ADA Notice For individuals with sensory disabilities, this document is available in alternate formats. For

information call (916) 654-6410 or TDD (916) 654-3880 or write Records and Forms

Management, 1120 N Street, MS-89, Sacramento, CA 95814.

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION

TECHNICAL REPORT DOCUMENTATION PAGE

TR0003 (REV 10/98)

	2. GOVERNMENT ASSOCIATION NUMBER	3. RECIPIENT'S CATALOG NUMBER
CA23-3873	N/A	N/A
4. TITLE AND SUBTITLE		5. REPORT DATE
Evaluation of Next-Generation CCTV Encoder for ITS Field		June 30, 2023
Elements		6. PERFORMING ORGANIZATION CODE
		AHMCT Research Center, UC Davis
7. AUTHOR		8. PERFORMING ORGANIZATION REPORT NO.
Travis B. Swanston, Kin S.	. Yen, and Ty A. Lasky	UCD-ARR-23-06-30-03
9. PERFORMING ORGANIZATION NAME A	ND ADDRESS	10. WORK UNIT NUMBER
AHMCT Research Center UCD Dept. of Mechanical & Aerospace Engineering Davis, California 95616-5294		N/A
		11. CONTRACT OR GRANT NUMBER
		65A0749 Task 3873
		13. TYPE OF REPORT AND PERIOD COVERED
		Final Report
12. SPONSORING AGENCY AND ADDRES	-	January 2021 – June 2023
California Department of Transportation P.O. Box 942873, MS #83 Sacramento, CA 94273-0001		14. SPONSORING AGENCY CODE
		Caltrans
15. SUPPLEMENTARY NOTES		

16. ABSTRACT

The California Department of Transportation (Caltrans) has and is currently installing Intelligent Transportation System (ITS) CCTV sites in multiple areas around the state. Unfortunately, not all manufacturer specifications measure attributes using the same methodologies. In addition, many manufacturers now produce products that provide high throughput but cannot stream video at the ultra-low-speed throughputs needed at remote sites in rural areas of the state. In rural districts, many CCTV sites' communication options are limited to plain old telephone service (POTS) for data transport data, often at 10 kbps or less. Caltrans needed equipment evaluation research under Caltrans rural operating conditions and environments to determine if CCTV video encoders would meet Caltrans performance measures. This research determined how video encoder equipment performs under real-world Caltrans rural operating conditions. The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center determined and evaluated which next-generation video encoder equipment would be viable as Caltrans ITS assets. This report summarizes the results presented in prior project interim reports and provides the final research findings and recommendations.

	18. DISTRIBUTION STATEMENT No restrictions. This docu public through the Natio Information Service, Sprir	nal Technical
19. SECURITY CLASSIFICATION (of this report) Unclassified	20. NUMBER OF PAGES	21. COST OF REPORT CHARGED

DISCLAIMER

The research reported herein was performed by the Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center, within the Department of Mechanical and Aerospace Engineering at the University of California – Davis, for the Division of Research, Innovation and System Information (DRISI) at the California Department of Transportation. AHMCT and DRISI work collaboratively to complete valuable research for the California Department of Transportation.

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein.

The contents of this report do not necessarily reflect the official views or policies of the University of California. This report does not constitute an endorsement by the University of California of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001.

Advanced Highway Maintenance and Construction Technology Research Center

Department of Mechanical and Aerospace Engineering University of California at Davis

Evaluation of Next-Generation CCTV Encoder for ITS Field Elements

Travis B. Swanston, Kin S. Yen & Ty A. Lasky: Principal Investigator

Report Number: CA23-3873 AHMCT Research Report: UCD-ARR-23-06-30-03 Final Report of Contract: 65A0749 Task 3873

June 30, 2023

California Department of Transportation

Division of Research, Innovation and System Information

Executive Summary

Problem, Need, and Purpose of Research

The California Department of Transportation (Caltrans) has and is currently installing Intelligent Transportation System (ITS) closed-circuit TV (CCTV) sites throughout the state. New methods of transmitting video from field sites to the Transportation Management Center are being developed to improve video stream quality significantly. Multiple manufacturers produce these "nextgeneration" encoders and provide Caltrans engineers with specifications and marketing materials. Manufacturer specifications measure attributes using different methodologies, and some products do not meet advertised specifications. In addition, many manufacturers produce products that provide high throughput but cannot stream video at the ultra-low-speed needed at remote sites in rural areas.

In rural districts, many CCTV sites' communication options are limited to plain old telephone service (POTS) for data transport, often at 10 kbps or less. As the video industry pushes the limits of higher bandwidth and increased compression, Caltrans must monitor whether the next-generation video encoders will be able to function in low-bandwidth conditions.

Caltrans needed equipment evaluation research under Caltrans rural operating conditions and environments to determine if CCTV video encoders would meet Caltrans performance measures [1].

The Advanced Highway Maintenance and Construction Technology Research Center determined and evaluated which next-generation video encoder equipment would be viable as rural ITS field equipment options as Caltrans adds to and refreshes ITS assets.

An evaluation is provided based on performance of the chosen video encoder equipment. Details of this evaluation are documented in detail in an interim report [2], and briefly herein, and have been provided to the members of the Rural Program Steering Committee (PSC) and to districts.

Overview of the Work and Methodology

The research involved the following tasks:

- 1. Project management
- 2. Assess current Caltrans rural operating conditions and gaps
- 3. Select and procure hardware

- 4. Bench testing at AHMCT
- 5. Final report

The original proposed research included rural field testing of the systems after completion of the bench testing. In addition, the researchers identified additional camera(s) for bench testing. Due to delays from the COVID-19 pandemic, which was in full force through much of this research, the bench testing took longer than anticipated. At the completion of this task, there was insufficient time for meaningful rural field testing by Caltrans personnel, and insufficient time for them to prepare for the testing. Upon conferring with the project manager, it was decided to omit the rural field testing. Several camera systems were procured to support testing of additional models, and some of these were tested. Procurement time for some of the cameras was longer than ordinary, so these systems were not tested. One vendor indicated a six-month time of arrival, which would have allowed for testing. However, this camera did not arrive after nine months due to COVID19-related supply chain issues, and AHMCT canceled this order to avoid billing beyond the contract period.

Major Results and Recommendations

Quantitative data from controlled testing of the CCTV encoder systems (research Task 4) is a key deliverable. These data are presented in detail in the interim report [2] included in Appendix C. Qualitative findings from preparing for and executing the CCTV encoder tests may be more useful to Caltrans in the long-term. For example, cameras from some vendors are excellent at highspeed streaming in urban areas but cannot stream at sufficiently low rates for rural installations. These findings are detailed in Chapter 3 as well as Appendix C.

To facilitate the multiple camera and multiple vendor testing of this research effort, custom CCTV camera configuration code was developed. This code was not an originally listed as a deliverable. However, AHMCT is making this code available to Caltrans as part of this research project, and we believe this tool will provide substantial long-term value to Caltrans Traffic Operations and the TMC.

Table of Contents

Executive Summary	ii
Problem, Need, and Purpose of Research	
Overview of the Work and Methodology	
Major Results and Recommendations i	
Table of Contentsir	
Figures	
Tablesv	/i
Acronyms and Abbreviationsv	ïi
Acknowledgmentsi	
Chapter 1: Introduction	
Problem	1
Objectives	1
Scope	2
Overview of Research Results and Benefits	2
External Impacts on Research	3
Chapter 2: Summary of Prior Interim Reports	
Evaluation of Next-Generation CCTV Encoder for ITS Field Elements - Caltrans Operating Conditions and Usage for CCTV Encoders [1]	
Evaluation of Next-Generation CCTV Encoder for ITS Field Elements - Controlled Testing of CCTV Encoder Systems [2]	4
Chapter 3: Conclusions and Future Research13	3
COVID19-Related Delays and Impacts13	
Future Research1	4
References1	5
Appendix A: CCTV Operating Conditions and Characteristics1	6
Appendix B: Interim Report: Caltrans Operating Conditions and Usage for CCTV Encoders1	
Appendix C: Interim Report: Controlled Testing of CCTV Encoder Systems 44	

Figures

Figure 2.1: Axis Q8752-E bispectral camera	6
Figure 2.2: Bosch MIC inteox 7100i camera	7
Figure 2.3: CostarHD RISE 4260HD camera	8
Figure 2.4: WTI Viper/Sidewinder HD camera	9
Figure 2.5: Test setup	.10
Figure 2.6: CCTV devices mounted for testing	.11
Figure 2.7: CCTV devices aimed at the test display	.12

Tables

Table 2.1: Devices selected for testing

Acronyms and Abbreviations

Acronym	Definition
АНМСТ	Advanced Highway Maintenance and Construction Technology Research Center
BNC	Bayonet Neill-Concelman
Caltrans	California Department of Transportation
CCTV	Closed-Circuit TV
CWWP	Commercial Wholesale Web Portal
DOT	Department of Transportation
DRISI	Caltrans Division of Research, Innovation and System Information
HDS	High-Definition-System
HTTP	Hypertext Transfer Protocol
ITS	Intelligent Transportation System
LTE	Long-Term Evolution
M-JPEG	Motion-JPEG
PM	Project Manager
POTS	Plain Old Telephone Service
PSC	Program Steering Committee
RTMP	Real-Time Messaging Protocol
RTSP	Real Time Streaming Protocol
SFTP	Secure FTP
SSH	Secure Shell

Acronym	Definition
ТМС	Transportation Management Center

Acknowledgments

The authors thank the California Department of Transportation (Caltrans) for their support, in particular Jeremiah Pearce and Keith Koeppen with District 2, Andres Chavez and Dean Campbell with District 3, Sam Campos with District 6, Dirk Spaulding with District 8, with Dung Le District 10, John Castro with Headquarters Traffic Engineering, and Sean Campbell with the Division of Research, Innovation and System Information. The authors acknowledge the dedicated efforts of the AHMCT team who have made this work possible.

Chapter 1: Introduction

Problem

The California Department of Transportation (DOT) (Caltrans) has and is currently installing Intelligent Transportation System (ITS) closed-circuit TV (CCTV) sites in multiple areas around the state. New methods and efficiencies of transmitting video from the field sites to the Transportation Management Center (TMC) are being developed to improve the quality of the video stream significantly. Multiple manufacturers produce these "next-generation" encoders and provide Caltrans engineers with specifications and marketing materials. Unfortunately, not all manufacturer specifications measure attributes using the same methodologies, and some products do not meet their advertised manufacturer specifications. In addition, many manufacturers now produce products that provide high throughput but cannot stream video at the ultra-lowspeed throughputs needed at remote sites in rural areas of the state.

In rural districts, many CCTV sites' communication options are limited to plain old telephone service (POTS) for data transport, often at 10 kbps or less. As the video industry pushes the limits of higher bandwidth and increased compression, Caltrans must monitor whether the next-generation video encoders will be able to function in low-bandwidth conditions.

Caltrans needed equipment evaluation research under Caltrans rural operating conditions to determine if CCTV video encoders would meet Caltrans performance measures.

Objectives

Several companies have next-generation video encoder equipment. Each company has a specification sheet that is often difficult to compare with their competitors. The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center determined and evaluated which nextgeneration video encoder equipment would be viable as rural ITS field equipment options as Caltrans adds to and refreshes ITS assets.

One of the primary goals of this research was to characterize how the selected encoding devices can perform under a variety of network conditions, especially under the low-bitrate, high-error conditions that are common at rural field element sites. A secondary goal was to review other relevant features of the devices that make impact its applicability to different types of sites. The

purpose of these goals is to facilitate future device selection for various sites, given their particular network conditions and other attributes.

An evaluation is provided based on performance of the chosen video encoder equipment. Details of this evaluation are documented herein and have been provided to the members of the Rural Program Steering Committee (PSC) and to districts.

How well a video stream performs under different network conditions is primarily a function of the configurability and feature set of the encoding device. A poor choice of decoder on the stream-consuming end can also affect the stream quality of course. However the streaming protocols supported by the devices under consideration do not dynamically adapt to feedback from the decoder so, as long as the decoder is stable and fully supports the encoding mode being used, its impact on stream quality should be minimal.

Characterizing how the video streams from a given encoding device may perform under various network conditions involves carefully considering the device's range of features and relevant configuration parameters. First, we will explore these features and parameters for each selected device, examine how varying network conditions may affect the resulting stream, and present qualitative and quantitative data collected during testing in order to facilitate optimal device configuration for sites of various types. Second, we will draw comparisons between devices and their range of encoding modes and parameters and other features in order to facilitate optimal device selection for sites of various types.

Scope

This report summarizes the results presented in prior interim project reports, which are also included in the appendices, and provides the final research findings, including final recommendations from the research.

Overview of Research Results and Benefits

The key deliverables of this project include:

- Interim report summarizing Caltrans operating conditions and usage for CCTV encoders (Appendix B) [1]
- Interim report summarizing controlled testing of CCTV encoder systems (Appendix C) [2]
- Procured hardware
- Custom CCTV configuration software (added deliverable)
- Final report

External Impacts on Research

The original proposed research included rural field testing of the systems after completion of the bench testing. In addition, the researchers identified additional camera(s) for bench testing. Due to delays from the COVID-19 pandemic, which was in full force through much of this research, the bench testing took longer than anticipated. At the completion of this task, there was insufficient time for meaningful rural field testing by Caltrans personnel, and insufficient time for them to prepare for the testing. Upon conferring with the project manager, it was decided to omit the rural field testing. Several camera systems were procured to support testing of additional models, and some of these were tested. Procurement time for some of the cameras was longer than ordinary, so these systems were not tested. One vendor indicated a six-month time of arrival, which would have allowed for testing. However, this camera did not arrive after nine months due to COVID19-related supply chain issues, and AHMCT canceled this order to avoid billing beyond the contract period.

Chapter 2: Summary of Prior Interim Reports

Project deliverables included two previously completed interim reports, which are summarized briefly in this chapter. For details, the reader is referred to the original reports in standalone form or in the appendices.

Evaluation of Next-Generation CCTV Encoder for ITS Field Elements - Caltrans Operating Conditions and Usage for CCTV Encoders [1]

As part of the kickoff meeting and subsequent discussions, based on Project Panel inputs and direction, AHMCT ascertained Caltrans rural operating conditions and identified gaps related to CCTV encoder systems, including field conditions as well as characteristics of rural communications channels for the resulting images. AHMCT identified known gaps related to Caltrans use of CCTV encoders in rural environments as well as the categories of CCTV encoder systems to be evaluated in the following research tasks. Where feasible, the report identified specific CCTV encoder systems to evaluate in a prioritized list.

To accomplish the objectives of this task of the study, AHMCT held discussions with the Project Panel and the Project Manager, and a survey was created and provided to five Caltrans districts (District 2 [D2], D3, D6, D8, and D10). The data gathered from these discussions and the survey were aggregated and analyzed.

The data gathered included information on current and desired video encoding standards, streaming protocols, characteristics of field element data connections, expected ambient temperature ranges at CCTV field element sites, and other functional requirements, such as device management interfaces, extra features, etc. Information on next-generation CCTV camera and encoder equipment that Caltrans engineers were currently considering for potential future use was also gathered.

Evaluation of Next-Generation CCTV Encoder for ITS Field Elements - Controlled Testing of CCTV Encoder Systems [2]

AHMCT performed controlled testing of the CCTV encoder systems. Testing within this task validated the CCTV encoder systems against vendor-neutral

specifications and requirements developed jointly between AHMCT and the Project Panel. This testing included intra-camera evaluations and comparisons for varying configurations and settings, as well as inter-camera comparisons of comparable configurations for the cameras included in the tests. The four cameras included are shown in Figure 2.1 through Figure 2.4. Table 21 provides the list of devices tested.

Device	Туре	Part #	Firmware Version
Axis Q8752-E	CCTV camera with integrated encoder	01838-001	10.12.153
Bosch MIC inteox7100i	CCTV camera with integrated encoder	MIC-7602- Z30GR	8.46.0030
CostarHD RISE4260HD	CCTV camera with integrated encoder	4261-1000	Core 4.1.92, Rise 4.1.323
WTI Viper/SidewinderHD	CCTV camera with integrated encoder	VS720-H.264- HD30L-POE-R	2.15.0.r

Table 2.1: Devices selected for testing

Figure 2.1: Axis Q8752-E bispectral camera

Figure 2.2: Bosch MIC inteox 7100i camera

Figure 2.3: CostarHD RISE 4260HD camera

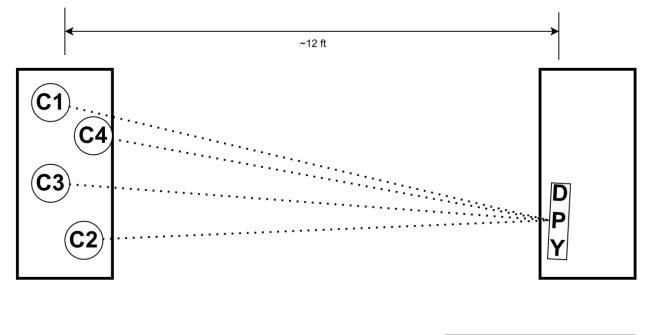


Figure 2.4: WTI Viper/Sidewinder HD camera

Two types of testing were performed in this study: video stream testing, and static image testing. While the aim of this research primarily relates to video streaming, each Caltrans district makes extensive use of static images, acquired

by means of periodic fetches from CCTV encoders at field element sites via the Caltrans CCTV Information Relay located in each district. For many rural CCTV sites which do not have the network capacity to support a useable video stream, generating and transferring these static images is the principal mode of use. Typically, these images are encoded in JPEG format and fetched from the encoder using HTTP or Hypertext Transfer Protocol Secure (HTTPS). Since this remains an important use case for highway surveillance CCTV encoders, static image testing was included in this research.

The testing was carried out in an AHMCT laboratory. A 4K display was placed on a table at one end of the room, and the CCTV devices were arranged on another table at a sufficient distance from the display to allow for clear focus on the image shown on the display. This configuration is illustrated in Figure 2.5 through Figure 2.7, and is discussed in detail in Appendix C.

Figure 2.5: Test setup

Figure 2.6: CCTV devices mounted for testing

Figure 2.7: CCTV devices aimed at the test display

The primary goals of the data analysis phase were to determine, for each device:

- How do the various stream configurations tested compare with each other, especially in terms of bitrate and frame loss estimates?
- How well does the device tend to keep the stream bitrate within range of the specified target and/or maximum bitrate parameters?
- How do network bandwidth limitations affect the stream as received by the client/decoder?

Chapter 3: Conclusions and Future Research

Key contributions of this research project included:

- Performance of various CCTV systems and configurations vs. typical rural operating needs
- Performance comparison across CCTV cameras for comparable configurations
- Custom CCTV configuration software
- A test methodology which can support future device testing, evaluation, and comparison
- Device-specific conclusions based on controlled bench testing
- Novel visualization tools and methodologies for assessing CCTV system performance, including the stream quality analysis chart
- Numerous test result tables and charts for various configurations for the four tested devices.

The purpose of these tables is to aid in the stream configuration process and can help answer two key questions:

- 1. For a given resolution and frame rate, what are reasonable minimum values for target rate (if applicable) and maximum rate that will produce a reliable stream with this encoding?
- 2. For a communications link with a given nominal bitrate, what is the highest resolution and/or frame rate that can be streamed reliably with this encoding?

These tables help find approximate answers to these questions. Once that is done, the operator can use these answers as a starting point in tuning the stream until the visual quality is acceptable.

COVID19-Related Delays and Impacts

The proposed research included rural field testing of the systems after completion of the bench testing. In addition, the researchers identified additional camera(s) for bench testing. Due to delays from the COVID-19 pandemic, which was in full force through much of this research, the bench testing took longer than anticipated. At the completion of that task, there was insufficient time for meaningful rural field testing by Caltrans personnel and insufficient time for them to prepare for the testing. Upon conferring with the project manager, it was decided to omit the rural field testing. Several camera systems were procured to support testing of additional models, and some of these cameras were tested. Procurement time for some of the cameras was longer than ordinary, so these systems were not tested. One vendor indicated a six-month time of arrival, which would have allowed for testing. However, this camera did not arrive after nine months due to COVID19-related supply chain issues, and AHMCT canceled this order to avoid billing beyond the contract period.

Future Research

Future evaluation should include completing the field installation, testing, and associated evaluation. However, due to the pace of technological change in this area, this is problematic, in that by the time additional research is conducted to address field testing, this report's findings will be obsolete.

Future research and deployment should leverage the software tools and more importantly the methodology developed herein to carefully test, evaluate, and compare emerging devices. The tools should also be used to answer the key encoding questions:

- 1. For a given resolution and frame rate, what are reasonable minimum values for target rate and maximum rate that will produce a reliable stream with this encoding?
- 2. For a communications link with a given nominal bitrate, what is the highest resolution and/or frame rate that can be streamed reliably with this encoding?

Following this, the user can fine-tune the configuration for best results.

References

- [1] T. B. Swanston, K. S. Yen, and T. A. Lasky, "Evaluation of Next-Generation CCTV Encoder for ITS Field Elements - Caltrans operating conditions and usage for CCTV encoders," AHMCT Research Center, Interim Report UCD-ARR-21-06-30-02, Jun. 2021.
- [2] T. B. Swanston, K. S. Yen, and T. A. Lasky, "Evaluation of Next-Generation CCTV Encoder for ITS Field Elements - Controlled testing of CCTV encoder systems," AHMCT Research Center, Interim Report UCD-ARR-23-03-31-02, Jun. 2023.

Appendix A: CCTV Operating Conditions and Characteristics

Based on initial discussions with the project manager and project champion, the following CCTV operating conditions and characteristics have been identified as of interest in this study:

- Testbeds
 - o Existing
 - Need to construct
- District type
 - o Rural
- Bandwidth
 - Ultra-low (up to 10 kbps)
 - Low (10 kbps 128 kbps)
 - Medium
 (128 kbps 1.5 Mbps) , if
 available
 - High (greater than
 1.5 Mbps), if available
- JPEG needs for CWWP2
- H.264 needs for streaming / Wowza
 - o RTMP
 - o RTSP
 - HDS
 - o MJPEG
- Decoding digital video at the district office
- Environments
 - o Coastal
 - o Mountain
 - o Desert
 - o Metropolitan, if available

- Operating temperature range
- Form factor
 - Integrated CCTV
 - Dome
 - Pole-mounted
 360 deg PTZ
 - Stand-alone enclosure
 - Rack-mountable
 - Din-rail
- Cabling and physical interface
 - o Analog
 - BNC (video)
 - Serial (RS-422)
 - Digital
 - Ethernet
- Interfaces
 - o HTTP
 - o SSH
 - o SFTP
 - o Others
- Scene lighting function of CCTV unit
 - o Luminaire
 - Moonlight
 - Headlights
 - Integration

Appendix B: Interim Report: Caltrans Operating Conditions and Usage for CCTV Encoders

For individuals with sensory disabilities, this document is available in alternate formats. For information call (916) 654-6410 or TDD (916) 654-3880 or write Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814.

