ATMS Hardware & Software Components

– ls -lt /var/www/html/iris-client/lib

• Verify config files have correct IP address:

– grep -R ’119.17’ /usr/share/java/tms/*
– grep -R ’119.17’ /var/www/html/iris-client
– grep -R ’117.19’ /etc/iris/*
– grep -R ’117.19’ /usr/share/java/tms/*
– grep -R ’117.19’ /var/www/html/*

• Verify cron jobs are running:

– Have new cron jobs been created? If so, add them using: crontab -e
– Verify cron jobs are specified: crontab -l
– ls -lt /var/www/html/signscope.html
– ls -lt /var/www/html/cmsreport.txt

• Verify the database:

– Verify the old database has been backed up: ls -lt /var/lib/pgsql
– grep -R ’119.17’ /var/lib/pgsql/data/pg hba.conf
– /sbin/service postgresql status

• Verify the servers:

– Verify servers started: iris, sensorserver, trafserver, drvsrv
– Verify the iris server log file looks good: more /var/log/tms/iris.stderr
– Verify the sensorserver log file looks good: more /var/log/tms/sensorserver.log.0
– Verify the trafserver log file looks good: more /var/log/tms/trafserver.log.0

• Verify the IRIS client:

– Start IRIS client via jnlp and log in.
– Verify the release number and date in help / about.
– Verify CMS are active or deployed.
– Verify Travel time messages are turned on or off as desired.
– Verify user permissions are reasonable for all users.
– Verify the IRIS client contains features in the new release.
– Verify each functional area: traffic, CMS, video cameras, incidents, CMS

message logging, SignScope.
– Verify video is viewable for each camera
– Verify real-time traffic data is being received: each VDS is not gray.

• Verify system start-up configuration is correct:

– Restart the IRIS server.
– Verify each server starts: trafserver, sensorserver, IRIS, the database
– Start an IRIS client and perform a get-status request to verify the network

is configured correctly.

88

Copyright 2011, AHMCT Research Center, UC Davis

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Disclaimer/Disclosure
	Acronyms and Abbreviations
	Acknowledgments
	Introduction
	Document Purpose
	Study Objectives and Motivation
	The Collaborative Approach
	Project History
	Project Scope
	The History of Caltrans' Attraction to Mn/DOT's IRIS
	Internal Caltrans Project Demonstrations
	Additional Caltrans IRIS Deployments
	Study Time-line

	Project Documentation

	Method
	Study Management
	Software Engineering
	Project Coordination
	Project Management and Communication Tools
	Release Scheduling
	Focus on Reliability

	Requirements Management
	Stage 1: Deployment of Primary Feature Set
	Stage 2: Iterative Refinement and Extension

	Cooperative Development Process
	Single IRIS Code-base
	Distributed Source Repository Management System
	Typical Development Sequence

	Testing, Validation, and Verification
	Test Plan
	Automated Unit Test Cases
	User Acceptance Tests
	Defect Tracking
	Testing and Verification Results
	Automated Warning System Verification
	IRIS Scalability Testing
	Future Testing and Verification

	IRIS Portability
	Relevance of Portability
	IRIS Modularity
	IRIS Clients Written In Other Software Languages
	Configuring IRIS for an Agency
	System Attributes
	Internationalization
	Properties Files
	User Permissions
	Interfacing IRIS with Devices and Software Systems
	Help System

	IRIS Operating System Portability

	Results
	TMC Operational Safety Enhancements
	CMS Safety Enhancements
	Automated Warning System Safety Enhancements
	Functional Integration Safety Enhancements

	Functional Enhancements to TMC Operations
	General Enhancements to TMC Operations
	Enhancements to TMC Traffic Monitoring
	Enhancements to TMC CMS Monitoring and Control
	Enhancements to TMC Video Monitoring and Control
	Enhancements to TMC Reporting

	IRIS Integration with Proprietary Protocols
	Project Contributions to IRIS
	Quantitative Contributions to IRIS
	Qualitative Contributions to IRIS
	Mn/DOT's Perspective on Study Contributions

	Other Study Products
	CASPER Field Controller Simulator
	IRIS Developer Ticket System
	Sensor Server
	Defect Discovery and Repair
	Traffic Server
	Watchdog

	Costs
	Estimating the Free Economic Value of IRIS
	Component and Functional Area Effort Breakdown
	Estimated IRIS Maintenance Costs
	High-level Cost Comparison of Open and Proprietary ATMS

	Effort Estimates for New IRIS Implementations
	Future Enhancements

	Conclusions and Recommendations
	Strengths of the Collaborative Approach
	Obstacles and Concerns with the Collaborative Approach
	Lessons Learned
	IRIS Strengths and Areas for Improvement
	Conclusions
	Recommendations

	References
	Appendices
	Functional and Non-functional Requirements
	IRIS Installation Verification Procedure