1. REPORT NUMBER CA22-3873	2. GOVERNMENT ASSOCIATION NUMBER	3. RECIPIENT'S CATALOG NUMBER
 4. TITLE AND SUBTITLE Evaluation of Next-Generation Elements - Caltrans Operation CCTV Encoders 7. AUTHOR Travis B. Swanston, Kin S. Yen 		5. REPORT DATE November 17, 2021 6. PERFORMING ORGANIZATION CODE AHMCT Research Center, UC Davis 8. PERFORMING ORGANIZATION REPORT NO. UCD-ARR-21-06-30-02
9. PERFORMING ORGANIZATION NAME AND ADDRESS AHMCT Research Center UCD Dept. of Mechanical & Aerospace Engineering Davis, California 95616-5294		10. WORK UNIT NUMBER N/A 11. CONTRACT OR GRANT NUMBER 65A0749 Task 3873 13. TYPE OF REPORT AND PERIOD COVERED Interim Report
12. SPONSORING AGENCY AND ADDRESS California Department of Transportation P.O. Box 942873, MS #83 Sacramento, CA 94273-0001		January 2021 – June 2021 14. SPONSORING AGENCY CODE Caltrans
15. SUPPLEMENTARY NOTES		

16. ABSTRACT

The California Department of Transportation (Caltrans) has and is currently installing Intelligent Transportation System (ITS) CCTV sites in multiple areas around the state. Unfortunately, not all manufacturer specifications measure attributes using the same methodologies. In addition, many manufacturers now produce products that provide high throughput but cannot stream video at the ultra-low-speed throughputs needed at remote sites in the rural areas of the state. In rural districts, many CCTV sites have communication options limited to plain old telephone service (POTS) to transport data, often at 10 kbps or less. Caltrans needed equipment evaluation research under Caltrans rural operating conditions and environments to determine if CCTV video encoders would meet Caltrans performance measures. This research is determining how video encoder equipment performs under real-world Caltrans rural operating conditions. The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center will determine and evaluate which next-generation video encoder equipment would be viable as Caltrans ITS assets. This report summarizes the results for Caltrans operating conditions and usage for CCTV encoders.

	18. DISTRIBUTION STATEMENT No restrictions. This docu public through the Natio Information Service, Sprin	nal Technical
19. SECURITY CLASSIFICATION (of this report) Unclassified	20. NUMBER OF PAGES	21. COST OF REPORT CHARGED

Reproduction of completed page authorized

DISCLAIMER

The research reported herein was performed by the Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center, within the Department of Mechanical and Aerospace Engineering at the University of California – Davis, for the Division of Research, Innovation and System Information (DRISI) at the California Department of Transportation. AHMCT and DRISI work collaboratively to complete valuable research for the California Department of Transportation.

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein.

The contents of this report do not necessarily reflect the official views or policies of the University of California. This report does not constitute an endorsement by the University of California of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001.

Advanced Highway Maintenance and Construction Technology Research Center

Department of Mechanical and Aerospace Engineering University of California at Davis

Evaluation of Next-Generation CCTV Encoder for ITS Field Elements -Caltrans Operating Conditions and Usage for CCTV Encoders

Travis B. Swanston, Kin S. Yen & Ty A. Lasky: Principal Investigator

Report Number: CA22-3873 AHMCT Research Report: UCD-ARR-21-06-30-02 Final Report of Contract: 65A0749 Task 3873

November 17, 2021

California Department of Transportation

Division of Research, Innovation and System Information

Executive Summary

To ascertain the current operating conditions, needs, and limitations of existing Caltrans CCTV camera and encoder systems, a survey was provided to five districts (District 2 [D2], D3, D6, D8, and D10). Information collected by this survey included expected minimum and maximum ambient temperatures, types of network connections used for CCTV field elements, desired support for video streaming protocols, and other data interfacing requirements. In addition, the survey collected information on CCTV camera and encoder equipment that each district is considering as candidates for potential future deployment.

Problem, Need, and Purpose of Research

A thorough understanding of the environmental and functional needs of each district with respect to CCTV cameras and encoders was needed in order to determine a set of equipment options to be evaluated in this study as well as to determine the specific operational conditions (e.g. temperature ranges, network conditions) against which candidate equipment will be tested.

Background

Reliable and well-functioning CCTV sites are critical to Caltrans operations. The environmental and functionality claims of CCTV equipment manufacturers cannot always be taken at face value due to differing methodologies used for measuring or testing. In addition, many manufacturers now produce products that provide high-quality, data-efficient video streams, yet still fail to reliably function across the types of low-bandwidth, high-latency connections used by many rural sites (often 10 kbps or less). The testing to be performed in this study will seek to validate and quantify the important operational characteristics and functionality of a set of candidate CCTV equipment.

Table of Contents

Executive Summary	ii
Problem, Need, and Purpose of Research	ii
Background	
Table of Contents	
List of Tables	
List of Acronyms and Abbreviations	
Acknowledgments	
Chapter 1: Introduction	
Problem	
Objectives	
Scope	
Chapter 2: Caltrans Rural CCTV Operating Conditions and Gaps	3
Current Operating Conditions and Usage	
Field Element Network Connections	
Encoding Standards and Streaming Protocols	4
Other Functional Requirements and Desired Capabilities	
Expected Temperature Ranges	
Historical Ambient Temperature Ranges	5
Current Gaps and Limitations	7
Streaming	7
Device Management and Control	
Dynamic Range	
Environmental	
Equipment of Interest	
Appendix A: CCTV Operating Conditions and Characteristics	10

List of Tables

Table 1: Survey data collected on district CCTV field element network	
connections (see acronym table for definitions)	3
Table 2: Survey data collected on district video encoding standards and	
streaming protocols (see acronym table for definitions)	4
Table 3: Survey data collected from districts on other functional requirements	
and desired capabilities for CCTV camera/encoder systems (see acronym	
table for definitions)	4
Table 4: Survey data collected on district ambient temperature ranges	
Table 5: Estimated historical ambient temperature extremes by district	
Table 6: Equipment of interest	8

List of Acronyms and Abbreviations

Acronym	Definition
3G	Third-generation wireless mobile telecommunications technology
4G	Fourth-generation wireless mobile telecommunications technology
АНМСТ	Advanced Highway Maintenance and Construction Technology Research Center
ASE	AT&T Switched Ethernet
ATMS	Advanced Traffic Management System
BNC	Bayonet Neill–Concelman
Caltrans	California Department of Transportation
CCTV	Closed-Circuit TV
COTS	Commercial Off-The-Shelf
CWWP2	Commercial Wholesale Web Portal 2
DIN	Deutsches Institut für Normung
DOT	Department of Transportation
DRISI	Division of Research, Innovation and System Information
DSL	Digital Subscriber Line
FTP	File Transfer Protocol
GHCN	Global Historical Climatology Network
HDR	High Dynamic Range
HDS	HTTP Dynamic Streaming

Acronym	Definition
HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
IP	Ingress Protection
IRIS	Intelligent Roadway Information System
ISDN	Integrated Services Digital Network
ITS	Intelligent Transportation Systems
JPEG	Joint Photographic Experts Group
LTE	Long-Term Evolution
MJPEG	Motion-JPEG
NOAA	National Oceanic and Atmospheric Administration
nSSP	Non-Standard Special Provision
NTP	Network Time Protocol
NWS	National Weather Service
ONVIF	Open Network Video Interface Forum
POTS	Plain Old Telephone Service
PSC	Program Steering Committee
PTZ	Pan-Tilt-Zoom
RS-232	Recommended Standard 232
RS-422	Recommended Standard 422
RTMP	Real-Time Messaging Protocol
RTP	Real-time Transport Protocol
RTSP	Real Time Streaming Protocol

Acronym	Definition
SFTP	SSH File Transfer Protocol
SNMP	Simple Network Management Protocol
SR	State Route
SSH	Secure Shell
ТСР	Transmission Control Protocol
ТМС	Transportation Management Center
UDP	User Datagram Protocol

Acknowledgments

The authors thank the California Department of Transportation (Caltrans) for their support, particularly Jeremiah Pearce and Keith Koeppen with District 2; Dean Campbell and Andres Chavez with District 3; Dirk Spaulding with District 8; Dave Le with District 10; and Sean Campbell with the Division of Research, Innovation and System Information. The authors acknowledge the dedicated efforts of the AHMCT team who have made this work possible.

Chapter 1: Introduction

Problem

The California Department of Transportation (DOT) (Caltrans) has and is currently installing Intelligent Transportation Systems (ITS) Closed-Circuit TV (CCTV) sites in multiple areas around the state. New methods and efficiencies of transmitting video from the field sites to the Transportation Management Center (TMC) are being developed, which is significantly improving the quality of the video stream. Multiple manufacturers produce these "next-generation" encoders and provide Caltrans engineers with specifications and marketing materials. Unfortunately, not all manufacturer specifications measure attributes using the same methodologies, and products sometimes do not meet their advertised specifications, making it difficult to objectively compare these products. In addition, many manufacturers now produce products that provide high-quality, data-efficient video streams, yet still fail to reliably function across the types of low-bandwidth, high-latency connections used by many sites in the rural areas of the state.

Objectives

This study seeks to evaluate a set of next-generation CCTV encoders and evaluate the extent to which each is able to function across the spectrum of real-world operating conditions (in particular environment and connectivity) that represent Caltrans CCTV sites. It is expected that these results will be valuable in determining which next-generation CCTV encoder equipment will be a viable option, especially for rural sites, as Caltrans adds to and refreshes its assets.

As a first step in this study, AHMCT ascertained the current operating conditions, functional needs, and limitations of existing Caltrans CCTV camera and encoder systems. In addition, we sought to learn which next-generation CCTV camera and encoder equipment Caltrans engineers were currently considering for potential future use.

Scope

To accomplish the objectives of this task of the study, AHMCT held discussions with the Project Panel and the Project Manager, and a survey was created and provided to five Caltrans districts (District 2 [D2], D3, D6, D8, and D10). The data

gathered from these discussions and the survey were aggregated and analyzed.

The data gathered included information on current and desired video encoding standards, streaming protocols, characteristics of field element data connections, expected ambient temperature ranges at CCTV field element sites, and other functional requirements, such as device management interfaces, extra features, etc. Information on next-generation CCTV camera and encoder equipment that Caltrans engineers were currently considering for potential future use was also gathered.

Chapter 2: **Caltrans Rural CCTV Operating Conditions and Gaps**

Current Operating Conditions and Usage

Field Element Network Connections

Table 1 summarizes the survey data collected on district CCTV field element network connections. Some data has been grouped into broader classes (DSL subtypes, LTE and 4G, etc.)

Table 1: Survey data collected on district CCTV field element network
connections (see acronym table for definitions)

	D2	D3	D6	D8	D10
fiber	•	•	•	•	•
wireless/µwave	•	•		•	
4G/LTE	•		•	•	•
DSL		•		•	•
3G					
cellular ¹					
cable		•			
ISDN	•				
POTS	•				
ASE		•			

¹ The specific classes of cellular service (e.g., 3G, LTE, 4G) utilized by D3 are yet to be determined.

Encoding Standards and Streaming Protocols

Table 2 summarizes the survey data collected on district video encoding standards and streaming protocols.

Table 2: Survey data collected on district video encoding standards and streaming protocols (see acronym table for definitions)

	D2	D3	D6	D8	D10
H.264 via RTSP/RTP	•	•	•	•	•
H.265 via RTSP/RTP			•		●
MJPEG via HTTP(S)	•		•	•	•

In the case of RTSP/RTP, support for UDP, TCP, and HTTP is specified in Caltrans' Non-Standard Special Provisions (nSSPs).

Other Functional Requirements and Desired Capabilities

Table 3 summarizes the survey data collected from districts on other functional requirements and desired capabilities for CCTV camera/encoder systems.

Table 3: Survey data collected from districts on other functional requirements and desired capabilities for CCTV camera/encoder systems (see acronym table for definitions)

	D2	D3	D6	D8	D10
HTTP/HTTPS	•	•	•	•	•
SSH	•	•	•		
ONVIF	•	•		•	•
SNMP	•	•		•	
FTP				•	
lens snow/ice removal		•			
NTP		•		•	

	D2	D3	D6	D8	D10
onboard scheduler		•			
RS-232/422	•				
SFTP	•				
SMTP				•	
IGMP				•	
wide dynamic range		•		•	

Expected Temperature Ranges

Table 4 presents the survey data collected from districts on expected temperature ranges. The responses likely include a mixture of ambient temperature ranges (for integrated CCTV units) and cabinet temperature ranges (for encoders).

Table 4: Survey data collected on district ambient temperature ranges

	Min. °F	Max. °F
D2	-40	125
D3	-25	130
D6	32	106
D8	10	120
D10	35	112
extremes	-40	130

Historical Ambient Temperature Ranges

To better understand the ambient temperature extremes likely to be encountered in each district, data from the Global Historical Climatology Network (GHCN) database² was analyzed. The GHCN includes data from a large collection of land surface weather stations that has been subjected to a suite of quality assurance reviews. The GHCN dataset for California goes back more than a century and is hosted by the National Weather Service (NWS) National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center.³ The time range covered by data from each particular station varies, although most ranges span decades.

Table 5 presents the results of our processing of GHCN data to generate a reasonable estimate of historical ambient temperature extremes encountered in each Caltrans district.

	Min. °F	Max. °F
D1	-9	119
D2	-36	121
D3	-45	123
D4	7	117
D5	0	121
D6	-32	124
D7	-9	129
D8	-25	127
D9	-37	134
D10	-45	119
D11	-1	129
D12	16	116

Table 5: Estimated historical ambient temperature extremes by district

² Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, R. Ray, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: Global Historical Climatology Network - Daily (GHCN-Daily), Version 3.26

³ NOAA National Climatic Data Center (http://doi.org/10.7289/V5D21VHZ) (accessed 9 Jun. 2021)

	Min. °F	Max. °F
extremes	-45	134
Extremes in D2, D3, D6, D8, and D10	-45	127

Current Gaps and Limitations

Streaming

Obtaining a reliable and quality video stream from a field site can be a challenge in rural areas due to limited network connectivity options. This situation may be improved through the use of more modern encoding standards. Earlier devices supported encodings such as MJPEG and MPEG-4. While these encodings work well over network connections with sufficient bandwidth, it is difficult to use them reliably over many of the types of connections available in rural sites. Newer CCTV and encoder devices support encodings, such as H.264 and H.265, that are able to deliver more bandwidth-efficient video streams. Support for more efficient encoding standards is a desirable feature for any new integrated CCTV or encoder device intended for rural use.

Device Management and Control

Configuring and controlling earlier CCTV devices generally required the use of manufacturer-specific protocols. This resulted in additional complexity for software used to manage these devices. There is currently an industry trend to unify support for a common CCTV interface standard called Open Network Video Interface Forum (ONVIF). Given the current momentum toward supporting ONVIF, it is a desirable feature for new CCTV devices.

Dynamic Range

It is common in rural areas for CCTVs to be positioned in such a way that much of their field of view consists of very dark areas. When the CCTV captures high-brightness areas, (such as street lights or vehicle headlights) the resulting image will wash out the bright spots resulting in low quality images. Devices that support high dynamic range⁴ (HDR) are likely to produce a more useful image under these circumstances.

⁴ The precise meaning of the term "high dynamic range" varies among manufacturers, but the general idea tends to be the same.

In the survey, one district expressed a desire for CCTVs with HDR, and AHMCT has previously encountered CCTV sites in other districts that would also likely benefit from HDR support.

Environmental

One of the goals of this research project is to establish, through testing, a reasonable level of confidence that a select group of devices is able to operate at the temperature and humidity extremes likely to be encountered at Caltrans field element sites. In addition, manufacturer-supplied ingress protection (IP) ratings and snow/ice mitigation features will be considered during the device selection and noted in the review process.

Equipment of Interest

Make	Model	Туре	Interested District(s)	Available for Loan?	Notes
Axis	P56 series	integrated	8	maybe	lower power/PTZ
Axis	Q6055-E / Q6075-E	integrated	10	no	available for field test
Axis	Q6215-E	integrated	8	maybe	high power/PTZ
Axis	Q6155-E	integrated	8	unknown	220° vert. tilt
Axis	Q7411	encoder	6	yes	
Axis	Q7424-R Mk II	encoder	2	yes	
Axis	Q8685-E	integrated	2	unknown	
Axis	Q8752-E	integrated	2	no	
CostarHD	RISE 4260HD (4261)	integrated	6, 10	no	may be available for remote testing
CostarHD	RISE 4260HD (4269-1000-02)	integrated	2, 10	yes	

Table 6: Equipment of interest

Make	Model	Туре	Interested District(s)	Available for Loan?	Notes
WTI	VS720-H.264- HD30L-AC-A	integrated	2, 10	unknown	
WTI	Sidewinder	integrated	6	no	may be available for remote testing
WTI	Sidewinder (SW720AP)	integrated	10	yes	
WTI	Sidewinder (SW720P- H.264-HD)	integrated	3	yes	
WTI	Sidewinder (thermal)	integrated	3	not yet	D3 currently does not have one
Pelco	ES6230	integrated	6	no	may be available for remote testing

Appendix A: CCTV Operating Conditions and Characteristics

Based on initial discussions with the project manager and project champion, the following CCTV operating conditions and characteristics were identified at the initiation of this study:

- Testbeds
 - o Existing
 - o Need to construct
- District type
 - o Rural
- Bandwidth
 - Ultra-low (up to 10 kbps)
 - Low (10 kbps 128 kbps)
 - Medium
 (128 kbps 1.5 Mbps) , if
 available
 - High (greater than
 1.5 Mbps), if available
- JPEG needs for CWWP2
- H.264 needs for streaming / Wowza
 - o RTMP
 - o RTSP
 - o HDS
 - o MJPEG
- Decoding digital video at the district office
- Environments
 - o Coastal
 - o **Mountain**
 - o Desert
 - o Metropolitan, if available

- Operating temperature range
- Form factor
 - Integrated CCTV
 - Dome
 - Pole-mounted
 360 degree PTZ
 - Stand-alone enclosure
 - Rack-mountable
 - DIN-rail
- Cabling and physical interface
 - o Analog
 - BNC (video)
 - Serial (RS-422)
 - o Digital
 - Ethernet
- Interfaces
 - o HTTP
 - o SSH
 - o SFTP
 - o Others
- Scene lighting function of CCTV unit
 - o Luminaire
 - o Moonlight
 - o Headlights
 - o Integration

Appendix C: Interim Report: Controlled Testing of CCTV Encoder Systems

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION

TECHNICAL REPORT DOCUMENTATION PAGE

TR0003 (REV 10/98)

ADA Notice

For individuals with sensory disabilities, this document is available in alternate formats. For information call (916) 654-6410 or TDD (916) 654-3880 or write Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814.

1. REPORT NUMBER	2. GOVERNMENT ASSOCIATION NUMBER	3. RECIPIENT'S CATALOG NUMBER		
CA23-3873	N/A	N/A		
4. TITLE AND SUBTITLE		5. REPORT DATE		
Evaluation of Next-Generation C	CTV Encoder for ITS Field	June 30, 2023		
Elements - Controlled Testing of (CCTV Encoder Systems	6. PERFORMING ORGANIZATION CODE		
		AHMCT Research Center, UC Davis		
7. AUTHOR		8. PERFORMING ORGANIZATION REPORT NO.		
Travis B. Swanston, Kin S. Yen, an	d Ty A. Lasky	UCD-ARR-23-03-31-02		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. WORK UNIT NUMBER		
AHMCT Research Center				
UCD Dept. of Mechanical & Aer	ospace Engineering	11. CONTRACT OR GRANT NUMBER		
Davis, California 95616-5294	eep e.e ege eg	65A0749 Task 3873		
		13. TYPE OF REPORT AND PERIOD COVERED		
		Interim Report		
12. SPONSORING AGENCY AND ADDRESS		June 2021 – June 2023		
California Department of Transp	ortation	14. SPONSORING AGENCY CODE		
P.O. Box 942873, MS #83	Caltrans			
Sacramento, CA 94273-0001				
15. SUPPLEMENTARY NOTES				

16. ABSTRACT

The California Department of Transportation (Caltrans) has and is currently installing Intelligent Transportation System (ITS) CCTV sites in multiple areas around the state. Unfortunately, not all manufacturer specifications measure attributes using the same methodologies. In addition, many manufacturers now produce products that provide high throughput but cannot stream video at the ultra-low-speed throughputs needed at remote sites in the rural areas of the state. In rural districts, many CCTV sites have communication options limited to plain old telephone service (POTS) to transport data, often at 10 kbps or less. Caltrans needed equipment evaluation research under Caltrans rural operating conditions and environments to determine if CCTV video encoders would meet Caltrans performance measures. This research determined how video encoder equipment performs under real-world Caltrans rural operating conditions. The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center determined and evaluated which next-generation video encoder equipment would be viable as Caltrans ITS assets. This report summarizes the CCTV encoder controlled testing.

Unclassified	141	N/A
19. SECURITY CLASSIFICATION (of this report)	20. NUMBER OF PAGES	21. COST OF REPORT CHARGED
	public through the National Technical Information Service, Springfield, Virginia 22161.	
CCTV encoders, ITS, Video encoders	No restrictions. This document is available to the	
17. KEY WORDS	18. DISTRIBUTION STATEMENT	

DISCLAIMER

The research reported herein was performed by the Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center, within the Department of Mechanical and Aerospace Engineering at the University of California – Davis, for the Division of Research, Innovation and System Information (DRISI) at the California Department of Transportation. AHMCT and DRISI work collaboratively to complete valuable research for the California Department of Transportation.

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein.

The contents of this report do not necessarily reflect the official views or policies of the University of California. This report does not constitute an endorsement by the University of California of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001.

Advanced Highway Maintenance and Construction Technology Research Center

Department of Mechanical and Aerospace Engineering University of California at Davis

Evaluation of Next-Generation CCTV Encoder for ITS Field Elements -Controlled Testing of CCTV Encoder Systems

Travis B. Swanston, Kin S. Yen & Ty A. Lasky: Principal Investigator

Report Number: CA23-3873 AHMCT Research Report: UCD-ARR-23-03-31-02 Interim Report of Contract: 65A0749 Task 3873

June 30, 2023

California Department of Transportation

Division of Research, Innovation and System Information

Table of Contents

Table of Contents	ii
Figures	iv
Tables	vi
Acronyms and Abbreviations	viii
Acknowledgments	
Chapter 1: Introduction	1
Problem	1
Objectives	1
Scope	2
Controlled Testing Goals, Issues, and Overview of Approach	3
Chapter 2: Devices Tested	
Axis Q8752-E Bispectral Camera	
Bosch MIC inteox 7100i Camera	
CostarHD RISE 4260HD Camera	
WTI Viper/Sidewinder HD Camera	
Chapter 3: Test Methodology	
Stream Encoding Overview	
Video Compression Standards	
Video Compression Profiles	
Frame Types and GOP	
Video Stream Control and Transports	
Bitrate Control	
Testing Setup	
Video Stream Testing	
Scene Selection	
Network Link Classes Resolution Classes and Frame Rates	22
Testing and Data Collection	
Data Analysis	
Areas of Focus	
Chapter 4: Test Results and Analysis	
Video Stream Testing	
Axis Q8752-E	
Bosch MIC inteox 7100i	

CostarHD RISE 4260HD	62
WTI Viper/Sidewinder HD	
Static Image Testing	
Scene Selection	
Data Collection	
Static Image Results	
Chapter 5: Summary Discussion and Conclusions	81
Axis Q8752-E	81
H.264 Main vs. H.264 High vs. H.265 Main	81
M-JPEG	
ABR vs. MBR vs. VBR	81
GOP Interval	
Compression	
Zipstream	
TCP vs. UDP	
JPEG	84
Bosch MIC inteox 7100i	
A Note on Bitrates	
H.264 High vs. H.265 Main	
M-JPEG	
GOP Interval	
TCP vs. UDP	
JPEG	
CostarHD RISE 4260HD	
H.264 High vs. H.264 Main	
Constrained Mode	
M-JPEG	
GOP Interval	
TCP vs. UDP	88
JPEG	
WTI Viper/Sidewinder HD	
H.264 High vs. H.264 Baseline vs. H.264 Main	
M-JPEG	
GOP Interval TCP vs. UDP	
JPEG	
References	
Appendix A: CCTV Operating Conditions and Characteristics	
Appendix B: Stream Quality Analysis and Average Bitrate Charts	93

Figures

Figure 2.1: Axis Q8752-E bispectral camera	7
Figure 2.2: Bosch MIC inteox 7100i camera	
Figure 2.3: CostarHD RISE 4260HD camera	
Figure 2.4: WTI Viper/Sidewinder HD camera	.11
Figure 3.1: Test setup	
Figure 3.2: CCTV devices mounted for testing	.18
Figure 3.3: CCTV devices aimed at the test display	.19
Figure 3.4: Test lab network architecture	.20
Figure 3.5: A selection of still frames from the video test scene (all still images a	re
selected from the video 5.5 4K Camera Road in Thailand No 2	
(https://www.youtube.com/watch?v=F4bICvLY024)	.22
Figure 3.6: Bitrates and safety margins	
Figure 3.7: Resolution classes and distribution by pixel count	.25
Figure 3.8: Resolution classes	
Figure 3.9: High-level outline of the testing process	.28
Figure 3.10: Example stream quality analysis chart	
Figure 4.1: Stream quality analysis for Axis Q8752-E Baseline test	
Figure 4.2: Average bitrates for Axis Q8752-E M-JPEG test	
Figure 4.3: Stream quality analysis for Bosch MIC inteox 7100i Baseline test	
Figure 4.4: Average bitrates for Bosch MIC inteox 7100i M-JPEG test	.58
Figure 4.5: Stream quality analysis for CostarHD RISE 4260HD Baseline test	
Figure 4.6: Average bitrates for CostarHD RISE 4260HD M-JPEG test	
Figure 4.7: Stream quality analysis for WTI Viper/Sidewinder HD Baseline test	
Figure 4.8: Average bitrates for WTI Viper/Sidewinder HD M-JPEG test	
Figure 4.9: Scenes for static image tests	
Figure 4.10: Image sizes for Axis Q8752-E JPEG test	
Figure 4.11: Image sizes for Bosch MIC inteox 7100i JPEG test	
Figure 4.12: Image sizes for CostarHD RISE 4260HD JPEG test	
Figure 4.13: Image sizes for WTI Viper/Sidewinder HD JPEG test	
Figure B.1: Stream quality analysis for Axis Q8752-E Baseline (H.264 Main ABR) te	
	.93
Figure B.2: Stream quality analysis for Axis Q8752-E MBR Rate Control test	
Figure B.3: Average bitrates for Axis Q8752-E VBR Rate Control test	
Figure B.4: Stream quality analysis for Axis Q8752-E H.264 High Profile test	
Figure B.5: Stream quality analysis for Axis Q8752-E H.265 Main Profile test	
Figure B.6: Average bitrates for Axis Q8752-E M-JPEG test	.98
Figure B.7: Stream quality analysis for Axis Q8752-E Varying GOP Interval with	00
Frame Rate test	
Figure B.8: Stream quality analysis for Axis Q8752-E Compression 100 test	
Figure B.9: Stream quality analysis for Axis Q8752-E Zipstream Strength 10 test1	101

Figure B.10: Stream quality analysis for Axis Q8752-E Zipstream Strength 30 test 102
Figure B.11: Stream quality analysis for Axis Q8752-E Zipstream Strength 50 test 103
Figure B.12: Stream quality analysis for Axis Q8752-E Zipstream Strength 30 with
Dynamic GOP Interval test
Figure B.13: Stream quality analysis for Axis Q8752-E TCP Streaming test
Figure B.14: Image sizes for Axis Q8752-E JPEG test
Figure B.15: Stream quality analysis for Bosch MIC inteox 7100i Baseline (H.264
High) test
Figure B.16: Stream quality analysis for Bosch MIC inteox 7100i H.265 Main Profile
test
Figure B.18: Stream quality analysis for Bosch MIC inteox 7100i Varying GOP
Interval with Frame Rate test
Figure B.19: Stream quality analysis for Bosch MIC inteox 7100i Dynamic GOP
Interval test
Figure B.21: Image sizes for Bosch MIC inteox 7100i JPEG test113
Figure B.22: Stream quality analysis for CostarHD RISE 4260HD Baseline (H.264
Main) test
Figure B.23: Stream quality analysis for CostarHD RISE 4260HD H.264 High Profile
test
Figure B.24: Stream quality analysis for CostarHD RISE 4260HD Varying GOP
Interval with Frame Rate test
Figure B.25: Stream quality analysis for CostarHD RISE 4260HD Constrained Mode
test
Figure B.26: Average bitrates for CostarHD RISE 4260HD M-JPEG test
Figure B.27: Stream quality analysis for CostarHD RISE 4260HD TCP Streaming test
Figure B.28: Image sizes for CostarHD RISE 4260HD JPEG test
Figure B.29: Stream quality analysis for WTI Viper/Sidewinder HD Baseline (H.264
Main) test
Figure B.30: Stream quality analysis for WTI Viper/Sidewinder HD H.264 High Profile
test122
Figure B.31: Stream quality analysis for WTI Viper/Sidewinder HD H.264 Baseline
Profile test123
Figure B.32: Average bitrates for WTI Viper/Sidewinder HD M-JPEG test124
Figure B.33: Stream quality analysis for WTI Viper/Sidewinder HD Varying GOP
Interval with Frame Rate test
Figure B.34: Stream quality analysis for WTI Viper/Sidewinder HD TCP Streaming
test
Figure B.35: Image sizes for WTI Viper/Sidewinder HD JPEG test

Tables

Table 2.1: Devices selected for testing	5
Table 3.1: Link classes	
Table 3.2: Correlation between frame rate and GOP interval for a GOP duratic	n
of 5 seconds	.35
Table 4.1: Axis Q8752-E Baseline test streaming configuration	.37
Table 4.2: Axis Q8752-E MBR test streaming configuration	.39
Table 4.3: Axis Q8752-E VBR test streaming configuration	,40
Table 4.4: VBR test bitrates	,40
Table 4.5: Axis Q8752-E H.264 High test streaming configuration	.42
Table 4.6: Axis Q8752-E H.265 Main test streaming configuration	,43
Table 4.7: Axis Q8752-E M-JPEG test streaming configuration	,44
Table 4.8: Correlation between frame rate and GOP interval for a GOP duratic	n
of 5 seconds	
Table 4.9: Axis Q8752-E Varying GOP Interval test streaming configuration	.46
Table 4.10: Axis Q8752-E Compression 100 test streaming configuration	.48
Table 4.11: Zipstream strength levels	.48
Table 4.12: Axis Q8752-E Zipstream Strength 10 test streaming configuration	.49
Table 4.13: Axis Q8752-E Zipstream Strength 30 test streaming configuration	, 50
Table 4.14: Axis Q8752-E Zipstream Strength 50 test streaming configuration	.51
Table 4.15: GOP and bitrate statistics for Dynamic GOP test	.52
Table 4.16: Axis Q8752-E TCP Streaming test streaming configuration	
Table 4.17: Bosch MIC inteox 7100i Baseline test streaming configuration	
Table 4.18: Bosch MIC inteox 7100i H.265 Main test streaming configuration	
Table 4.19: Bosch MIC inteox 7100i M-JPEG test streaming configuration	, 56
Table 4.20: Correlation between frame rate and GOP interval for a GOP	
duration of 5 seconds	. 59
Table 4.21: Bosch MIC inteox 7100i Varying GOP Interval test streaming	
configuration	. 59
Table 4.22: Bosch MIC inteox 7100i Dynamic GOP Interval test streaming	
configuration	
Table 4.23: GOP and bitrate statistics for Dynamic GOP test	
Table 4.24: Bosch MIC inteox 7100i TCP Streaming test streaming configuration	
Table 4.25: CostarHD RISE 4260HD Baseline test streaming configuration	
Table 4.26: CostarHD RISE 4260HD H.264 High test streaming configuration	.64
Table 4.27: Correlation between frame rate and GOP interval for a GOP	
duration of 5 seconds	. 64
Table 4.28: CostarHD RISE 4260HD Varying GOP Interval test streaming	<i>.</i> –
configuration	.65
Table 4.29: CostarHD RISE 4260HD Constrained Mode test streaming	
configuration	, 66

 Table 4.30: CostarHD RISE 4260HD M-JPEG test streaming configuration
 67

 Table 4.31: CostarHD RISE 4260HD TCP test streaming configuration
 68

 Table 4.32: WTI Viper/Sidewinder HD Baseline test streaming configuration
 68

 Table 4.33: WTI Viper/Sidewinder HD H.264 High test streaming configuration
 67

 Table 4.34: WTI Viper/Sidewinder HD H.264 Baseline test streaming configuration
 70

 Table 4.35: WTI Viper/Sidewinder HD M-JPEG test streaming configuration
 71

 Table 4.36: Correlation between frame rate and GOP interval for a GOP duration of 5 seconds
 72

 Table 4.37: WTI Viper/Sidewinder HD Varying GOP Interval test streaming configuration
 73

 Table 4.38: WTI Viper/Sidewinder HD TCP test streaming configuration
 74

 Table 4.39: Compression/quality parameters for static image acquisition
 76

 Table 5.1: Compression/quality parameters for static image acquisition
 86

Acronyms and Abbreviations

Acronym	Definition	
2G	Second-Generation (cellular network system)	
3G	Third-Generation (cellular network system)	
4G	Fourth-Generation (cellular network system)	
5G	Fifth-Generation (cellular network system)	
ABR	Average Bitrate	
АНМСТ	Advanced Highway Maintenance and Construction Technology Research Center	
AVC	Advanced Video Coding	
B-frames	Bidirectional predicted frames	
BNC	Bayonet Neill-Concelman	
BRI	Basic Rate Interface	
Caltrans	California Department of Transportation	
CBR	Constant Bitrate	
CCTV	Closed-Circuit TV	
CPU	Central Processing Unit	
CWWP	Commercial Wholesale Web Portal	
DASH	Dynamic Adaptive Streaming over HTTP	
DOT	Department of Transportation	
DRISI	Caltrans Division of Research, Innovation and System Information	
DSL	Digital Subscriber Line	

Acronym	Definition
FPS	Frames Per Second
FTP	File Transfer Protocol
GOP	Group of Pictures
H.264	ITU-T Recommendation H.264; MPEG-4 Part 10; AVC
H.265	ITU-T Recommendation H.265; MPEG-H Part 2; HEVC
HD	High Definition
HDS	High-Definition-System
HEVC	High Efficiency Video Coding
HLS	HTTP Live Streaming
HTTP	Hypertext Transfer Protocol
HTTPS	HTTP Secure
IBP	I-frame, B-frame, P-frame
IDR	Instantaneous Decoding Refresh
I-frames	Intra-coded frames, a.k.a. key frames
ISDN	Integrated Services Digital Network
ITS	Intelligent Transportation System
ITU	International Telecommunication Union
ITU-T	Telecommunication Standardization Sector of ITU
JPEG	Joint Photographic Experts Group
LTE	Long-Term Evolution
MBR	Maximum Bitrate
M-JPEG	Motion-JPEG

Acronym	Definition
MPEG	Moving Picture Experts Group
MPEG-4	MPEG group of standards 4
MPEG-H	MPEG group of standards H
MPEG-TS	MPEG Transport Stream
ONVIF	Open Network Video Interface Forum
P-frames	Predicted frames, a.k.a. delta frames
PM	Project Manager
POTS	Plain Old Telephone Service
PSC	Program Steering Committee
PTZ	Pan-Tilt-Zoom
RTCP	Real-time Transport Control Protocol
RTMP	Real-Time Messaging Protocol
RTP	Real-time Transport Protocol
RTSP	Real Time Streaming Protocol
SD	Secure Digital
SFTP	Secure FTP
SSH	Secure Shell
TCP	Transmission Control Protocol
TCP/IP	Transmission Control Protocol/Internet Protocol
UDP	User Datagram Protocol
UHD	Ultra-High Definition
VBR	Variable Bitrate

Acronym	Definition
WTI	Wireless Technology, Inc.

Acknowledgments

The authors thank the California Department of Transportation (Caltrans) for their support, in particular Jeremiah Pearce and Keith Koeppen with District 2, Andres Chavez and Dean Campbell with District 3, Sam Campos with District 6, Dirk Spaulding with District 8, with Dung Le District 10, John Castro with Headquarters Traffic Engineering, and Sean Campbell with the Division of Research, Innovation and System Information. The authors acknowledge the dedicated efforts of the AHMCT team who have made this work possible.

Chapter 1: Introduction

Problem

The California Department of Transportation (DOT) (Caltrans) has and is currently installing Intelligent Transportation System (ITS) Closed-Circuit TV (CCTV) sites in multiple areas around the state. New methods and efficiencies of transmitting video from the field sites to the Transportation Management Center are being developed, significantly improving the quality of the video stream. Multiple manufacturers produce these "next-generation" encoders and provide Caltrans engineers with specifications and marketing materials. Unfortunately, not all manufacturer specifications measure attributes using the same methodologies and some products do not meet their advertised manufacturer specifications. In addition, many manufacturers now produce products that provide high throughput but cannot stream video at the ultra-low-speed throughputs needed at remote sites in the rural areas of the state. Caltrans understands the operating environments of the equipment it deploys. Testing equipment in a lab on a benchtop differs significantly from testing equipment in actual real-world operating conditions.

In rural districts, many CCTV sites have communication options limited to plain old telephone service (POTS) to transport data, often at 10 kbps or less. As the video industry pushes the limits of higher bandwidth and increased compression, Caltrans must monitor whether the next-generation video encoders will be able to function in low-bandwidth conditions.

Caltrans needed equipment evaluation research under Caltrans rural operating conditions and environments to determine if CCTV video encoders would meet Caltrans performance measures.

Objectives

Several companies have next-generation video encoder equipment. Each company has a specification sheet that is often difficult to compare with their competitors. This project determined how this equipment performs under realworld Caltrans rural operating conditions including extreme temperatures, low bandwidth, and very remote locations.

The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center determined and evaluated which next-generation video encoder equipment would be viable as rural ITS field equipment options as Caltrans adds to and refreshes its ITS assets. An evaluation is provided based on performance of the chosen video encoder equipment. Details of this evaluation are documented herein, and have been provided to the members of the Rural Program Steering Committee (PSC) and to districts, along with a demonstration of next-generation technologies. Districts have continued evaluating and using the nextgeneration video encoder equipment during their normal day-to-day operations.

One of the primary goals of this research is to characterize how the selected encoding devices can perform under a variety of network conditions, especially under the low-bitrate, high-error conditions that are common at rural field element sites. A secondary goal is to review other relevant features of the devices that make impact its applicability to different types of sites. The purpose of these goals is to facilitate future device selection for various sites, given their particular network conditions and other attributes.

How well a video stream performs under different network conditions is primarily a function of the configurability and feature set of the encoding device. A poor choice of decoder on the stream-consuming end can also affect the stream quality of course. However the streaming protocols supported by the devices under consideration do not dynamically adapt to feedback from the decoder so, as long as the decoder is stable and fully supports the encoding mode being used, its impact on stream quality should be minimal.

Characterizing how the video streams from a given encoding device may perform under various network conditions involves carefully considering the device's range of features and relevant configuration parameters. First, we will explore these features and parameters for each selected device, examine how varying network conditions may affect the resulting stream, and present qualitative and quantitative data collected during testing in order to facilitate optimal device configuration for sites of various types. Second, we will draw comparisons between devices and their range of encoding modes and parameters and other features in order to facilitate optimal device selection for sites of various types.

Scope

As part of the kickoff meeting and subsequent discussions, based on Project Panel inputs and direction, AHMCT identified Caltrans rural operating conditions and gaps related to CCTV encoder systems. This included field conditions as well as characteristics of rural communications channels for the resulting images. AHMCT identified known gaps related to Caltrans use of CCTV encoders in rural environments, as well as the categories of CCTV encoder systems to be evaluated in the following research tasks. Where feasible, the report identified specific CCTV encoder systems to evaluate in a prioritized list. This report summarizes the test methodology and results for the controlled testing of CCTV encoder systems.

Controlled Testing Goals, Issues, and Overview of Approach

One of the primary goals of this research was to characterize how the selecting encoding devices can perform under a variety of network conditions, especially under the low-bitrate, high-error conditions that are common in connections to rural field element sites. A secondary goal was to review other relevant features of the devices that may impact its applicability to different types of sites. The overall purpose was to facilitate future device selection for various sites, given their particular network conditions and other attributes.

How well a video stream performs under different network conditions is primarily a function of the configurability and feature set of the encoding device. A poor choice of decoder on the stream-consuming end can also affect the stream quality of course. However, the streaming protocols supported by the devices under consideration do not dynamically adapt to feedback from the decoder, so as long as the decoder is stable and fully supports the encoding mode being used its impact on stream quality should be minimal.

Characterizing how the video streams from a given encoding device may perform under various network conditions involves carefully considering the device's range of features and relevant configuration parameters. First, we explored these features and parameters for each selected device and examined how varying network conditions may affect the resulting stream. Herein, we present qualitative and quantitative data collected during testing in order to facilitate optimal device configuration for sites of various types. We then draw comparisons between devices and their range of encoding modes and parameters and other features to facilitate optimal device selection for sites of various types.

The researchers identified additional camera(s) for bench testing. Due to delays from the COVID-19 pandemic, which was in full force through much of this research, the bench testing took longer than anticipated. Access to the lab was limited for much of the period, so that methodologies were needed to perform meaningful lab testing remotely. This also impacted the rural field testing. At the completion of this task, there was insufficient time for meaningful rural field testing by Caltrans personnel, and insufficient time for them to prepare for the testing. Upon conferring with the project manager, it was decided to omit rural field testing. Several camera systems were procured to support testing of additional models, and some of these were tested. Procurement time for some of the cameras was far longer than ordinary, so these systems were not tested. One vendor indicated a six-month time of arrival, which would have allowed for testing. However, this camera had not arrived after nine months due to COVID19-related supply chain issues, and AHMCT canceled this order to avoid billing beyond the contract period.

Chapter 2: Devices Tested

The devices selected for testing are shown in Table 2.1. A wider range of devices to evaluate was considered, in particular some standalone singlechannel encoders, but the candidates were disqualified for various reasons. Some of the candidates were unavailable for purchase or loan, largely due to supply-chain issues related to the COVID-19 pandemic. One device (an Axis Q8685-E) was ordered and did not arrive until well beyond the testing period. Other candidates had reached end-of-life status before the acquisition phase of the project, e.g. the Axis Q7411, Axis Q7424-R Mk II, Axis Q6055-E, and Axis Q6155-E.

Device	Туре	Part #	Firmware Version
Axis Q8752-E	CCTV camera with integrated encoder	01838-001	10.12.153
Bosch MIC inteox7100i	CCTV camera with integrated encoder	MIC-7602- Z30GR	8.46.0030
CostarHD RISE4260HD	CCTV camera with integrated encoder	4261-1000	Core 4.1.92, Rise 4.1.323
WTI Viper/SidewinderHD	CCTV camera with integrated encoder	VS720-H.264- HD30L-POE-R	2.15.0.r

Table 2.1: Devices selected for testing

One transcoder device (WTI Hydra 265) was considered for evaluation, but evaluating a transcoder would have required the development of a testing scenario distinct from that used for the other devices and, since no district expressed interest in this device during Task 3, it was excluded from evaluation.

Despite the small size, the device selection provides good coverage of the more widely used brands in highway surveillance (Axis, Bosch, CostarHD, WTI), a broad range of resolutions, frame rates, compression standards, and bitrate control modes. It is also expected that the streaming features and characteristics of the selected devices will prove similar to those of many other

devices of the same branding, since devices under the same brand umbrella commonly share similar encoding hardware and software, being differentiated primarily by other features and specifications (resolutions, imaging sensors, object detection ability, wipers, heaters, environmental specifications, power supply compatibility, and similar).

Axis Q8752-E Bispectral Camera

The Axis Q8752-E is a Pan-Tilt-Zoom (PTZ) Closed-Circuit Television (CCTV) camera with an integrated encoder and Ethernet interface for streaming via Transmission Control Protocol/Internet Protocol (TCP/IP). It features:

- both visual and thermal cameras
- image stabilization
- image analytics and activity detection functionality
- a broad range of resolutions from 160x120 to 1920x1080
- H.264, H.265, and Motion JPEG (M-JPEG) video streaming via Real-Time Streaming Protocol (RTSP)
- M-JPEG streaming via Hypertext Transfer Protocol (HTTP).
- single frame fetch via HTTP
- video stream bitrate control modes: include Average Bitrate (ABR), Maximum Bitrate (MBR), and Variable Bitrate (VBR). ABR mode supports an optional maximum bitrate parameter.

The Axis Q8752-E, like most recent Axis devices, also supports a proprietary stream processing and management system called Zipstream whose advertised purpose is primarily to reduce the bitrate and storage requirements of video streams. Other features include dynamic Group of Pictures (GOP) interval and dynamic frame rate.

Figure 2.1: Axis Q8752-E bispectral camera

Bosch MIC inteox 7100i Camera

The Bosch MIC inteox 7100i is a PTZ CCTV camera with an integrated encoder and Ethernet interface for TCP/IP streaming. It advertises the following features~[1]:

- rugged construction
- excellent low-light sensitivity
- high dynamic range
- image stabilization
- intelligent video analytics, including detection of traffic incidents, wrong-way drivers, pedestrians, slow and stopped vehicles, etc.
- automatic detection and PTZ tracking of objects
- local storage via Secure Digital (SD) card
- third-party app support
- Open Network Video Interface Forum (ONVIF) compatibility

It supports five streaming resolutions from 512x288 to 1920x1080, single-frame fetch via HTTP, and video streaming via H.264, H.265, and M-JPEG over RTSP. Other features include an automatic GOP interval mode and preconfigured streaming profiles for a variety of network types.

Figure 2.2: Bosch MIC inteox 7100i camera

CostarHD RISE 4260HD Camera

The CostarHD RISE 4260HD is a PTZ CCTV camera with an integrated encoder and Ethernet interface for TCP/IP streaming. It advertises the following features~[2]:

- extreme low-light sensitivity
- wide dynamic range
- electronic image stabilization
- defog/dehaze image processing

It supports seven streaming resolutions from 160x120 to 1920x1080, singleframe fetch via HTTP, and video streaming via H.264 and M-JPEG over RTSP.

Figure 2.3: CostarHD RISE 4260HD camera

WTI Viper/Sidewinder HD Camera

The WTI Viper/Sidewinder HD is a PTZ CCTV camera with an integrated encoder and Ethernet interface for TCP/IP streaming. It advertises the following features~[3]:

- wide dynamic range
- defog mode
- electronic image stabilization

It supports nine streaming resolutions from 320x240 to 1920x1080 and video streaming via H.264, MPEG-4, MPEG Transport Stream (MPEG-TS), and M-JPEG over RTSP.

Figure 2.4: WTI Viper/Sidewinder HD camera

Chapter 3: Test Methodology

Two types of testing were performed in this study: video stream testing, and static image testing. While the aim of this research primarily relates to video streaming, each Caltrans district makes extensive use of static images, acquired by means of periodic fetches from CCTV encoders at field element sites via the Caltrans CCTV Information Relay located in each district. For many rural CCTV sites which do not have the network capacity to support a useable video stream, generating and transferring these static images is the principal mode of use. Typically, these images are encoded in JPEG format and fetched from the encoder using HTTP or Hypertext Transfer Protocol Secure (HTTPS). Since this remains an important use case for highway surveillance CCTV encoders, static image testing was included in this research.

In this study, data was collected and analyzed from a total of 29,670 video tests and a total of 2,926 static image tests (32,596 tests overall).

Stream Encoding Overview

To understand the results of the video streaming tests, the reader will need to be familiar with some basics of video streaming technology.

Before encoding for streaming purposes, digital video can be thought of as a series of images occurring one after another in time, usually at a constant rate. Each of these images is essentially a rectangular matrix of pixels, with each pixel consisting of a value representing the color of that pixel. Each video stream is associated with a particular "color space," which is a scheme that determines how each particular pixel value is mapped to its actual, intended color. Many such color spaces exist, several are in common use today.

Video Compression Standards

Video scenes usually contain a high degree of redundant content, both intra-frame (e.g., areas of low detail or texture), and inter-frame (e.g., stationary objects or backgrounds). As such, transmitting a video stream by simply sending each video frame directly in succession usually creates an inefficient, lowentropy bitstream that consumes far more bandwidth than is actually required. At high camera resolutions and frame rates, the bitrate for such streams can quickly become impractical for use over many commonly-used data transmission systems. To overcome this, video streams are typically compressed. A variety of compression standards exist, but the ones most commonly used by today's CCTVs and video encoding devices are:

- MPEG-4 (MPEG-4 Part 2)
- H.264 (ITU-T Recommendation H.264; MPEG-4 Part 10), also commonly called Advanced Video Coding (AVC)
- H.265 (ITU-T Recommendation H.2645; MPEG-H Part 2), also commonly called High Efficiency Video Coding (HEVC)
- M-JPEG

MPEG-4 is an older standard that is quickly becoming obsolete for this application. H.264 and H.265 are more modern, and are also the two most commonly used. M-JPEG is an unsophisticated scheme for the transmission of a series of video frames, each encoded in the Joint Photographic Experts Group (JPEG) image format. Although JPEG can compress images fairly efficiently, M-JPEG takes no advantage of inter-frame redundancies, resulting in streams that are usually far less efficient than those using MPEG-4, H.264, or H.265.

Today, MPEG-4 and M-JPEG are usually only chosen for reasons of compatibility with older software or older decoding hardware, while H.264 and H.265 are widely used. M-JPEG is also sometimes chosen when available H.264 or H.265 implementations are not sufficiently configurable to produce functional low-frame-rate video at very low bitrates such as those required for transmission over ISDN/POTS links. H.265 is considered to supersede H.264 although, at the time of this writing, H.264 still holds a compatibility advantage. However, when compatibility or decoder performance limitations are not an issue, H.265 is generally chosen over H.264 as it tends to produce more efficient streams.

Video Compression Profiles

Many video compression standards define a variety of "profiles" — combinations of features, behaviors, and color spaces — that affect how the streams are encoded. Commonly-used profiles for MPEG-4, H.264, and H.265 are:

- MPEG-4
 - Advanced Simple: supports interlaced video, B-frames, and more
 - Simple: a subset of Advanced Simple, intended for use especially in low-bitrate applications
- H.264
 - Baseline: supports only a subset of H.264 encoding features, allowing for simpler and less CPU-intensive decoding
 - Main: supports most H.264 encoding features; decoding is usually more CPU-intensive than Baseline

- High: supports nearly all H.264 encoding features; often produces more efficient, higher-quality streams; decoding is usually more CPU-intensive than Main
- H.265
 - Main: currently the most commonly used profile for H.265
 - o Main 10: primarily adds support for 10-bit color
 - (more profiles available in newer versions)

In addition to profiles, some compression standards support a variety of "tiers" and "levels." However, as these are typically not directly configurable by the user for the types of encoding devices in this study, we will not consider them further.

Frame Types and GOP

As mentioned above, digital video can be thought of as series of images occurring one after another in time. In order to efficiently encode a stream, most compression standards take advantage of inter-frame redundancies. MPEG-4, H.264, and H.265 do this by encoding the frames of a video stream in different ways depending on whether they reference other frames and how they do so. This is referred to as the "frame type." The three most common frame types are I-frames, P-frames, and B-frames.

I-frames (intra-coded frames, a.k.a. key frames) are encoded in a way that contains only intra-frame references (references to data in the same frame). They do not contain inter-frame references (references to data in other frames in the stream).

P-frames (predicted frames, a.k.a. delta frames) are encoded in a way that contains intra-frame references, as well as inter-frame references to data in previous frames in the stream.

B-frames (bidirectional predicted frames) are encoded in a way that contains intra-frame references, as well as inter-frame references to data in both previous and subsequent frames in the stream.

Since I-frames contain only intra-frame references, they can be independently decoded. Decoding P-frames and B-frames, however, requires processing a sequence of frames. Using a high number of P- and B- frames usually results in a significant increase in stream efficiency. However, due to their dependence on other frames, stream quality and resiliency issues can result when streaming over network links prone to data loss or corruption.

A GOP is a series of frames that begins with an I-frame followed by zero or more non-I-frames. Non-I-frames are usually significantly smaller than I-frames so, generally, the longer the GOP, the more efficient the encoding. However, this efficiency comes with trade-offs: when streaming data loss occurs, the stream is often corrupted until the next I-frame is received by the decoder. The number of frames in a GOP is referred to as the GOP interval. If this interval is very long, the stream may take a long time to recover from data loss. In addition, for recorded streams, long GOPs can make seeking more difficult, since many playback applications will only allow seeking to an I-frame. Thus, selecting an appropriate number of frames often involves a compromise between stream efficiency, stream recovery time, and "seekability." Most encoders allow GOP interval to be specified by the user as a fixed value for a particular stream. However, many encoders also have a "dynamic GOP" mode which attempts to optimize the stream efficiency by automatically adjusting the GOP interval based on scene conditions. Depending on the implementation, this latter mode may not be a good fit for streaming over lossy networks unless it allows a maximum GOP interval to also be specified in order to limit stream recovery time.

Video Stream Control and Transports

A variety of protocols exist for video streaming. However, many of these are better suited to playback of recorded streams that have been pre-encoded at several different bitrates, and involve larger buffers and latencies that may not be acceptable for use in real-time surveillance applications. For "backhaul" (field-to-office) streams from real-time surveillance cameras, RTP over User Datagram Protocol (UDP) remains one of the most widely used protocols. RTP can work over Transmission Control Protocol (TCP) as well (often done to ease firewall traversal), but it tends to be less efficient, can sometimes perform very poorly over very limited network connections, and cannot be used for multicast streaming.

Bitrate Control

Most encoder devices support multiple mechanisms to balance a stream's quality with its bitrate. This is usually necessary since available bandwidth and storage (if recording) are not unlimited. A number of such mechanisms are in common use, and some devices also support additional proprietary schemes which can aid in managing stream bitrates. In addition, even the common mechanisms are often defined and implemented differently across vendors, making a precise definition difficult. However, the following simplified descriptions should be generally helpful:

• Constant Bitrate (CBR)¹: CBR is a relatively simple and widely supported bitrate control mode. With CBR, a bitrate is specified and the encoder

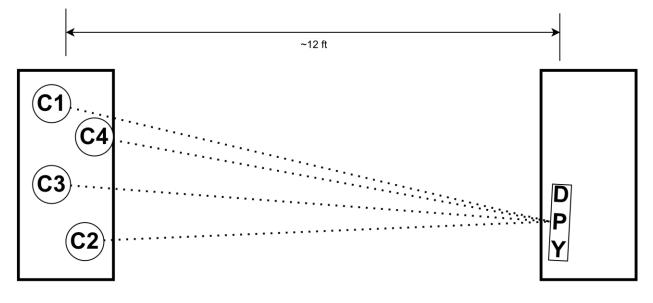
¹ Not to be confused with Capped Bitrate which is also referred to as CBR

encodes the stream to that bitrate. Since the bitrate does not dynamically adapt to the video contents, CBR bitrates are easily predictable, but often result in higher bandwidth and storage requirements than other bitrate control modes.

- Maximum Bitrate (MBR)²: MBR is a relatively simple bitrate control mode that generally allows a stream to use whatever bitrate is necessary to maintain its natural quality, unless that bitrate would exceed a specified maximum level, in which case it employs a mechanism to reduce the bitrate (usually an increased compression level).
- Average Bitrate (ABR)³: ABR is a more complex bitrate control mode that allows for a target bitrate to be specified. The stream is continuously analyzed and compression is tuned in order to keep the stream's bitrate close to the specified target. Some ABR implementations also allow a maximum bitrate to be specified.
- Variable Bitrate (VBR): VBR allows the stream's bitrate to vary as needed in order to maintain its natural quality. VBR is often used when quality is the most important aspect of the stream. It can make a stream's bandwidth unpredictable, and the encoding process more compute-intensive. These characteristics make VBR an unlikely candidate for highway surveillance streams, especially in the rural setting. Some VBR implementations also allow a maximum bitrate to be specified.

It is worth mentioning that device implementations of these bitrate control modes often operate on a "best effort" basis, treating their specified bitrate values (e.g., target, maximum) as suggestions rather than strict requirements. If the user specifies impractical values for these parameters, the bitrate of the resulting stream will possibly be quite far from those values.

Finally, in addition to the above bitrate control modes, there are a number of more modern schemes which allow for streams to adapt to network conditions and client/decoder characteristics. In addition to support on the server/encoder end, these adaptive schemes typically require support on the client/decoder end as well. One of these is the HTTP Live Streaming (HLS) protocol. Another is Dynamic Adaptive Streaming over HTTP (DASH). However, in the context of CCTV surveillance, these approaches are more commonly employed further downstream, usually in transcoders and video servers (in preparation for distribution of streams to multiple consumers), not at the field


² Not to be confused with Multi-Bitrate which is also referred to as MBR

³ Not to be confused with Adaptive Bitrate which is also referred to as ABR

element site. They are rarely supported by the type of CCTV encoding devices under consideration, and thus were not covered in this research.

Testing Setup

The testing was carried out in an AHMCT laboratory. A 4K display was placed on a table at one end of the room, and the CCTV devices were arranged on another table at a sufficient distance from the display to allow for clear focus on the image shown on the display. This configuration is illustrated in Figure 3.1.

- C1: Axis Q8752-E
 C2: Bosch MIC inteox 7100i
 C3: CostarHD RISE 4260HD
- C4: WTI Viper/Sidewinder HD
- DPY: 4K Test Display

Figure 3.1: Test setup

Figure 3.2: CCTV devices mounted for testing



Figure 3.3: CCTV devices aimed at the test display

The testing process was orchestrated by a computer named "Test Manager". Another computer, named "Device Manager", was used for initial setup and various diagnostic purposes. These two computers were connected to a network segment named the "sink" segment via a Gigabit Ethernet switch. The CCTV devices' Ethernet interfaces were connected to a network segment named the "source" segment via another Gigabit Ethernet switch. The "source" and "sink" network segments were bridged by the Network Simulator, a computer that used the traffic control subsystem of the Linux kernel to manipulate ethernet traffic across the bridge in order to simulate a network link experiencing various types of network traffic conditions. The Network Simulator also recorded network traffic statistics for our tests. This network architecture is illustrated in Figure 3.4.

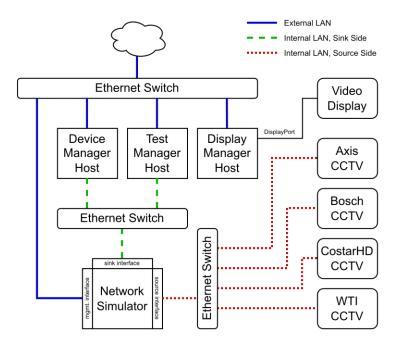


Figure 3.4: Test lab network architecture

Video Stream Testing

Each of the devices tested supports a variety of streaming configuration parameters. For example, each of the devices supports its own unique set of features such as:

- streaming protocols: RTP with RTSP, HTTP
- transports: UDP, TCP
- resolutions: from 160x120 to 1920x1080
- frame rates: 0.5 frames per second (FPS) to 30 FPS
- frame rate modes: fixed, dynamic
- compression standards: M-JPEG, MPEG-4, H.264, H.265
- compression standard profiles: Baseline, Main, and High for H.264; Main for H.265
- GOP modes: fixed, dynamic
- GOP frame type modes: IP, IBP, etc.
- standard bitrate control modes: CBR, MBR, ABR, VBR

• other bitrate management features: Axis Zipstream, CostarHD constrained mode

Testing and comparing every possible combination of these parameters would be neither feasible nor helpful. Furthermore, since not every device supports the same configurations, many of these configurations are not directly comparable across devices.

A practical testing approach was needed that would keep the dimensionality of the testing matrix low enough that the testing could be completed in weeks to months (rather than years) while also allowing the impact of these various features and configurations to be characterized and meaningfully compared between devices.

It was observed that all the devices under consideration had common support for a similar "vanilla" streaming mode, often as the default. This mode has the following characteristics in common across the devices:

- RTSP streaming via Real-Time Transport Protocol (RTP) over UDP
- H.264 using "Main" profile
- fixed GOP interval of about 30 frames
- a bitrate control mode that allows a target bitrate to be specified (e.g., ABR, CBR)
- fixed (i.e., non-dynamic) frame rate

It was decided to use this mode as a "baseline" for each device, and to independently compare the device's various features and parameters of interest to it, in order to evaluate their individual impacts on the characteristics of the resulting streams. This "baseline" mode would also serve as a useful comparison point to evaluate significant differences in basic streaming behavior between devices.

Scene Selection

Video streaming performance is heavily dependent on scene activity, which is a function of site activity, light levels, zoom value, and other factors. This complicates the selection of test scenes. Selecting a test scene with a lower level of activity than expected could result in an insufficient estimate of the required streaming bandwidth for a site.

A range of scenes with varying levels of activity could be chosen for testing, but it is not clear how the resulting differences in streaming characteristics and bitrates for these scenes could be used to inform a decision for a particular realworld site. Furthermore, each addition of a scene to the testing protocol would increase the number of test cases by 100%. So, it was decided to carefully select a single scene for testing. Since this project had a particular focus on evaluating device performance in low-bandwidth, rural network conditions, and since, even if a site is very inactive, it is unacceptable for the stream to drop out every time something significant occurs, a test scene was chosen that represents a reasonably active and constant site, with the expectation that the level of activity in this scene would be at the high end of what would be expected for most rural sites. Sites with higher activity levels than our chosen test scene are likely to be urban sites with higher-grade network connectivity.

Figure 3.5 displays four still frames from the chosen scene, chosen to demonstrate its varying traffic activity. The scene duration is 40 seconds.

Figure 3.5: A selection of still frames from the video test scene (all still images are selected from the video <u>5.5 4K Camera Road in Thailand No 2</u> (https://www.youtube.com/watch?v=F4bICvLY024)

Network Link Classes

In order to test how the streams from the CCTV devices perform in a variety of network conditions, we sought to define a number of "link classes" to approximate the network rates common to field element site uplinks. After consulting with the panel for this project, we settled on link classes in Table 3.1.

Table 3.1: Link classes

Link Class	Typical Use	Nominal Rate (kbps)	80% Rate (kbps)	80%x80% Rate (kbps)
1	POTS Modem	9.6	7	6
2	POTS Modem	14.4	11	9
3	POTS Modem	28.8	23	18
4	POTS Modem	33.6	26	21
5	POTS Modem	56	44	35
6	ISDN BRI	128	102	81
7	2G	256	204	163
8	DSL, 3G	512	409	327
9	DSL, 3G	768	614	491
10	cable, 4G, 5G, Ethernet, µwave	1000	800	640
11	cable, 4G, 5G, Ethernet, µwave	2000	1600	1280
12	cable, 4G, 5G, Ethernet, µwave	4000	3200	2560
13	cable, 4G, 5G, Ethernet, µwave	8000	6400	5120

The rates in the third and fourth columns represent the nominal rate with "safety" margins applied. A rule of thumb for video stream planning is to use apply a 20% safety margin to the nominal link rate to allow for regular fluctuations (e.g., due to other traffic) in the link capacity. This is the 80% rate (rounded down to its integer value) in the third column.

Furthermore, another rule of thumb, especially for bitrate control modes that allow the specification of a target value such as ABR, is to apply another 20% safety margin (on top of the 80% rate) to allow for natural fluctuations in the bitrate of the stream. For example, if we specify a target rate of 640 kbps for the stream, the stream rate could increase to 800 kbps before exceeding our safety margin. This is the 80%×80% rate (rounded down to its integer value) in the fourth column. Once these values are established, the 80% value provides a starting point for selecting a maximum bitrate (for bitrate control modes that allow maximum bitrate to be specified, e.g., MBR and some variants of ABR and VBR), and the 80%×80% value provides a starting point for selecting a target bitrate (for bitrate control modes that allow CBR), as illustrated in Figure 3.6.

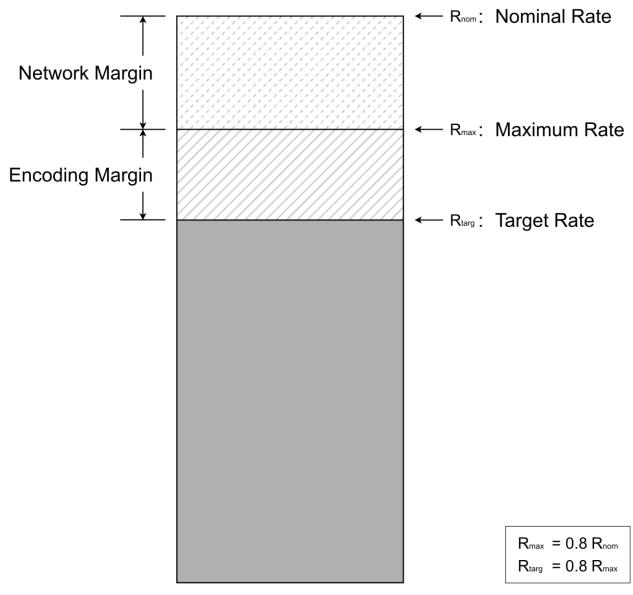


Figure 3.6: Bitrates and safety margins

Resolution Classes and Frame Rates

Resolution Classes

Each of the devices in this study supports a unique set of video and image resolutions. To increase comparability between the test results of the devices, we grouped the resolutions from each device into classes based on the number of pixels represented. Examining the distribution of resolutions by pixel count, five thresholds were selected to form six classes with roughly similar pixel counts, as shown in Figures 3.7 and 3.8.

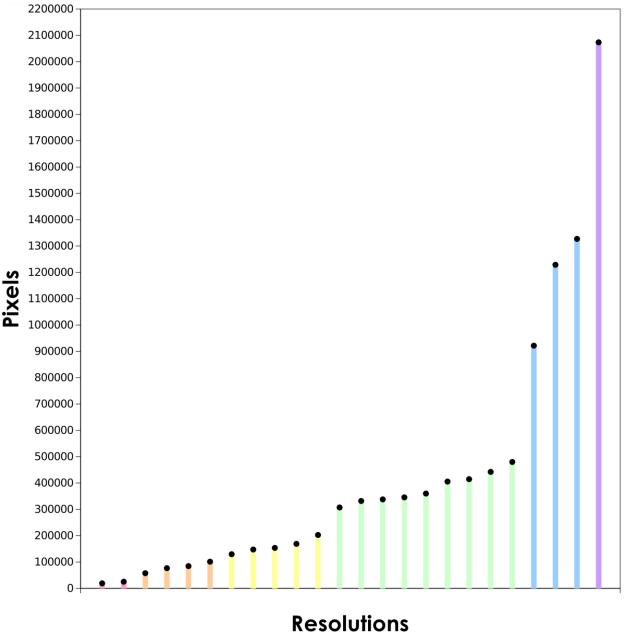


Figure 3.7: Resolution classes and distribution by pixel count

160×120 176×144 320×180 320×240 352×240 352×288 480×270 512×288 640×240 704×240	19200 25344 57600 76800 84480 101376 129600 147456 153600	4:3 11:9 16:9 4:3 22:15 11:9 16:9 16:9 8:3			•	•
320×180 320×240 352×240 352×288 480×270 512×288 640×240 704×240	57600 76800 84480 101376 129600 147456 153600	16:9 4:3 22:15 11:9 16:9 16:9	•		•	•
320x240 352x240 352x288 480x270 512x288 640x240 704x240	76800 84480 101376 129600 147456 153600	4:3 22:15 11:9 16:9 16:9			•	•
352x240 352x288 480x270 512x288 640x240 704x240	84480 101376 129600 147456 153600	22:15 11:9 16:9 16:9			•	•
352×288 480×270 512×288 640×240 704×240	101376 129600 147456 153600	11:9 16:9 16:9	•		•	0
480x270 512x288 640x240 704x240	129600 147456 153600	16:9 16:9	•	•		
512×288 640×240 704×240	147456 153600	16:9	٠	•		
640x240 704x240	153600					
704×240		8:3		· ·		
	100000					۲
	168960	44:15				\bigcirc
704x288	202752	22:9	\bigcirc			
640×480	307200	4:3	0	0	0	\bigcirc
768x432	331776	16:9		•*		
704x480	337920	22:15	0	0		۲
720x480	345600	3:2		0	•	\bigcirc
800x450	360000	16:9	٠			
704x576	405504	11:9	0	0		
720x576	414720	5:4	0	0	0	
768x576	442368	4:3	0			
800×600	480000	4:3	0			
1280x720	921600	16:9	٠	•	•	۲
1280×960	1228800	4:3	0			
1536x864	1327104	16:9		0		
1920×1080	2073600	16:9	٠	•	•	۲
1	640×480 768×432 704×480 720×480 800×450 704×576 704×576 768×576 800×600 1280×720 1280×720 1280×960 1536×864 1920×1080	640×480 307200 768×432 331776 704×480 337920 720×480 345600 800×450 360000 704×576 405504 720×576 414720 768×576 442368 800×600 480000 1280×720 921600 1536×864 1327104 1920×1080 2073600	640×4803072004:3768×43233177616:9704×48033792022:15720×4803456003:2800×45036000016:9704×57640550411:9720×5764147205:4768×5764423684:3800×6004800004:31280×72092160016:91280×96012288004:31536×864132710416:9	640×480 307200 4:3 ○ 768×432 331776 16:9 ○ 704×480 337920 22:15 ○ 720×480 345600 3:2 ○ 704×576 405504 11:9 ○ 704×576 405504 11:9 ○ 720×576 414720 5:4 ○ 768×576 442368 4:3 ○ 768×576 442368 4:3 ○ 1280×700 921600 16:9 ● 1280×720 921600 16:9 ● 1280×960 1228800 4:3 ○ 1536×864 1327104 16:9 ● 1920×1080 2073600 16:9 ● ts the full set of resolutions supported by the re versions used for testing. However, our Class 4 ○ support	640x480 307200 4:3 O 768x432 331776 16:9 •* 704x480 337920 22:15 O 720x480 345600 3:2 O 800x450 360000 16:9 • 704x576 405504 11:9 O 720x576 414720 5:4 O 768x576 442368 4:3 O 768x576 442368 4:3 O 768x576 442368 4:3 O 1280x720 921600 16:9 • 1280x720 921600 16:9 • 1280x720 921600 16:9 • 1280x720 921600 16:9 • 1280x960 1228800 4:3 O 1536x864 1327104 16:9 • 1920x1080 2073600 16:9 • ts the full set of resolutions supported by the re versions used for testing. However, our Class 4 O supported by	640x480 307200 4:3 O O 768x432 331776 16:9 •* Image: Constraint of the state of resolutions supported by the reversions used for testing. However, our Class 4 O O 768x432 331776 16:9 •* Image: Constraint of the state of resolutions supported by the reversions used for testing. However, our Class 4 O O

* This table reflects the full set of resolutions supported by the hardware/firmware versions used for testing. However, our Class 4 resolution choice for the Bosch MIC inteox 7100i was made using an earlier version of the firmware for this device. Were we to repeat the testing today, we would select 720x480 to represent this resolution class for this device.

supported and chosen

Figure 3.8: Resolution classes

While the resolutions in Class 2 could conceivably be useful in some sites with extremely low-rate network connections, the resolutions in Class 1 are so low as to be of little use. We therefore removed Class 1 from consideration, leaving five resolution classes — 2 through 6 — for testing.

From each of these classes, one resolution was chosen (if supported) from each device. In order to enhance comparability of test results between devices, the resolutions in each class were chosen such that their pixel counts were in reasonable proximity to each other, without consideration of aspect ratios or how "standard" the resolutions may be.

Frame Rates

The selection of a set of common frame rates between devices was more straightforward. To keep the matrix of test cases from growing too large, we limited testing to five frame rates. 30 FPS is a common standard, it is supported by all the devices, and thus it was included. Since a major aim of this research is evaluate how these devices perform in rural field settings, it was desired to include a number of low-end frame rates. For these, we selected 1, 2, and 5 FPS. Finally, to bridge the gap between these two extremes, we chose 15 FPS, resulting in the full set of frame rates for testing: 1, 2, 5, 15, and 30 FPS.

Testing and Data Collection

In this study, our testing had two primary aims:

- To quantify the full bitrate of the video streams under undegraded network conditions
- To evaluate the performance of the video streams under degraded network conditions

We initially considered multidimensional network condition tests (throughput, latency, jitter, packet loss), but this would have added several more months to the testing period. In our experience, the network conditions most likely to cause video stream degradation (at least in the ITS setting) are reductions in throughput and the packet loss that ultimately results from it. So, for this study, it was decided to approximate network degradation solely by throttling the throughput of the link between the source (CCTV encoder) and the sink (the Test Manager host).

Data collection was automated by means of an application running on the Test Manager host. Testing involved repeating test cases under each of four network conditions managed by the Network Simulator:

- Non-limited: allow data to flow at the full rate of the encoding device's network interface
- limited 100%: limit data flow to the full nominal rate (no degradation) of the link class
- limited 80%: limit data flow to 80% of the nominal rate of the link class
- limited 50%⁴: limit data flow to 50% of the nominal rate of the link class

⁴ For communications links in the ITS setting, a wide range in network quality may be encountered. While there is sometimes a need to stream video over links that regularly

The non-limited case is designed to allow the stream's full average bitrate to be quantified, while the other three cases are designed to evaluate the stream's performance (frame loss, etc.) under various network throughput conditions (100%, 80%, 50% of nominal rate).

A high-level outline of the testing process is provided in Figure 3.9.

For each device:

- For each encoder configuration (encoding, control mode, etc.):
 - For each resolution class:
 - For each frame rate:
 - For each network link class:
 - Calculate Rtarg, Rmax for this link class (Figure 3.6) as applicable
 - For each network condition (ungoverned, 100%, 80%, 50%):
 - Calculate network throttle value (if any) for this link class and network condition
 - Configure network simulator
 - Perform video streaming test (specifying Rtarg, Rmax as applicable)

Figure 3.9: High-level outline of the testing process

Data Analysis

The primary goals of the data analysis phase were to determine, for each device:

- How do the various stream configurations tested compare with each other, especially in terms of bitrate and frame loss estimates?
- How well does the device tend to keep the stream bitrate within range of the specified target and/or maximum bitrate parameters?
- How do network bandwidth limitations affect the stream as received by the client/decoder?

experience extreme throughput degradation, we did not throttle below 50% in our testing for a couple reasons. First, for streams utilizing the majority of the nominal rate of a given link, degradations in throughput beyond 50% often result in exceedingly poor stream quality. Second, for links that regularly experience such drops in throughput, it's best (for stream configuration purposes) to simply treat the link as if its nominal rate were lower. For example, if a microwave link with a nominal rate of 2000 kbps regularly experiences 50% drops, it may be helpful to simply treat it as a 1000 kbps link and configure the video stream accordingly. Adaptive bitrate streaming protocols may help in these scenarios as well, but they are not widely supported by the types of devices reviewed in this study.

The first goal was accomplished by comparing statistics between the corresponding tests (i.e., equivalent resolution, frame rate, network condition and bitrate target/maximum parameters) in each test group being compared.

For the second goal, the measured stream bitrate for each test was compared to the target/maximum bitrate parameters and the test case was classified according to its relationship between these parameters. This classification was then visualized on a "stream quality analysis" chart (see Figure 3.10).

The third goal was accomplished by comparing the frames received in each of the network-limited tests to the frames received in the non-network-limited test. These comparisons were then used to estimate the frame loss due to each network limitation scenario, and these frame loss estimates were then used to classify the test case relative to how resilient it was to network limitations in terms of frame loss.

There is always some level of non-determinism involved in sequential testing. Test results may vary slightly when repeated due to minor differences in timing, encoder state, sporadic errors, and the like. Limited spot testing was performed in order to gauge the magnitude of these inter-test variances, and it was observed to be much smaller overall than the magnitude that would result from a change in test scene. The goals of this research involve characterizing the behavior of these devices at a macroscopic level, so these minor variances will not significantly affect the results.

To assist in visualizing the data collected from the thousands of tests performed in this study, a "stream quality analysis" chart was developed and generated for each applicable test group. An example (for an Axis test group) is shown in Figure 3.10.

Each cell in the table represents the results of four individual streaming tests performed at a particular resolution and frame rate (rows), for a particular link class (columns):

- 1. streaming over an ungoverned network link
- 2. streaming over a network link rate-limited to 100% of the link class's nominal rate
- 3. streaming over a network link rate-limited to 80% of the link class's nominal rate
- 4. streaming over a network link rate-limited to 50% of the link class's nominal rate

				F	ł _{nom} ,	R _{max}	. R.	arg	(kbps	3)				R		me
	9.6	14.4	28.8			128	256	512		1000	2000	4000	8000	Rnom	:	nc
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R ₁₀₀	:	ne
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R ₈₀	:	ne
320x180 @ 1 FPS	5	5	5	5	6	5	6	5	6	6	5	5	6	R_{50}	:	ne
320x180 @ 2 FPS	7	8	9	9	9	8	8	9	9	8	9	8	9	R _{max}	:	sp
320x180 @ 5 FPS	9	11	15	15 ••	15	15	15	15	15	15	15	15	15	R _{targ} F _r	:	sp # f
320x180 @ 15 FPS	14	20	24	26	31	33	30	33	34	33	33	33	33	F _r	:	# f
320x180 @ 30 FPS	20	24	40	41	43	56	56	58	56	57	55	56	57	0		
480x270 @ 1 FPS	5	8	11	11	11	11	10	11	11	10	11	11	11	R	:	R
480x270 @ 2 FPS	9	11	17	18	17	17	18	18	17	18	17	17	17	R	:	R
480x270 @ 5 FPS	12	15	22	22	27	28	27	28	28	27	28	28	28	R	:	R
480x270 @ 15 FPS	21	25	35	39	47	58	63	62	60	61	63	61	63	••••	:	F_r
480x270 @ 30 FPS	34	35	46	51	71	81	100	102	96	104	100	102	100		:	F_r
800x450 @ 1 FPS	8	9	17	14	29	32	29	31	30	30	29	30	30		:	F_r
800x450 @ 2 FPS	15	17	26	28	42	47	50	49	52	48	52	48	49		:	F_r
800x450 @ 5 FPS	29	28	37	38	48	74	76	79	78	76	79	75	76	•		
800x450 @ 15 FPS	58	58	• 58	• 58	72	117	149	161	157	160	157	162	157			
800x450 @ 30 FPS	• 86	• 83	•• 86	• 87	• 95	•• 162	189	252	258	262	254	263	265	Device	:	
1280x720 @ 1 FPS	18	• 17	23	• 23	•• 32	• 75	74	81	73	75	72	76	••••	Scene:		
1280x720 @ 2 FPS	• 34	• 36	•• 37	40	58	••• 97	126	135	134	134	126	135	•••• 134	Encodi	-	
1280x720 @ 5 FPS	• 81	• 79	• 81	• 79	• 78	118	109	218	207	220	206	214	217	GOP M Compre		
1280x720 @ 15 FPS	• 156	•	• 154	• 161	• 166	•• 179	273	315	399	399	395	409	•••• 395	ZS Strer		
1280x720 @ 30 FPS	216	224	231	212	221	232	325	433	470	531	640	614	627		č	
1920x1080 @ 1 FPS	42	42	42	41	48	82	111	186	169	176	166	162	159			
1920x1080 @ 2 FPS	76	80	80	• 74	• 77	122	194	308	299	290	305	308	306			
1920x1080 @ 5 FPS	177	191	142	172	189	190	247	378	464	513	534	549	515			
1920x1080 @ 15 FPS	406	382	395	376	301	377	403	542	688	702	962	966	998			
1920x1080 @ 30 FPS	579	579	563	580	561	574	519	661	903	1037	1141	1475				

R	:	measured average bitrate (kbps)
R_{nom}	:	nominal bitrate for link class (kbps)
R_{100}	:	net-limit test rate (100% of R_{nom})
R_{80}	:	net-limit test rate (80% of R_{nom})
R_{50}	:	net-limit test rate (50% of R_{nom})
R_{max}	:	specified max. rate (80% of R_{nom})
R_{targ}	:	specified target rate (80% of R_{max})
F_r	:	# frames received
F_{e}	:	# frames expected
R	:	R \in [0, R _{targ}]
R	:	$R \in (R_{targ}, R_{max}]$
R	:	${\tt R}~\in~({\tt R}_{\tt max}$, ∞)
	:	$F_{r} \div F_{e} \geq$ 90% for R_{100} , R_{80} , R_{50}
	:	$F_{r} \div F_{e} \geq$ 90% for R_{100} , R_{80}
	:	$F_r \div F_e~\geq$ 90% for R_{100}
	:	$F_r \div F_e \geq 90\%$ for no test rates
•		
Device	:	Axis Q8752-E
Scene:		scenel
Encodi	-	
GOP M	od	e: 30 f
Compr	ess	ion: 100

off

Figure 3.10: Example stream quality analysis chart

During testing, we calculate a "frame ratio" for each of the three rate-limited tests. We define "frame ratio" as the ratio of the number of frames received in a given rate-limited test case (items 2-4 above) to the number of frames received during its corresponding ungoverned test case (item 1 above). Defined this way, it is a proportional estimate of frame loss due to the network rate restrictions that were applied for the test case. It can thus be used to quantify the impact that real-world network link rate limits (nominal rate and drops due to congestion, etc.) would have on a video stream of the given configuration.

Each cell in the table has three indicators: a number, a color, and a set of 0-4 dots.

The number in the cell is the measured average bitrate for the ungoverned test.

The color of each cell corresponds to the ratio of the measured average bitrate of the ungoverned test to the specified target and maximum bitrates for that test. For encoding modes where both a target rate and a maximum rate are specified to the encoder, the meaning of the colors is as follows:

- Green: encoder kept the stream within the target bounds
- Yellow: encoder kept the stream within the maximum bounds but not the target bounds
- Red: encoder did not keep the stream within the maximum bounds

For encoding modes where only a maximum rate is specified to the encoder, the meaning of the colors is as follows:

- Green: encoder kept the stream within the maximum bounds
- Red: encoder did not keep the stream within the maximum bounds

The dots below the number in the cell represent the "frame ratio" results of the three rate-limited tests, and indicate the first rate-limited test (if any) for which the "frame ratio" fell below 90%:

- Four dots (••••) signifies that the frame ratio was above 90% for all three rate-limited tests
- Three dots (•••) signifies that the frame ratio was above 90% for the 100% and 80% link rate tests, but fell below 90% for the 50% test
- Two dots (••) signifies that the frame ratio was above 90% for the 100% link rate test, but fell below 90% for the 80% test
- One dot (•) signifies that the frame ratio was below 90% for even the 100% link rate test
- Zero dots signifies that a frame ratio was unable to be calculated due to test failure

Many of the tests performed poorly, both in terms of bitrate and frame ratio. This is because all row and column combinations were tested, even when impractical for the stream configuration being tested, and the bitrate control implementations of many encoders do not adhere strictly to the specified target and maximum bitrate parameters, especially when those parameters are impractical.

Furthermore, some encoding modes on some devices produce bitrates that are nearly always above the specified maximum rate. This seems to be an implementation decision, but the reasons for it are not clear. As one example to illustrate this, one test we performed for link class 10 (nominal rate 1000 kbps) requested a 1920x1080, 5 FPS stream with a target rate of 640 kbps and a maximum rate of 800 kbps. The encoder responded with a stream averaging 839 kbps, a rate that is above both the target and maximum rates. However, it's clear that the encoder is able to produce a stream within the bounds requested because, during the corresponding test for link class 9 (nominal rate 768 kbps, target rate 491 kbps, maximum rate 614 kbps), the encoder produced a stream averaging 606 kbps, a rate well within the target range of the test for link class 10.

The purpose of these tables is to aid in the stream configuration process and can help answer two key questions:

- 1. For a given resolution and frame rate, what are reasonable minimum values for target rate (if applicable) and maximum rate that will produce a reliable stream with this encoding?
- 2. For a communications link with a given nominal bitrate, what is the highest resolution and/or frame rate that can be streamed reliably with this encoding?

These tables help find approximate answers to these questions. Once that is done, the operator can use these answers as a starting point in tuning the stream until the visual quality is acceptable.

As an example of answering question #1, assume an operator would like to find minimum values for target and maximum rate for a 480x270 stream at 5 FPS using the device and encoding of Figure 3.10 (Axis Q8752-E, H.264 Main, ABR, GOP 30, compression 100, Zipstream off). The table row corresponding to this resolution and frame rate (row 8) would be followed from left to right until areen cells with three or four dots are reached. In this case, the fifth column meets these criteria. It indicates that, for this configuration, the encoder produced a 27 kbps stream. The green color of this cell indicates that the average bitrate was within both our target (35 kbps) and maximum (44 kbps) rate values, and the three dots indicate that frame delivery remained good even when the 56 kbps communications link was restricted down to 80% of its nominal rate. Therefore, the target and maximum bitrates corresponding to this column are likely to be reasonable minimum values for a stream similar to (or less complex than) our test stream, over a network connection that may fluctuate down to 80% of its nominal rate, while still allowing an additional streaming headroom of 20% to accommodate sudden bitrate jumps due to changes in the scene. If the network connection is very reliable and is deemed unlikely to fluctuate below its nominal rate, then the cells with two dots may also be a reasonable choice.

As mentioned above, a red cell doesn't always mean that a stream is impractical for given resolution, frame rate, and desired bitrate. Some devices consistently overshoot the specified parameters. When this happens, it's possible to compensate for this bias. If a table row for a particular resolution and frame rate has no cells indicating desirable characteristics, then the measured bitrate in that cell can be used to determine potentially reasonable minimum values for target and maximum rate for that scenario. For example, if a cell indicates an average bitrate of 2345, then a target value of 2345 kbps and a maximum value of, say, 2345/80% = 2931 kbps may be a reasonable starting point for testing this streaming configuration.

Once reasonable minimum values are found for target and maximum rate, the stream produced with those parameters should be examined for visual quality. Since these rate values are minimums, they will typically produce a stream on the low end of the visual quality scale. Target and maximum rate values that produce a stream of acceptable visual quality can then be determined by iteratively increasing these values and examining the resulting stream.

Similarly, question #2 can be answered by following, from bottom to top, the column corresponding to the desired nominal rate (R_{nom}), bearing in mind that the rows are grouped by resolution first, then frame rate.

Stream quality analysis tables for all applicable streaming configuration test groups on each device in this study can be found in Appendix B. These stream quality analysis tables should be consulted during the stream configuration planning process, and they represent a key result of this study.

Areas of Focus

Compression Standards, Profiles, and Bitrate Control Modes

The choice of video compression standard, profile, and bitrate control mode can directly impact stream bitrates and quality. To allow for comparative analysis of their effect on streaming results, testing included several compression/profile combinations (when supported by the device):

- H.264 Main Profile
- H.264 High Profile
- H.264 Baseline Profile
- H.265 Main Profile

Testing also included several bitrate control modes:

- ABR
- MBR
- CBR
- VBR

M-JPEG

Comparing M-JPEG streams to H.264 and H.265 streams is not particularly worthwhile, other than to make a few general observations. While M-JPEG is a streaming protocol and can even be used over RTP, it is an extremely inefficient

choice since it takes no advantage of inter-frame redundancies. This means that every frame is effectively a "key" frame, containing 100% of the data needed for its rendering.

On lossy or congested networks, M-JPEG is a particularly poor choice for UDP streaming since the larger average frame size results in a higher likelihood of corruption for each frame compared to streams which employ differential or predictive frames. However, M-JPEG is sometimes a reasonable choice for TCP streaming on lossy networks, particularly in cases where the integrity of each frame delivered is more important than the overall frame delivery rate. In addition, M-JPEG is sometimes used simply for compatibility with legacy software or devices. For this reason, since there are situations in which M-JPEG is still the right choice, it is included in the test scenarios to provide a general idea of the bitrates produced. Although M-JPEG is usually streamed over TCP, the tests were performed over UDP in order to give a cleaner estimate of the bitrates without having to factor in the contribution of TCP overhead (retransmission, congestion control, and the like). MJPEG is also used over POTS networks as a last resort. Often, other compression standards will not work on a POTS network and MJPEG will provide periodic image/frame refreshes.

GOP Intervals

Many encoding systems default to a fixed GOP interval of 30-60 frames. The reasoning behind this choice seems to be that it will result in a GOP interval duration of 1-2 seconds for standard 30 FPS streams. This means that if a single I-frame (key frame) happens to be lost or corrupted, the stream should recover within 1-2 seconds. However, for streams with lower frame rates, the average recovery time will be longer. For example, for a 5 FPS stream with a GOP interval of 30, the recovery time for a single lost or corrupted I-frame could be as long as 6 seconds. If poor network conditions result in loss or corruption of multiple consecutive I-frames, then recovery time can be much longer. The primary trade-off in GOP interval selection is as follows:

- higher GOP intervals tend to
 - result in lower bitrates, since I-frames (which are typically larger than other frame types) comprise a smaller portion of the stream
 - recover more slowly, since the duration between I-frames is longer
- lower GOP intervals tend to
 - result in higher bitrates, since I-frames (which are typically larger than other frame types) comprise a larger portion of the stream
 - recover more quickly, since the duration between I-frames is shorter

So, choosing a single fixed GOP for all frame rates is usually not optimal. A better approach is to choose a number that balances stream recovery time with the bitrate.

To explore the effects of choosing a GOP interval based on a fixed duration rather than a fixed number of frames, for some test groups, we dynamically selected a GOP interval such that the GOP would have a fixed duration in seconds. The GOP interval *n* for a desired duration *d*, for a given frame rate *r* can be calculated as n = dr. For example, for a GOP duration of 5 seconds, this results in the GOP intervals provided in Table 3.2.

Table 3.2: Correlation between frame rate and GOP interval for a GOP duration of 5 seconds

Frame Rate (kbps)	GOP Interval
1	5
2	10
5	25
15	75
30	150

Another common approach to GOP interval management is to use devicespecific "dynamic GOP" features. When available, manufacturers typically claim that these features can lower stream bitrates without significantly impacting visual quality by dynamically determining efficient inclusion position of I-frames in the stream. When streams are less active, fewer I-frames will be included (resulting in a decreased bitrate). When streams are more active, more I-frames will be included (resulting in an increased bitrate).

We included examples of all these approaches (fixed, variable with frame rate, and dynamic) in the test scenarios to ascertain how they impact the stream.

TCP vs. UDP Streaming

Some project panel participants expressed interest in TCP streaming. While TCP is used widely in modern consumer-level streaming protocols such as HLS and DASH, it is generally not used for real-time video backhaul streaming unless it is required for network policy reasons (e.g., firewall configurations that will not allow UDP streaming). One of the primary reasons for this is that, with TCP, the transmitting host will make multiple attempts to deliver packets that are not acknowledged as having been received by the receiving host. While it is

generally desirable to not lose stream packets, for real-time streams with small buffers, the retransmitted packet often doesn't arrive until the decoder has already advanced beyond the corresponding stream location. Rather than simply moving on, the decoder could wait for the retransmitted data, but this can stall out the stream, an outcome which is usually less desirable than the visual artifacts that result from simply continuing the decoding process while omitting the lost data. Alternatively, the decoder could employ larger buffers, but this increases stream latency, which is often undesirable for real-time surveillance video.

There are situations where, with certain network conditions and streaming configurations, selecting TCP may appear to provide superior results to UDP. However, this often means that the streaming configuration used was not a good match for the network conditions in the first place. In these cases, switching from UDP to TCP may seem to improve the stream, but often comes with other side effects such as progressive degradation or periodic skips.

Nevertheless, since there are scenarios for which TCP streaming may be useful, we included it in our test scenarios to make some observations on its impact on a stream.

Chapter 4: Test Results and Analysis

Chapter 3 provides the test methodology, as well as important background information. The test results are presented in this chapter, with full presentation of stream quality analysis results provided in Appendix B.

Video Stream Testing

Axis Q8752-E

Baseline Test

The streaming configuration provided in Table 4.1 was selected for the Axis Q8752-E baseline test group (1,300 tests).

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	Off

Table 4 1. Axis	Q8752-E Baseline	test streamina	configuration
	QU/JZ-L DUSEIIIIE	resi sireurining	conngoranon

Although many encoders do not allow direct user control of a "compression level," the Axis Q8752-E does. A compression value of 30 was selected as it is the default, as well as the manufacturer-recommended value for general purpose streaming [4].

Figure 4.1 summarizes the results of the 1,300 tests conducted on the Axis Q8752-E with this (baseline) streaming configuration.

		•					P		(lula re -							
	9.6	14.4	28.8		anom,		256		(kbps		0000	4000	8000	R		: measured average bitrate (kbps
	9.6	14.4	28.8	26	56 44	128 102	256	512 409	614				6400	R _{nom}		: nominal bitrate for link class (kbp : net-limit test rate (100% of R _{nom})
	6	9	18	20	35	81	163	327	491	640			5120	R ₁₀₀ R ₈₀		: net-limit test rate (80% of R_{nom})
320x180 @ 1 FPS	6	9	15	17	26	47	52	53	50	50	50	52	51	R ₈₀ R ₅₀		: net-limit test rate (50% of R_{nom})
	•	•	•••	•••	•	••••	••••	••••	••••	••••	••••	••••	••••	R _{max}		: specified max. rate (80% of R _{no}
320x180 @ 2 FPS	9	12	18 ••	26	37	85 •••	77	89 ••••	90	85	86	82	89 ••••	R _{targ}		: specified target rate (80% of R_m
320x180 @ 5 FPS	11	15 •	21	23	40	89	154 •••	164	160	153	133	165	149	Fr		: # frames received
320x180 @ 15 FPS	19	22	35	38	44 ••	80	169	295	400	422	373	424	407	Fe		: # frames expected
320x180 @ 30 FPS	32	32	43	50	69	83	152	320	409	434	614	661	695	Ū.		·
480x270 @ 1 FPS	•	10	17	20	27	•••	••• 90	86	89	92	89	92	89	R	:	: R \in [O, R _{targ}]
480x270 @ 2 FPS	• 10	•	24	27	••• 34	•• 77	•••• 151	159	156	•••• 147	138	150	155	R	-	: $R \in (R_{targ}, R_{max}]$
	•	•	••	•	•••	•••	•••	••••	••••	••••	••••	••••	••••	R		9
480x270 @ 5 FPS	19 •	23	27 •	32	39 •••	89 •••	149 •••	275 •••	244	276	279	268	283 ••••	n	-	: R \in (R _{max} , ∞)
480x270 @ 15 FPS	37	37	41 •	45 •	64 •	87 •••	157	325	483	531	666	642	643	••••	:	: $F_r \div F_e$ \geq 90% for R_{100} , R_{80} , R_{90}
480x270 @ 30 FPS	58	58	60	63	79	137	151	304	431	592	1013	1062	1100	•••	:	: $F_{r} \div F_{e} \geq$ 90% for R_{100} , R_{80}
800x450 @ 1 FPS	20	20	21	25	34	70	146	229	264	274	259	260	244	••	1:	: $F_r \div F_e$ \geq 90% for R_{100}
800x450 @ 2 FPS	24	25	28	27	45	89	156	••• 253	331	430	448	495	444		1:	: $F_r \div F_e > 90\%$ for no test rates
800x450 @ 5 FPS	• 56	• 54	• 54	• 63	• 61	•••	180	369	438	••••	876	•••• 823	819	•		1 0 _ 0
800x450 @ 15 FPS	•	•	• 102	•	• 100	••• 124	••• 197	••• 304	••• 504	••• 682	1046	••••	•••• 1747			
	•	•	•	•	•	•	•••	•••	•••	•••	•••	••••	••••			
800x450 @ 30 FPS	157	158	156	155 •	158 •	179 •	304 •	337 •••	449 •••	592	1240	2334	3016	Device		Axis Q8752-E
1280x720 @ 1 FPS	51	52	48	50	43	77 ••	170	223	378	589	645	673	699	Scene		
1280x720 @ 2 FPS	62	64	60	60	68	116	199	311	520	626	1090	1314	1229	Encod		•
1280x720 @ 5 FPS	143	146	149	149	• 145	• 161	226	370	536	691	1080		2489	GOP M Comp		
1280x720 @ 15 FPS	280	• 293	• 296	• 294	• 276	• 295	••• 319	487	512	6 39	1360	2237	4413	ZS Stre		
	•	•	•	•	•	•	••	••	•••	•••	•••	•••	•••	20 0110	y	
1280x720 @ 30 FPS	•	409	411	388	393	398 •	405 •	638 •	857 ••	851	•••	2481	•••			
1920x1080 @ 1 FPS	117	122	119 •	119 •	116 •	101	148 •••	315 •••	433	545 ••••	869	1763	1790 ••••			
1920x1080 @ 2 FPS	146	143	144	136	140	147	239	374	403	731	1294	2567	3226			
1920x1080 @ 5 FPS	323	328	338	347	333	340	349	480	613	719	1472	2582	5908			
1920x1080 @ 15 FPS	738	• 719	• 721	• 735	• 735	• 736	• 660	•• 739	835	1056	1329	2590	5220			
1920x1080 @ 30 FPS	•	•	•	•	•	•	• 986	• 979	•	••	2022	2472	5160			
1020A1000 & 00 FFD	•	•	•	•	•	•	•	•	•	•	0022	•••	•••			

Figure 4.1: Stream quality analysis for Axis Q8752-E Baseline test

As can be seen, acceptable target/maximum bitrate parameters can be found for nearly all of the resolutions and frame rates tested except for the some of the higher frame rates at the 1920x1080 resolution. This indicates that these cases may require either a more conservative target:maximum ratio, or may simply require a connection with a faster rate than was included in the testing.

MBR Rate Control

The purpose of this test group is to compare the performance of a basic MBR stream to the performance of the baseline (ABR) stream for the Axis Q8752-E. This test group consists of 1,300 tests and employed the streaming configuration of Table 4.2. Differences in configuration between this test group and that of the baseline test group are highlighted in bold, as in all following groups.

Table 4.2: Axis Q8752-E MBR test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	MBR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	N/A
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	Off

Since MBR rate control is not as sophisticated as ABR, and since MBR implementations generally do not allow the specification of a target bitrate in addition to the maximum, it's not surprising for the MBR bitrate to be somewhat higher than a similarly configured ABR stream using the same maximum but with a lower target value also specified. This is what was observed in this test group. Bitrates for non-network-limited streams measured higher than those of the corresponding baseline (ABR) test streams for the majority of the streams in this test group.

Relative to the baseline test group, the following differences can be noted:

- The average bitrate for non-network-limited tests was 5.94% higher overall
- 1 FPS streams performed worse than those of other frame rates (14.09% higher bitrate than comparable tests in the baseline group)
- 30 FPS streams performed better than those of other frame rates (only 2.13% higher bitrate than comparable tests in the baseline group)
- Frame ratios were lower overall, indicating more frame loss (-2.74% for the 100% nominal rate tests, -2.52% for the 80% nominal rate tests, and -2.96% for the 50% nominal rate tests)

VBR Rate Control

VBR is essentially a "use as much data as you need" approach to bitrate management. It is typically used when visual quality is paramount and network capacity is sufficiently (and consistently) high. However, since neither condition is typically true for highway surveillance CCTVs (especially in rural areas), we limited testing of this mode to basic bitrate measurements.

This test group consists of 25 tests and employed the streaming configuration of Table 4.3.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	VBR
Maximum Bitrate:	N/A
Target Bitrate:	N/A
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	Off

Table 4.3: Axis Q8752-E VBR test streaming configuration

As can be seen in Table 4.4, bitrates for VBR streams can be quite high, especially at higher resolutions and frame rates.

Table 4.4: VBR test bitrates

Resolution and Frame Rate	Measured Average Bitrate (kbps)				
320x180 @ 1 FPS	50				
320x180 @ 2 FPS	92				
320x180 @ 5 FPS	173				

Resolution and Frame Rate	Measured Average Bitrate (kbps)
320x180 @ 15 FPS	424
320x180 @ 30 FPS	693
480x270 @ 1 FPS	93
480x270 @ 2 FPS	167
480x270 @ 5 FPS	291
480x270 @ 15 FPS	657
480x270 @ 30 FPS	1164
800x450 @ 1 FPS	271
800x450 @ 2 FPS	485
800x450 @ 5 FPS	882
800x450 @ 15 FPS	2016
800x450 @ 30 FPS	3528
1280x720 @ 1 FPS	705
1280x720 @ 2 FPS	1359
1280x720 @ 5 FPS	2595
1280x720 @ 15 FPS	5707
1280x720 @ 30 FPS	9005
1920x1080 @ 1 FPS	1949
1920x1080 @ 2 FPS	3706
1920x1080 @ 5 FPS	7844
1920x1080 @ 15 FPS	19991
1920x1080 @ 30 FPS	32228

Since VBR does not allow specification of a target bitrate, and since the bitrate of a VBR stream can vary wildly with changes in the scene, the "frame ratio" analysis (which explores how frame receipt is affected when a link's capacity drops below its nominal rate) isn't especially useful for VBR.

H.264 High Profile

The purpose of this test group is to compare the performance of a stream using the H.264 "High" profile to the performance of the baseline stream (which uses the H.264 "Main" profile) for the Axis Q8752-E.

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.5.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (High)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	Off

Table 4.5: Axis Q8752-E H.264 High test streaming configuration

Performance results for this configuration were not dramatically different from those of the baseline test group. However, relative to the baseline test group, the following differences can be noted:

- The average bitrate for non-network-limited tests was roughly equivalent (1.10% higher)
- Bitrates tended to be lower for the lower resolutions (averaging -4.92% for 320x180, and -1.05% for 480x270) and higher for the higher resolutions (averaging +2.70% for 800x450, +3.32% for 1280x720, and +5.47% for 1920x1080)

- Bitrates tended to be lower for the lower frame rates (averaging -0.55% for 1 FPS, -1.66% for 2 FPS, and -1.27% for 5 FPS) and higher for the higher frame rates (averaging +4.27% for 15 FPS, and +4.73% for 30 FPS)
- Frame ratio averages were nearly identical (-0.06% for the 50% nominal rate tests, -0.16% for the 80% nominal rate tests, and -0.53% for the 100% nominal rate tests)

H.265 Main Profile

The purpose of this test group is to compare the performance of a stream using H.265 (with the "Main" profile) to the performance of the baseline stream, which uses H.264 (with the "Main" profile) for the Axis Q8752-E.

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.6.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.265 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	Off

Performance results for this H.265 configuration were significantly better than those of the baseline test group. Relative to the baseline test group, the following differences can be noted:

 The average bitrate for non-network-limited tests was 9.88% lower overall

- Average bitrates were lower across all resolutions (-11.06% for 320x180, -8.26% for 480x270, -9.99% for 800x450, -11.66% for 1280x720, and -8.43% for 1920x1080)
- Average bitrates were lower across all frame rates (-6.52% for 1 FPS, -13.17% for 2 FPS, -12.10% for 5 FPS, -10.02% for 15 FPS, and -7.58% for 30 FPS)
- Frame ratios were slightly better overall (+1.62% for the 50% nominal rate tests, +1.50% for the 80% nominal rate tests, and +0.21% for the 100% nominal rate tests)

M-JPEG

This test group consists of 25 tests and employed the streaming configuration of Table 4.7.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	M-JPEG
Bitrate Control Mode:	N/A
Maximum Bitrate:	N/A
Target Bitrate:	N/A
GOP Interval:	N/A
Frame Rate Mode:	N/A
Compression Level:	30
Zipstream Strength:	N/A

As seen in Table 4.7, bitrates for M-JPEG streams can be very high. Relative to the baseline test group, the following differences can be noted:

• The average bitrates for non-network-limited tests were orders of magnitude higher

As seen in Figure 4.2, bitrates for M-JPEG streams can be very high. Relative to the baseline test group, the following differences can be noted:

- The average bitrates for non-network-limited tests were orders of magnitude higher.
- Frame delivery was very poor for our 1920x1080 tests, but the cause has not been determined.

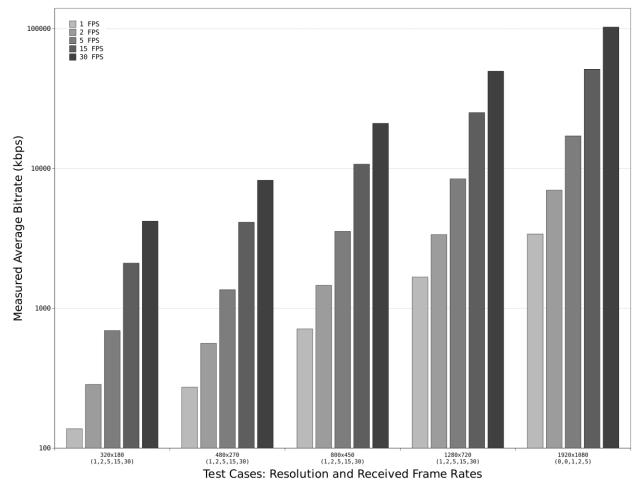


Figure 4.2: Average bitrates for Axis Q8752-E M-JPEG test

Varying GOP Interval with Frame Rate

To explore the effects of choosing a GOP interval based on a fixed duration rather than a fixed number of frames, for each test in this test group, we dynamically selected a GOP interval such that the GOP would have a duration of 5 seconds, as shown in Table 4.8. Table 4.8: Correlation between frame rate and GOP interval for a GOP duration of 5 seconds

Frame Rate (kbps)	GOP Interval
1	5
2	10
5	25
15	75
30	150

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.9.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 5r frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	Off

As expected, the performance of this test group (relative to the baseline test group which uses a GOP interval of 30 for all tests), depends on frame rate. The key findings are as follows:

For the 1, 2, and 5 FPS tests, for which the GOP interval values were lower than the baseline group's value of 30, I-frames comprised a larger portion of the

stream and higher average bitrates were observed (+36.97%, +16.26%, and +0.59% respectively).

For the 15 and 30 FPS tests, for which the GOP interval values were higher than the baseline group's value of 30, I-frames comprised a smaller portion of the stream and lower average bitrates were observed (-6.27% and -9.55% respectively).

Compression 100

While not all encoders allow direct user control of a "compression" parameter, many Axis devices such as the Axis Q8752-E do. Although "compression" parameters are not always comparable across devices, it defaults to a value of 30 on the Axis Q8752-E, which is also the value recommended by Axis [4].

The purpose of this test group is to explore the magnitude of bitrate reduction possible for the (reasonably active) test scene. Through experimentation it was discovered that, even at a compression value of 100, the stream continued to provide a very useable facsimile of the test scene. Since this may be sufficient for some rural sites with extremely limited network connectivity, it was decided to use a compression value of 100 for this test group. This allows the results of this test group to provide a general idea of how much bitrate reduction is possible through use of the compression parameter, while still retaining a useable stream. If higher visual quality is desired, it can be obtained (at the cost of bitrate) by lowering the value of the compression parameter.

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.10.

Notable results compared to the baseline (compression 30) test group:

- Bitrates were dramatically reduced in nearly all non-network-limited tests, with an average bitrate reduction of 57.77%
- Frame ratios were also improved for the majority of network-limited tests, averaging +17.61% for the 50% nominal rate tests, +12.05% for the 80% nominal rate tests, and +10.40% for the 100% nominal rate tests

Table 4.10: Axis Q8752-E Compression 100 test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	100
Zipstream Strength:	Off

Zipstream

Zipstream is a set of Axis-proprietary video encoding enhancements which can be used in conjunction with H.264, H.265, and other stream encodings. Axis recommends its use [4] and describes it as "radically more efficient than standard encoders" [5].

The main parameter specifying the behavior of Zipstream is the "Zipstream strength" parameter. Possible values for this parameter are 10 (default), 20, 30, 40, 50, and "off." Higher values tend to reduce the bitrate at the expense of visual quality, although Zipstream claims to prioritize the retention of important visual details over those of less importance [4]. Axis warns that some clients/decoders may not be compatible with Zipstream levels higher than 10 [4].

Axis describes the Zipstream strength levels as in Table 4.11 [5].

Table 4.11: Zipstream strength levels

Strength	Effort Level	Visible Consequences	
Off	Off	None	
10	Low	No visible effect in most scenes	

Strength	Effort Level	Visible Consequences	
20	Medium	Visible effect in some scenes: less noise, and slightly lower level of detail in regions of lower interest	
30	High	Visible effect in many scenes: less noise, and lower level of detail in regions of lower interest	
40	Higher	Visible effect in even more scenes: less noise, and lower level of detail in regions of lower interest	
50	Extreme	Visible effect in most scenes: less noise, and lower level of detail in regions of lower interest	

Zipstream Strength 10

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.12.

Table 4.12: Axis Q8752-E Zipstream Strength 10 test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	10

Notable results compared to the baseline (Zipstream off) test group:

• Bitrates were reduced in most non-network-limited configurations, with an average bitrate reduction of 11.12%

• Frame ratios for network-limited tests were slightly improved, averaging +2.99% for the 50% nominal rate tests, +0.98% for the 80% nominal rate tests, and +1.79% for the 100% nominal rate tests

Zipstream Strength 30

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.13.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	30

Notable results compared to the baseline (Zipstream off) test group:

- Bitrates were reduced in most non-network-limited configurations, with an average bitrate reduction of 15.61%
- Frame ratios for network-limited tests were slightly improved, averaging +2.86% for the 50% nominal rate tests, +0.42% for the 80% nominal rate tests, and +0.08% for the 100% nominal rate tests

Zipstream Strength 50

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.14.

 Table 4.14: Axis Q8752-E Zipstream Strength 50 test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	50

Notable results compared to the baseline (Zipstream off) test group:

- Bitrates were reduced in most non-network-limited configurations, however for many test cases in which the specified target and maximum bitrates were at the low end of the range of realistic values (especially those with lower frame rates), bitrates were dramatically higher. The reasons for this are unclear. However, for nearly every test case configuration with sufficiently high specified target and maximum bitrate values, bitrate reduction was considerable.
- Frame ratios for network-limited tests were mixed, likely due to the aforementioned phenomenon

Zipstream Strength 30 with Dynamic GOP Interval

Zipstream features an optional "dynamic GOP" mode which Axis recommends using whenever Zipstream strength is 30 or higher [4]. Axis describes this mode as a way to remove "unnecessary" I-frames from the stream for bitrate reduction purposes [4]. With the dynamic GOP mode, shorter GOP intervals (more I-frames) will be used for more active scenes, and longer GOP intervals (fewer I-frames) will be used for less active scenes. Minimum and maximum values are specified by the user in order to restrict the GOP intervals to a desired range. This test group consists of 1,300 tests and employed a streaming configuration identical to that of the Zipstream Strength 30 tests (Table 4.14), except that the GOP mode is dynamic, constrained to a range of 1-300 frames.

Analysis of results for the non-network-limited tests in this test group are provided in Table 4.15.

Frame Rate	Average GOP Interval	Average GOP Duration	Average Bitrate Relative to Corresponding Non-Dynamic-GOP Zipstream Strength 30 Tests
1	2.4	2.4	167.18%
2	4.6	2.3	139.40%
5	23.4	4.7	101.47%
15	64.8	4.3	85.44%
30	64.3	2.1	85.97%

Table 4.15: GOP and bitrate statistics for Dynamic GOP test

As expected, the test cases with an average GOP interval longer than the GOP interval (30) of the corresponding tests from the non-dynamic-GOP Zipstream Strength 30 group tended to have lower relative bitrates, and those with longer GOP intervals had higher relative bitrates.

Selection of a higher minimum GOP interval value (e.g., 30) could prevent the higher relative bitrates observed for frame rates 1, 2, and 5 FPS. However, this would come at the cost of stream recovery time, so careful selection of the minimum and maximum GOP interval values is recommended, especially in cases where network quality is low and likelihood of stream corruption is high.

To summarize, the Zipstream dynamic GOP mode, together with a carefully chosen interval range, can result in lower bitrates at the cost of higher stream recovery times. It is a feature worth considering, especially in situations where the following apply:

- The clients/decoders are known to be compatible
- Zipstream strength is set to 30 or higher
- The network is relatively reliable
- Scenes are not extremely active

TCP Streaming

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.16.

Item	Config
Stream Transport:	RTP (TCP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	ABR
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Frame Rate Mode:	fixed
Compression Level:	30
Zipstream Strength:	Off

Table 4.16: Axis Q8752-E TCP Streaming test streaming configuration

Notable results compared to the baseline (UDP) test group:

- Bitrates increased for nearly all non-network-limited tests, averaging 5.60% higher
- Frame ratios were slightly lower overall, averaging +0.38% for the 50% nominal rate tests, -0.99% for the 80% nominal rate tests, and -1.55% for the 100% nominal rate tests. TCP did not result in superior frame delivery in the presence of network constraints.

These results are consistent with expectations, given the additional overhead of TCP.

Bosch MIC inteox 7100i

Baseline Test

The streaming configuration provided in Table 4.17 was selected for the Bosch MIC inteox 7100i baseline test group.

Table 4.17: Bosch MIC inteox 7100i Baseline test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (High)
Bitrate Control Mode:	ABR-like
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Mode:	IBP
GOP Interval:	fixed, 30 frames

Since this device (with the firmware version tested) does not appear to support the Main profile of H.264, we used the High profile for the baseline configuration.

Also, Bosch does not appear to identify or name this device's bitrate control mechanism. However, it allows the specification of a target bitrate and a maximum bitrate, hence we refer to it here as "ABR-like."

Figure 4.3 summarizes the results of the 1,040 tests conducted on the Bosch MIC inteox 7100i with this (baseline) streaming configuration.

As can be seen, the majority of the tests performed poorly, both in terms of bitrate as well as frame loss. The primary reason for this is that, even when the target/maximum bitrate parameters are well within practical ranges for a given stream configuration, the resulting average bitrate was consistently higher than the specified values. This is discussed further in Chapter 5.

				F	ł _{nom} ,	R _{max}	, R	targ	(kbps					R	:	measured average bitrate (kbps)
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	R_{nom}	:	nominal bitrate for link class (kbps)
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R_{100}	:	net-limit test rate (100% of R_{nom})
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R_{80}	:	net-limit test rate (80% of R_{nom})
512x288 @ 1 FPS	5	17	29	31	54	123	275	654	717	789	823	826	830	R_{50}	:	net-limit test rate (50% of $R_{ t nom}$)
512x288 @ 2 FPS	11	15	30	34	48	107	204	434	659	857	1783	1723	1807	R_{max}	:	specified max. rate (80% of R_{nom})
512x288 @ 5 FPS	22	22	33	36	•• 53	••	•• 221	436	642	847	1677	3311	4180	R_{targ}		specified target rate (80% of R_{max})
	•	•	•	•	••	••	•••	•••	•••	•••		•••		F_r	:	# frames received
512x288 @ 15 FPS	57 •	58 •	58 •	57 •	71	130	231 ••	442 ••	649 •••	844 •••	1675	3300	6608	F_{e}	:	# frames expected
512x288 @ 30 FPS	105	102	101	106	106	156	257	466	679	866	1684	3339	6605			
768x432 @ 1 FPS	11	10	29	31	46	104	239	618	1048	1231		1766		R	:	$R \in [0, R_{targ}]$
768x432 @ 2 FPS	21	21	26	• 31	•• 51	• 117	206	702	• 623	834	1655	3791	3861	R	:	$R \in (R_{targ}, R_{max}]$
768x432 @ 5 FPS	•	• 45	• 43	• 45	•• 57	••	••	•• 436	••	•• 817	••	••	6588	R		$R \in (R_{max}, \infty)$
	•	45	•	45 •	57 •	108	208	436	638 •••	•••	1000	3350	0588			
768x432 @ 15 FPS	118	116	147	113	115	135	230	432	652	843	1648	3311	6636		:	${ m F_r}{ m \div F_e}~\geq~90\%$ for ${ m R_{100}}$, ${ m R_{80}}$, ${ m R_{50}}$
768x432 @ 30 FPS	210	202	210	287	204	209	262	478	667	863			6628		:	$\mathrm{F_r}{\div}\mathrm{F_e}~\geq$ 90% for $\mathrm{R_{100}}$, $\mathrm{R_{80}}$
1280x720 @ 1 FPS	22	22	26	• 22	25	120	•• 157	•• 510	887	1301	2439	••• 3524	4284		•	$F_r \div F_e > 90\%$ for R_{100}
1280x720 @ 2 FPS	• 48	• 47	• 60	•	• 51	•• 115	• 226	••• 431	• 650	• 809	•	•	6967	••		
	40 •	•	•	•	•	••	••	••	••	••	••	••	••	•	:	${ m F_r}{\div}{ m F_e}~\geq~90\%$ for no test rates
1280x720 @ 5 FPS	99 •	95	97	96	97 •	123	209	408	617	807	1682	3356	6571			
1280x720 @ 15 FPS	241	247	234	249	249	246	265	456	642	830		3281	6655			
1280x720 @ 30 FPS	417	441	440	446	441	447	•• 443	493	711	891	1714		6646	Device		Bosch 7100i
1920x1080 @ 1 FPS	• 48	• 57	• 46	• 49	• 52	• 114	• 234	•• 401	•• 557	•• 897	0044	•••	6733	Scene:	-	scenel
	•	•	•	•	52	••	••	••	557	•	•	•	•	Encodi	na:	
1920x1080 @ 2 FPS	98 •	101	102	99 •	133	106	232	435	581	825	1517	3059	7340	Frame	-	
1920x1080 @ 5 FPS	201	205	196	202	203	205	241	438	606	839			6569	GOP M		
1920x1080 @ 15 FPS	•	• 509	• 515	• 518	• 522	• 490	•• 506	•• 474	663	••• 843	1615	3298	6531		50	
	•	•	•	•	•	•	•	••	•••	•••	•••	•••	•••			
1920x1080 @ 30 FPS	912	853	917	900	867	1105	929 •	902	826	967	1643	3391	6706			

Figure 4.3: Stream quality analysis for Bosch MIC inteox 7100i Baseline test

H.265 Main Profile

The purpose of this test group is to compare the performance of a stream using H.265 (with the "Main" profile) to the performance of the baseline stream, which uses H.264 (with the "High" profile) for the Bosch MIC inteox 7100i.

This test group consists of 1,040 tests and employed the streaming configuration of Table 4.18.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.265 (Main)
Bitrate Control Mode:	ABR-like
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate

Table 4.18: Bosch MIC inteox 7100i H.265 Main test streamin	a configuration
	g coningeration

Item	Config
GOP Mode:	IBP
GOP Interval:	fixed, 30 frames

Performance results for this H.265 configuration were significantly better than those of the baseline test group. Relative to the baseline test group, the following differences can be noted:

- The average bitrate for non-network-limited tests was 14.44% lower overall
- Average bitrates were lower across all resolutions (-4.78% for 512x288, -11.40% for 768x432, -17.41% for 1280x720, and -24.16% for 1920x1080)
- Average bitrates were lower across all frame rates (-10.91% for 1 FPS, -7.03% for 2 FPS, -12.79% for 5 FPS, -18.81% for 15 FPS, and -22.64% for 30 FPS)
- Frame ratios were better overall (+10.29% for the 50% nominal rate tests, +7.52% for the 80% nominal rate tests, and +7.29% for the 100% nominal rate tests)

M-JPEG

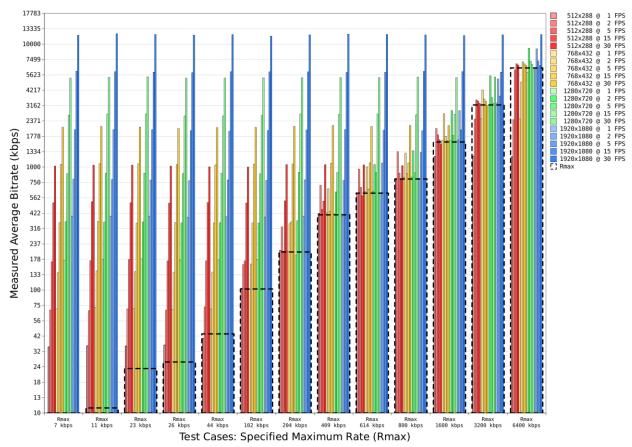
This test group consists of 260 tests and employed the streaming configuration of Table 4.19.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	M-JPEG
Bitrate Control Mode:	ABR-like
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	N/A
GOP Mode:	N/A
GOP Interval:	N/A

Unlike the other devices tested in this study, the primary Bosch MIC inteox 7100i M-JPEG streaming mode is based on the specification of a desired maximum bitrate, rather than a desired JPEG quality or compression value.

We performed a series of M-JPEG streaming tests for each of the link classes. For all tests in each class, we specified a maximum bitrate (R_{max}) of 80% of the class's nominal rate (Table 4.20).

Link Class	Typical Use	Nominal Rate (kbps)	R _{max} (kbps)
1	POTS Modem	9.6	7
2	POTS Modem	14.4	11
3	POTS Modem	28.8	23
4	POTS Modem	33.6	26
5	POTS Modem	56	44
6	ISDN BRI	128	102
7	2G	256	204
8	DSL, 3G	512	409
9	DSL, 3G	768	614
10	cable, 4G, 5G, Ethernet, µwave	1000	800
11	cable, 4G, 5G, Ethernet, µwave	2000	1600
12	cable, 4G, 5G, Ethernet, µwave	4000	3200
13	cable, 4G, 5G, Ethernet, µwave	8000	6400


Table 4.20: Specified maximum bitrates (R _{max}) for	M-JPEG tests by link class
--	----------------------------

The test results are summarized in Figure 4.4. As with this device's H.264 and H.265 streaming modes, the specified maximum bitrate appears to be treated as a suggestion rather than as a strict limit (R_{max} is represented by the dashed boxes in the figure). Speculating from the results, it appears that the device may internally determine its own minimum quality or bitrate limit and not allow this

limit to be undershot. Therefore, it's worth noting that the resulting stream may exceed the specified maximum bitrate by up to several orders of magnitude.

In contrast to the M-JPEG test results for the other devices in this study, no frame loss was detected for any of the M-JPEG tests we performed on this device.

Relative to the baseline test group, the following differences can be noted:

• The average bitrates for non-network-limited tests were significantly higher.

Figure 4.4: Average bitrates for Bosch MIC inteox 7100i M-JPEG test

Varying GOP Interval with Frame Rate

To explore the effects of choosing a GOP interval based on a fixed duration rather than a fixed number of frames, for each test in this test group, we dynamically selected a GOP interval such that the GOP would have a duration of 5 seconds: Table 4.20: Correlation between frame rate and GOP interval for a GOP duration of 5 seconds

Frame Rate (kbps)	GOP Interval
1	5
2	10
5	25
15	75
30	150

This test group consists of 1,040 tests and employed the streaming configuration of Table 4.21.

Table 4.21: Bosch MIC inteox 7100i Varying GOP Interval test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (High)
Bitrate Control Mode:	ABR-like
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Mode:	IBP
GOP Interval:	fixed, 5r frames

As expected, the performance of this test group (relative to the baseline test group which uses a GOP interval of 30 for all tests), depends on frame rate. The key findings are as follows:

• For the 1, 2, and 5 FPS tests, for which the GOP interval values were lower than the baseline group's value of 30, I-frames comprised a larger portion of the stream and slightly higher (but mixed) average bitrates were observed (+4.21%, -2.59%, and +1.46% respectively). For the 15 and 30 FPS tests, for which the GOP interval values were higher than the baseline group's value of 30, I-frames comprised a smaller portion of the stream and slightly lower average bitrates were observed (-1.44% and -3.98% respectively).

Dynamic GOP Interval

The Bosch MIC inteox 7100i features an optional dynamic GOP mode (referred to as "auto I-frame distance") that automatically manages the GOP interval of a stream.

We tested this configuration with a test group consisting of 1,040 tests and employing the streaming configuration of Table 4.22.

Table 4.22: Bosch MIC inteox 7100i Dynamic GOP Interval test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (High)
Bitrate Control Mode:	ABR-like
Maximum Bitrate:	80% of nominal rate
Target Bitrate:	80% of maximum rate
GOP Mode:	IBP
GOP Interval:	dynamic

Analysis of results for the non-network-limited tests in this test group are provided in Table 4.23.

Average bitrates in these results do not correlate as expected with the average GOP intervals. This is possibly due to the device's apparent difficulty keeping stream bitrates in the range of the specified target and maximum values. Frame ratios were largely unchanged

Frame Rate	Average GOP Interval	Average GOP Duration	Average Bitrate Relative to Corresponding Baseline Tests
1	2.5	2.5	-0.94%
2	5.0	2.5	-1.94%
5	12.5	2.5	-2.67%
15	181.7	12.1	-2.43%
30	217.3	7.2	-4.23%

Table 4.23: GOP and bitrate statistics for Dynamic GOP test

TCP Streaming

This test group consists of 1,040 tests and employed the streaming configuration of Table 4.24.

Table 4.24: Bosch MIC inteox 7100i TCP	Streaming test streaming configuration
--	--

Item	Config		
Stream Transport:	RTP (TCP)		
Encoding:	H.264 (High)		
Bitrate Control Mode:	ABR-like		
Maximum Bitrate:	80% of nominal rate		
Target Bitrate:	80% of maximum rate		
GOP Mode:	IBP		
GOP Interval:	fixed, 30 frames		

Compared to the baseline (UDP) test group:

- Bitrates increased for nearly all non-network-limited tests, averaging 4.53% higher
- Frame ratio results were mixed, averaging +3.74% for the 50% nominal rate tests, -0.38% for the 80% nominal rate tests, and +0.17% for the 100% nominal rate tests

These results are consistent with expectations, given the additional overhead of TCP.

CostarHD RISE 4260HD

Baseline Test

The streaming configuration provided in Table 4.25 was selected for the CostarHD RISE 4260HD baseline test group.

Item	Config	
Stream Transport:	RTP (UDP)	
Encoding:	H.264 (Main)	
Bitrate Control Mode:	CBR	
Target Bitrate:	80% of maximum rate	
GOP Interval:	fixed, 30 frames	
Constrained Mode:	off	

Since this device (with the firmware version we tested) does not support ABR, we selected CBR for its baseline configuration. In addition, this device did not allow the specification of CBR target bitrates below 256 kbps, so we omitted tests involving link classes with nominal rates below 512 kbps (which is the lowest link class for which the target rate would be within the device's allowed range).

Figure 4.5 summarizes the results of the 480 tests conducted on the CostarHD RISE 4260HD with this (baseline) streaming configuration.

As can be seen, measured average bitrates for the non-network-limited tests often marginally exceeded the specified target bitrates, especially for higher-frame-rate configurations. Only one case — the least reasonable of the entire test group — exceeded the specified maximum bitrate.

					R _{nom}	, R _{ta}	arg (I	(bps)	
				512	768	1000	2000	4000	8000
				327	491	640	1280	2560	5120
352x240	0	1	FPS	243 •••	241	238	254	256	240
352x240	0	2	FPS	340 •••	447 •••	426	414 ••••	422	431
352x240	0	5	FPS	340 •••	512 •••	673	886	877	890
352x240	0	15	FPS	344 •••	517 •••	673 •••	1344	2223	2220
352x240	0	30	FPS	347	523	677	1348	2717	4057
720x480	0	1	FPS	325 •••	495 •••	690	1046	1034	1086
720x480	0	2	FPS	287	437	616	1334	1901	1824
720x480	Q	5	FPS	318 •••	465	611	1330	2709	4011
720x480	0	15	FPS	355	530	688	1365	2719	5384
720x480	0	30	FPS	354	518	674 •••	1363	2691	5433
1280x720	0	1	FPS	327	491 •••	622	1300	2587	2595
1280x720	0	2	FPS	290	442	554	1126	2640	4584
1280x720	0	5	FPS	332	473	598	1152	2600	5367
1280x720	Q	15	FPS	354	529	662	1375	2679	5429
1280x720	0	30	FPS	350	517	675	1344	2719	5420
1920x1080	0	1	FPS	324	476	594	1265	2595	5383
1920x1080	0	2	FPS	288	429	562	1139	2268	5420
1920x1080	0	5	FPS	328	498 •••	620	1174	2240	5204
1920x1080	0	15	FPS	381	528	663	1330	2731	5366
1920x1080	0	30	FPS	529	586	669	1367	2682	5423

R	: measured average bitrate (kbps)		
R_{nom}	nominal bitrate for link class (kbps)		
R_{100}	: net-limit test rate (100% of $R_{\tt nom})$		
R_{80}	: net-limit test rate (80% of R_{nom})		
R_{50}	: net-limit test rate (50% of $R_{ t nom}$)		
R_{max}	: specified max. rate (80% of $R_{\tt nom})$		
$\mathtt{R}_{\mathtt{targ}}$: specified target rate (80% of $R_{\text{max}})$		
F_r	: # frames received		
F_{e}	: # frames expected		
R	: R \in [O, R _{targ}]		
R	: R \in (t, 1.25t]		
R	: R \in (1.25t, ∞)		
	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100},R_{80},R_{50}		
•••	: $F_{r}\!\div\!F_{e}~\geq$ 90% for $R_{100}\text{,}R_{80}$		
••	: $F_{r}\!\div\!F_{e}~\geq$ 90% for R_{100}		
•	: $F_r \div F_e \geq$ 90% for no test rates		
Device	Cobu 4261		

Cohu 4261
scenel
H264 Main CBR
30 f
Off

Figure 4.5: Stream quality analysis for CostarHD RISE 4260HD Baseline test

H.264 High Profile

The purpose of this test group is to compare the performance of a stream using the H.264 "High" profile to the performance of the baseline stream (which uses the H.264 "Main" profile) for the CostarHD RISE 4260HD.

This test group consists of 480 tests and employed the streaming configuration of Table 4.26.

 Table 4.26: CostarHD RISE 4260HD H.264 High test streaming configuration

Item	Config	
Stream Transport:	RTP (UDP)	
Encoding:	H.264 (High)	
Bitrate Control Mode:	CBR	
Target Bitrate:	80% of maximum rate	
GOP Interval:	fixed, 30 frames	
Constrained Mode:	off	

Compared to the baseline (H.264 Main) test group:

- Bitrates were nearly identical, averaging +0.64% higher
- Frame ratio results were nearly identical

Varying GOP Interval with Frame Rate

To explore the effects of choosing a GOP interval based on a fixed duration rather than a fixed number of frames, for each test in this test group, we dynamically selected a GOP interval such that the GOP would have a duration of 5 seconds, as shown in Table 4.27.

Table 4.27: Correlation between frame rate and GOP interval for a GOP duration of 5 seconds

Frame Rate (kbps)	GOP Interval
1	5
2	10
5	25
15	75
30	150

This test group consists of 480 tests and employed the streaming configuration of Table 4.28.

 Table 4.28: CostarHD RISE 4260HD Varying GOP Interval test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	CBR
Target Bitrate:	80% × 80% of nominal rate
GOP Interval:	fixed, 5r frames
Constrained Mode:	off

As expected, the performance of this test group (relative to the baseline test group which uses a GOP interval of 30 for all tests), depends on frame rate. The key findings are as follows:

- For the 1, 2, and 5 FPS tests, for which the GOP interval values were lower than the baseline group's value of 30, I-frames comprised a larger portion of the stream and higher average bitrates were observed (+5.47%, +5.99%, and +2.24% respectively).
- For the 15 and 30 FPS tests, for which the GOP interval values were higher than the baseline group's value of 30, I-frames comprised a smaller portion of the stream and lower average bitrates were observed (-0.75% and -1.63% respectively)

Constrained Mode

This device has a feature called "Video Constrained Mode" which is recommended by the manufacturer for use over cellular networks [6]. We were unable to find much documentation about this function, nor were we able to infer how it functions.⁵ Nevertheless, we included it in our testing and summarize the results here.

⁵ During our research, we came across one piece of literature that alluded to this feature having something to do with adherence to a specified maximum bitrate (Rmax). However, the device we tested would only allow a maximum bitrate to be specified in VBR mode, and Video Constrained mode could only be enabled in CBR mode. Thus, there was no way for us to simultaneously specify both Video Constrained Mode and a maximum bitrate.

This test group consists of 480 tests and employed the streaming configuration of Table 4.29.

Table 4.29: CostarHD RISE 4260HD Constrained Mode test streaming configuration

Item	Config		
Stream Transport:	RTP (UDP)		
Encoding:	H.264 (Main)		
Bitrate Control Mode:	CBR		
Target Bitrate:	80% × 80% of nominal rate		
GOP Interval:	fixed, 30 frames		
Constrained Mode:	on		

Compared to the baseline test group (for which "Video Constrained Mode" was disabled):

- Bitrates were nearly identical, averaging +0.19% higher
- Frame ratio results were very modestly improved, averaging +0.21% for the 50% nominal rate tests, +0.87% for the 80% nominal rate tests, and +0.58% for the 100% nominal rate tests

From our test results it is difficult to discern any substantial differences resulting from the use of the "Video Constrained Mode" feature. Frame delivery was very slightly improved, which likely accounts for the very slightly higher bitrate averages, but these numbers are all small enough that they likely would not withstand repeated testing.

M-JPEG

This test group consists of 60 tests and employed the streaming configuration of Table 4.30.

Three M-JPEG quality levels were chosen for testing: 30, 75, and 100. The test results are summarized in Figure 4.6. Relative to the baseline test group, the following differences can be noted:

• The average bitrates for non-network-limited tests were significantly higher when resolution and/or frame rate was high.

• Frame delivery suffered at higher frame rates for high-resolution scenarios. Speculating from the test results, this could be due to a throughput ceiling (of roughly 10 Mbps) intrinsic to this device.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	M-JPEG
Bitrate Control Mode:	N/A
Target Bitrate:	N/A
GOP Interval:	N/A
Constrained Mode:	off

Table 4.30: CostarHD RISE 4260HD M-JPEG test streaming configuration

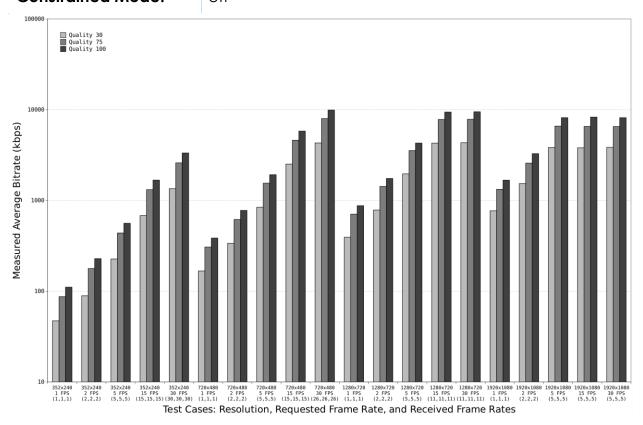


Figure 4.6: Average bitrates for CostarHD RISE 4260HD M-JPEG test

TCP Streaming

This test group consists of 480 tests and employed the streaming configuration of Table 4.31.

Item	Config
Stream Transport:	RTP (TCP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	CBR
Target Bitrate:	80% of maximum rate
GOP Interval:	fixed, 30 frames
Constrained Mode:	off

Table 4.31: CostarHD RISE 4260HD TCP test streaming configuration

Our results for this test group were erratic and had low repeatability, especially for low values of R_{targ} and R_{max} . Some tests had very low frame delivery rates, causing poor estimations of frame ratios. The reasons for these sporadic drops in frame delivery are not currently known and merit further investigation.

WTI Viper/Sidewinder HD

Baseline Test

The streaming configuration provided in Table 4.32 was selected for the WTI Viper/Sidewinder HD baseline test group.

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	CBR
Target Bitrate:	80% × 80% of nominal rate
GOP Interval:	fixed, 30 frames

Table 4.32: WTI Viper/Sidewinder HD Baseline test streaming configuration

Since this device (with the firmware version we tested) does not support ABR, we selected CBR for its baseline configuration.

					Rn	.om,]	Rtarg	(kbr	OS)					R	: mea	sured ave	eraae bitro	ate (kbps)
-	9.6	14.4	28.8	33.6		128	256	512	768	1000	2000	4000	8000				0	lass (kbps)
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120		: net-li	mit test ra	ite (100%	of R_{nom})
320x240 @ 1 FPS	7 •	8	18 •••	22	35	77	163 •••	334	464 •	537	540	560	560			mit test ra		nom
320x240 @ 2 FPS	15 •	16	19 ••	23	37	86	168	340	516	670	1030	1007	1018			mit test ra		in o in c
320x240 @ 5 FPS	27	29	28	27	37	84	171	341	511	665	1329	2484	2425					% of R _{nom}) D% of R _{max}
320x240 @ 15 FPS	62	60	58	56	51	87	168	338	510	662	1320	2641				nes recei		
320x240 @ 30 FPS	102	103	67	94	84	104	176	342	511	667		2642		-	: # frar	nes expe	cted	
640x240 @ 1 FPS	19	19	19	19	32	88	169	337	485	652	1156	1222	1201					
640x240 @ 2 FPS	39	32	• 34	34	40	85	•• 167	••• 335	509	651	1314	2407	2314	R	: R \in	[0, R_{tax}	rg]	
640x240 @ 5 FPS	•	• 64	• 63	• 66	62	89	168	339	•• 512	661	1324	2639	5171	R	: R \in	(t, 1.2	25t]	
640x240 @ 15 FPS	• 184	• 146	• 145	• 140	• 138	136	••• 178	338	••• 508	661	••• 1318	2636	5288	R	: R \in	(1.25t,	, ∞)	
640x240 @ 30 FPS	• 267	• 264	• 246	• 31	• 249	• 219	330	••• 353	••• 511	••• 666	••• 1323	••• 2641	5267	••••	$: F_r \div F$	$F_{e} \geq 90$	% for R ₁₀	0, R ₈₀ , R ₅₀
704x480 @ 1 FPS	• 29	•	• 31	• 29	• 33	• 86	• 169	••• 320	••• 454	••• 631	•••	••• 2262	2387		$: F_r \div F$	$F_{e} \geq 90$	% for R ₁₀	0, R ₈₀
704x480 @ 2 FPS	56	53	• 56	 55	56	•••	173	340	506	683	1327	2703	••••	•••	: Fr÷H	$F_{e} > 90^{\circ}$	% for R10	0
704x480 @ 5 FPS	105	• 97	105	• 105	103	107	165	337	505	661	1335	•••	•••	••	-	$F_{e} > 90$		•
704x480 @ 15 FPS	215	•	•	•	103	••	•••	•••	•••	•••	•••	•••	•••	•		.e <u> </u>		ourraioo
	•	213	199	202	•	212	226	337	506	658	•••	2638	•••					
	326	350	351	322	372	346 •	322	374	513 •••	665 •••	1322	•••	•••	Device:	۱۸	/TI SW720F		
1280x720 @ 1 FPS	77 •	78 •	68 •	73 •	77	77	150	340 •••	512	642 •••	1151	2422	4947	Scene:		cenel	-	
1280x720 @ 2 FPS	136 •	137	142	138 •	141	144	168 •••	338	496	656	1313	2615	5294	Encoding		264main (constant	
1280x720 @ 5 FPS	262 •	267 •	264 •	262 •	260 •	268 •	257	346	505	657	1320	2633	5263	GOP Mo	de: 30	0 f		
1280x720 @ 15 FPS	524	569	579	566	543	499	501	496	549	670	1317	2638	5285	Quality:	30	0		
1280x720 @ 30 FPS	657	791	828	775	782	745	642	728	772	780								
1920x1080 @ 1 FPS	147	128	133	131	123	123	123	330	474	614		2316						
1920x1080 @ 2 FPS	254	254	260	252	268	245	245	328	510	657	1309	2599	5270					
1920x1080 @ 5 FPS	515	515	• 531	488	504	• 475	490	485	573	669	1319	••• 2640						
1920x1080 @ 15 FPS	• 989	• 917	• 945	• 971	• 985	• 923	• 902	• 920	941	963		2635						
1920x1080 @ 30 FPS	•	•	•	• 1809	•	• 1729	• 1858	•	•	• 1740	2058	2737	5280					

Figure 4.7 summarizes the results of the 1,300 tests conducted on the WTI Viper/Sidewinder HD with this (baseline) streaming configuration.

Figure 4.7: Stream quality analysis for WTI Viper/Sidewinder HD Baseline test

H.264 High Profile

The purpose of this test group is to compare the performance of a stream using the H.264 "High" profile to the performance of the baseline stream (which uses the H.264 "Main" profile) for the WTI Viper/Sidewinder HD.

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.33.

Table 4.33: WTI Viper/Sidewinder HD H.264 High test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (High)
Bitrate Control Mode:	CBR
Target Bitrate:	80% × 80% of nominal rate
GOP Interval:	fixed, 30 frames

Compared to the baseline (H.264 Main) test group, the following differences can be noted:

- Bitrates were significantly lower for all resolution and frame rate groupings, averaging 8.91% lower.
- Frame ratio results were modestly improved, averaging +3.23% for the 50% nominal rate tests, +3.42% for the 80% nominal rate tests, and +3.37% for the 100% nominal rate tests.

H.264 Baseline Profile

The purpose of this test group is to compare the performance of a stream using the H.264 "Baseline" profile⁶ to the performance of the baseline stream (which uses the H.264 "Main" profile) for the WTI Viper/Sidewinder HD.

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.34.

Compared to the baseline (H.264 Main) test group:

- Bitrates were higher for all resolution and frame rate groupings, averaging 13.11% higher. Bitrates were especially higher for higher frame rates (30 FPS averaged 33.38% higher).
- Frame ratio results were modestly worsened, averaging -1.49% for the 50% nominal rate tests, -1.70% for the 80% nominal rate tests, and -2.29% for the 100% nominal rate tests

⁶ The H.264 "Baseline" profile is not related in any way to the nomenclature for our "Baseline" test groups (none of which use the H.264 Baseline profile).

Table 4.34: WTI Viper/Sidewinder HD H.264 Baseline test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Baseline)
Bitrate Control Mode:	CBR
Target Bitrate:	80% × 80% of nominal rate
GOP Interval:	fixed, 30 frames

M-JPEG

This test group consists of 75 tests and employed the streaming configuration of Table 4.35.

Table 4.35: WTI Viper/Sidewinder HD	M-JPEG test streaming configuration
-------------------------------------	-------------------------------------

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	M-JPEG
Bitrate Control Mode:	N/A
Target Bitrate:	N/A
GOP Interval:	N/A

Three M-JPEG quality levels were chosen for testing: 30, 75, and 100. The test results are summarized in Figure 4.8. Relative to the baseline test group, the following differences can be noted:

- The average bitrates for non-network-limited tests were significantly higher when resolution or frame rate is high.
- Frame delivery suffered at higher frame rates for some high-resolution and high-quality scenarios.

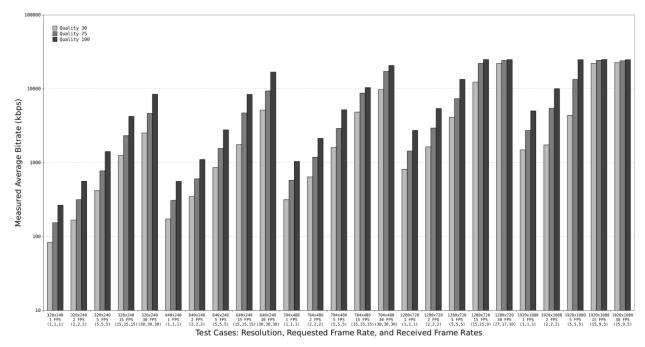


Figure 4.8: Average bitrates for WTI Viper/Sidewinder HD M-JPEG test

Varying GOP Interval with Frame Rate

To explore the effects of choosing a GOP interval based on a fixed duration rather than a fixed number of frames, for each test in this test group, we dynamically selected a GOP interval such that the GOP would have a duration of 5 seconds:

Table 4.36: Correlation between frame rate and GOP interval for a GOP duration
of 5 seconds

Frame Rate (kbps)	GOP Interval
1	5
2	10
5	25
15	75
30	150

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.37.

Table 4.37: WTI Viper/Sidewinder HD Varying GOP Interval test streaming configuration

Item	Config
Stream Transport:	RTP (UDP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	CBR
Target Bitrate:	80% × 80% of nominal rate
GOP Interval:	fixed, 5r frames

As expected, the performance of this test group (relative to the baseline test group which uses a GOP interval of 30 for all tests), depends on frame rate. The key findings are as follows:

- For the 1, 2, and 5 FPS tests, for which the GOP interval values were lower than the baseline group's value of 30, I-frames comprised a larger portion of the stream and higher average bitrates were observed (+19.48%, +7.91%, and +0.56% respectively).
- For the 15 FPS tests, for which the GOP interval values were higher than the baseline group's value of 30, I-frames comprised a smaller portion of the stream and lower average bitrates were observed (-5.78%).
- For the 30 FPS tests, although the GOP interval values were higher than the baseline group's value of 30, average bitrates were nearly unchanged (+0.15). At this time it is not known why an improvement in bitrate was not seen in these cases.

TCP Streaming

This test group consists of 1,300 tests and employed the streaming configuration of Table 4.38.

Our results for this test group were erratic and had low repeatability. Some tests had very low frame delivery rates, causing poor estimations of frame ratios. The reasons for these sporadic drops in frame delivery are not known at this time and merit further investigation. Table 4.38: WTI Viper/Sidewinder HD TCP test streaming configuration

Item	Config
Stream Transport:	RTP (TCP)
Encoding:	H.264 (Main)
Bitrate Control Mode:	CBR
Target Bitrate:	80% × 80% of nominal rate
GOP Interval:	fixed, 30 frames

Static Image Testing

To gain insight into the general range of frame sizes (i.e., in bytes) that can be expected when fetching static images from our selected devices, and how frame size correlates with image quality settings, we performed a series of static image tests.

The results of these tests may be of use in the selection and configuration of CCTV devices for rural sites with network links of insufficient capacity for video streaming.

Scene Selection

To cover a reasonable range of levels of scene brightness and detail, we selected thirteen scenes for these tests, as illustrated in Figure 4.9.

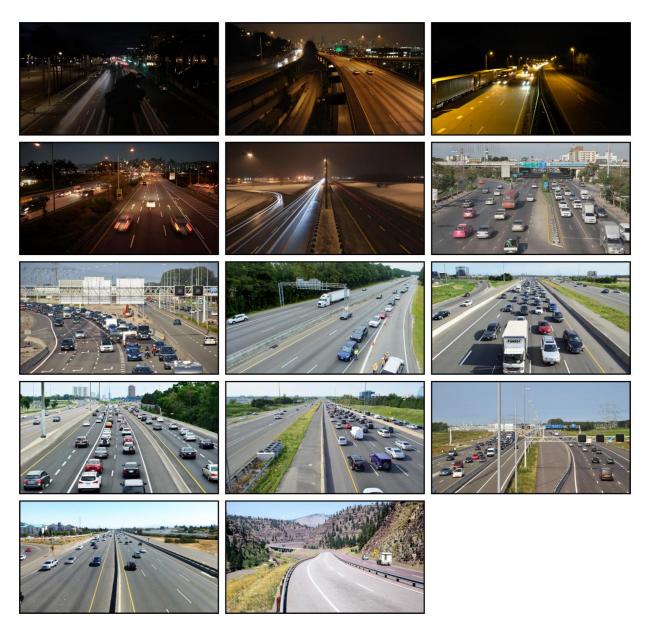


Figure 4.9: Scenes for static image tests⁷

⁷ Attribution for static images in Fig. 4.9, proceeding left to right and top to bottom, are as follows: 1) Panasonic Connect Europe, <u>5.5 4K Camera Road in Thailand No 2</u> (<u>https://www.youtube.com/watch?v=F4blCvLY024</u>); 2) Raban Haaijk, <u>Seoul Highway at Night (https://flickr.com/photos/haaijk/22776105458/</u>); 2) Raban Haaijk, <u>Seoul Highway at Night (https://flickr.com/photos/haaijk/22776105458/</u>); 3) Sergei Gussev, <u>Huntington Beach (https://flickr.com/photos/timon91/5054604689/</u>); 5) Wonderlane, <u>Highway 5 from the north of Seattle, wet night, raining, overpasses, a few cars, mist, winter. Near Lake Union, Seattle, Washington, USA (https://flickr.com/photos/olitaillon/8378077545/); 7) Josbert Lonnee, <u>Oude en</u></u>

Data Collection

All the devices tested encode static images as JPEG and allow the specification of either a "compression" or a "quality" parameter to configure the encoding.

Device	Parameter	Range	Image Quality Scale
Axis Q8752-E	Compression	[0, 100]	high \rightarrow low
Bosch MIC inteox 7100i	JpegQuality	[1, 100]	high \rightarrow low
CostarHD RISE 4260HD	Quality	[1, 99]	$low \rightarrow high$
WTI Viper/Sidewinder HD	Quality	[0, 100]	low \rightarrow high

We chose eleven compression/quality levels for testing, ranging from 0 to 100, incrementing by 10. If levels 0 or 100 were not supported by a device, its value was substituted with 1 or 99, respectively.

For each scene, and for each resolution class,⁸ a single image was acquired from each device, for each of the compression/quality levels.

nieuwe rijbanen A1 naast elkaar (https://flickr.com/photos/98552965@N05/29313083556/); 8) South Carolina National Guard, <u>S.C. Guard Assist With Hurricane Matthew Preparations</u> (https://flickr.com/photos/scguard/29542713304/); 9) Josbert Lonnee, <u>Oude en nieuwe</u> rijbanen A1 naast elkaar (https://flickr.com/photos/98552965@N05/29059313760/); 10) United

States Department of Agriculture, Natural Resources Conservation Service, Montana, <u>Photo</u> <u>courtesy of USDA Natural Resources Conservation Service</u>

⁽https://flickr.com/photos/160831427@N06/25190489478/); 11) Open Grid Scheduler / Grid Engine, <u>Highway (https://flickr.com/photos/opengridscheduler/43796685961/)</u>; 12) Open Grid Scheduler / Grid Engine, <u>Highway</u>

⁽https://flickr.com/photos/opengridscheduler/42893196575/); 13) Open Grid Scheduler / Grid Engine, <u>Highway 404 & Highway 401</u>

⁽https://flickr.com/photos/opengridscheduler/20102270135/); 14) Mike Linksvayer, P1020940 (https://flickr.com/photos/mlinksva/8018436373/). Licensing is as follows: Image 1 "fair use"; images 2-6 "CC BY 2.0 DEED" https://creativecommons.org/licenses/by/2.0/; images 7-14 public domain.

⁸ The Bosch MIC inteox 7100i did not support the same set of resolutions for static images as it did for streaming. Hence, the following resolutions were used for static image testing on this device: 256x144, 352x198, 512x288, 1280x720, and 1920x1080.

Static Image Results

Frame size averages and range (error bars) in KiB were as shown in Figures 4.10-4.12.

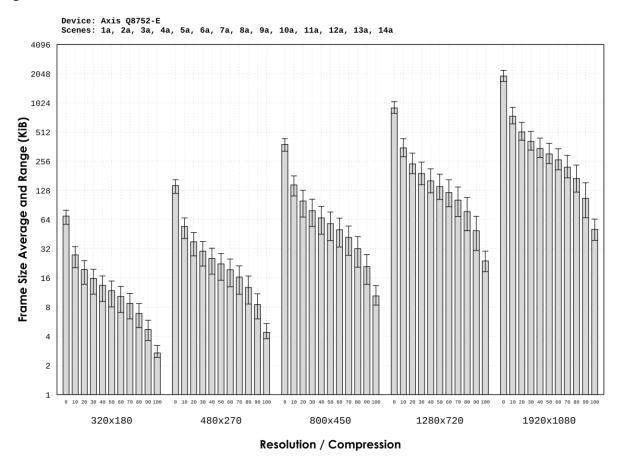


Figure 4.10: Image sizes for Axis Q8752-E JPEG test

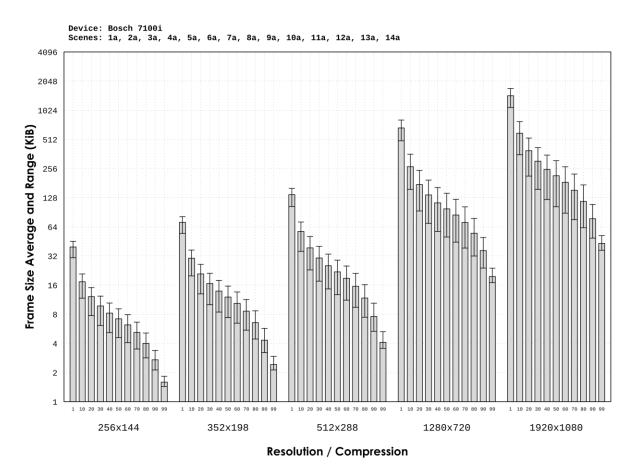


Figure 4.11: Image sizes for Bosch MIC inteox 7100i JPEG test

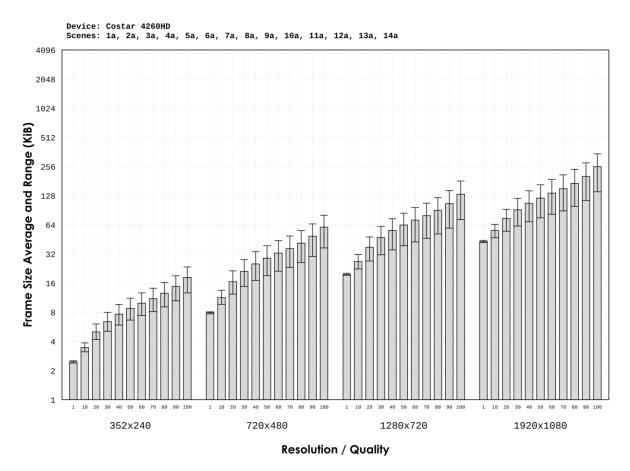
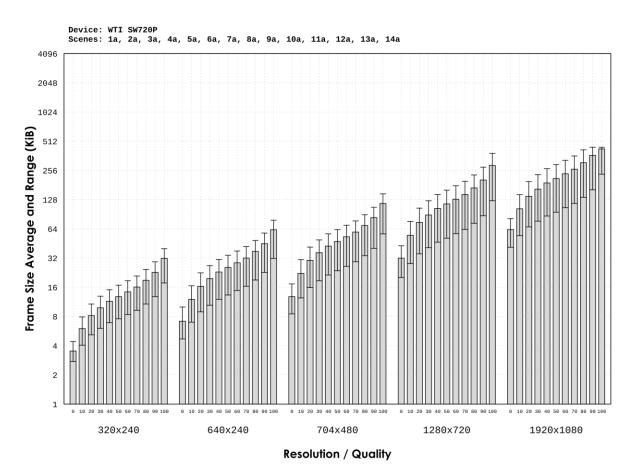



Figure 4.12: Image sizes for CostarHD RISE 4260HD JPEG test

While frame sizes varied as expected per device, appreciable differences in frame size were observed between the devices, even for similar resolution and compression/quality parameters. This is likely due, at least in part, to differences in JPEG implementations. Other contributing factors may be differences in the CCTV itself (e.g., exposure, iris, color, gain, analog-to-digital conversion, optical differences) as well as internal image processing algorithms.

Subjective examination of the resulting images reveals that, at least for our test scenes, reasonable images can be acquired from the Axis Q8752-E at compression levels up through 70 or 80, from the Bosch MIC inteox 7100i at JpegQuality⁹ levels up through 70 or 80, from the CostarHD RISE 4260HD at Quality levels down to 40 or 30, and from the WTI Viper/Sidewinder HD at Quality levels down to 30 or 20. Artifacts are technically always present with any destructive image compression scheme, and they generally increase in proportion to the degree of compression. However, these values are the thresholds beyond which substantial artifacts were observed for our scenes.

⁹ Somewhat of a misnomer in this case, as higher values produce lower quality images.

Chapter 5: Summary Discussion and Conclusions

Axis Q8752-E

H.264 Main vs. H.264 High vs. H.265 Main

In our testing on this device, H.264 High slightly outperformed H.264 Main for lower resolutions and frame rates but underperformed for higher resolutions and frame rates.

Compared to both H.264 Main and H.264 High, bitrates for H.265 Main averaged lower across all resolutions and frame rates and were substantially lower overall (-9.88% compared to H.264 Main, and -10.48% compared to H.264 High).

If H.265 is supported by the decoder(s), H.265 is likely to be the best choice. If not, we suggest H.264 High for lower resolutions and frame rate, and H.264 Main for higher resolutions and frame rates. However, the differences between the two were relatively modest, so other factors such as decoder compatibility or scene type may factor into this choice.

M-JPEG

Bitrates of M-JPEG streams are typically much higher than those of H.264 or H.265 streams. For this device, bitrates for the M-JPEG test group averaged over an order of magnitude higher than the baseline test group (See Figure 4.2). Unless required for compatibility reasons, or when difficulties are encountered configuring H.264 or H.265 streams for low-bandwidth links (e.g., ISDN/POTS), we recommend against choosing M-JPEG for most highway CCTV applications.

ABR vs. MBR vs. VBR

For MBR, our non-network-limited tests indicated higher bitrates than ABR, and our network-limited tests indicated higher frame loss. Since ABR is a more advanced bitrate control scheme, this is not particularly surprising.

VBR is a bitrate control scheme that prioritizes visual quality, can result in unpredictable bitrates, and is generally not a good fit for highway surveillance CCTVs, especially in rural areas.

For the Axis Q8752-E, we suggest ABR as a good starting point for most highway CCTV applications.

GOP Interval

The GOP interval is an important component of an H.264 or H.265 stream configuration, especially when targeting low-bitrate communications links. Selecting an appropriate GOP interval is fundamentally a trade-off between bitrate and how long it takes for a stream to recover from data loss. With the Axis Q8752-E, GOP intervals can be controlled in two ways:

- using the fixed GOP mode and configuring a single GOP interval value
- using the Zipstream dynamic GOP mode and configuring a range of values to which to confine the GOP interval

Our test results demonstrate that stream bitrates can be appreciably lowered by using these methods in conjunction with appropriately chosen parameter values.

While other factors (e.g., playback seeking granularity for recorded streams) can play a role in GOP interval selection, for simple live-streaming applications such as field-to-TMC transport, the main factors involved are bitrate, recovery time, and likelihood of stream corruption (network quality). As seen in our test results, the choice of longer GOP intervals can result in bitrate reduction. For very reliable network connections which are unlikely to result in significant frame loss or corruption, such a choice can be beneficial. However, for lower-quality network connections in which stream corruption is more likely, lower GOP intervals may be preferable (even at the cost of higher bitrates) since they generally allow for quicker stream recovery after corruption.

As a starting point in the selection process, we recommend deciding a maximum acceptable value *d* (in seconds) for stream recovery time from a single data loss incident. An appropriate maximum GOP interval *n* can then be calculated by multiplying *d* by the desired frame rate (per second) *r*:

n = dr

GOP intervals longer than *n* frames may result in stream recovery (i.e., from data loss incidents) periods longer than *d* seconds. This *n* value can then be used as a reasonable initial value for testing, either as the GOP interval value for the fixed GOP mode, or as the upper bound of the range for the Zipstream dynamic GOP mode. If the bitrate remains higher than desired, *n* can be increased, but only at the cost of increasing *d* or reducing *r*.

With the Zipstream dynamic GOP mode, it's also important to select an appropriate value for the lower bound of the GOP interval range, especially at lower frame rates, as the algorithm may select values that are too low for some streaming scenarios over low-bitrate network connections.

Compression

Our test results demonstrate that bitrates can be decreased dramatically on the Axis Q8752-E by increasing its "compression" parameter beyond the default value of 30. Although compression reduces visual quality, we found that it can be increased substantially without making the stream unusable. Compared to the default level of 30, we found that, for our test scene, a compression level of 100 resulted in an average bitrate reduction of 57.77% as well as a significant reduction in dropped frames.

For sites with limited network capacity, especially in cases where perfect visual quality is unnecessary, we recommend experimenting with higher compression levels.

Zipstream

Zipstream is a set of proprietary encoder enhancements that Axis recommends enabling for most streams [4].

Zipstream is primarily configured using the Zipstream Strength parameter which can be either off, 10, 20, 30, 40, or 50. It also supports other features such as dynamic GOP intervals and dynamic frame rate.

The Zipstream Strength parameter defaults to 10, likely because Axis claims that this value results in "no visible effect in most scenes" [5], and because values other than 10 or off may not be compatible with all clients/decoders [4].

We tested Zipstream with Strength parameters of 10, 30, and 50, yielding the following notable results:

- Strength 10: Bitrates reduced an average of 11.12%.
- Strength 30: Bitrates reduced an average of 15.61%.
- Strength 50: Bitrates reduced when ABR target/max values are realistic, otherwise bitrates increased substantially. The reasons for this are unclear.

These observations support the use of Zipstream, especially at lower strength levels.

TCP vs. UDP

While there are situations where, with certain network conditions and streaming configurations, switching from UDP to TCP may appear to provide superior results, we believe that this often means that the streaming configuration used was not a good match for the network conditions in the first place. In these cases, switching to TCP may seem to improve the stream, but often comes with other side effects such as progressive degradation or periodic skips.

We recommend using UDP for all real-time field-to-TMC streams unless TCP is required for network policy reasons (e.g., firewall configurations that will not allow UDP streaming).

In our testing on this device, using TCP resulted in bitrates that averaged 5.60% higher than in comparable tests with UDP. Frame loss was also slightly higher for TCP in constrained network conditions.

JPEG

JPEG image size statistics from our test results can be found in Figure 4.10. Subjective examination of the resulting images reveals that, at least for our test scenes, reasonable images can be acquired from this device at compression levels up through 70 or 80. For images on the lower end of the resolution range, using compression levels 50 or lower may be best.

Bosch MIC inteox 7100i

A Note on Bitrates

For many encoding modes, this device (at least with firmware 8.46.0030) appears to consistently produce bitrates higher than requested, even though a reasonable stream can be created within the specified target and maximum bitrates. As one example, our ungoverned 768x432 @ 5 FPS test for link class 13 (nominal rate 8000 kbps) specified a target rate of 5120 kbps and a maximum rate of 6400. The encoder responded with a stream averaging 6588 kbps, a rate that is above both the target and maximum rates. However, it's clear that the encoder is able to produce a stream within the bounds requested because, during the corresponding test for link class 6 (nominal rate 128 kbps, target rate 81 kbps, maximum rate 102 kbps), the encoder produced a stream averaging 108 kbps, a rate well within the target range of the test for link class 13.

Until more is understood about the reason for this behavior, or until it changes, it is recommended to use extremely conservative values for the maximum and target bitrates (e.g., a maximum bitrate that is 30% of the nominal network bitrate, and a target bitrate that is 80% of the maximum bitrate) on this device.

H.264 High vs. H.265 Main

In our testing on this device, H.265 Main significantly outperformed H.264 High across all resolution and frame rate categories, with bitrates averaging 14.44% lower overall.

If H.265 is supported by the decoder(s), H.265 is likely to be the best choice for this device.

M-JPEG

Bitrates of M-JPEG streams are typically much higher than those of H.264 or H.265 streams. For this device, bitrates for the M-JPEG test group averaged significantly higher than the baseline test group, especially for higher resolutions and frame rates. Unless required for compatibility reasons, or when difficulties are encountered configuring H.264 or H.265 streams for low-bandwidth links (e.g., ISDN/POTS), we recommend against choosing M-JPEG for most highway CCTV applications.

GOP Interval

The GOP interval is an important component of an H.264 or H.265 stream configuration, especially when targeting low-bitrate communications links. Selecting an appropriate GOP interval is fundamentally a trade-off between bitrate and how long it takes for a stream to recover from data loss. With the Bosch MIC inteox 7100i, GOP intervals can be specified as a constant value or the dynamic ("auto I-frame distance") GOP mode can be used.

Our test results demonstrate that stream bitrates can be appreciably lowered by using these methods in conjunction with appropriately chosen parameter values.

While other factors (e.g., playback seeking granularity for recorded streams) can play a role in GOP interval selection, for simple live-streaming applications such as field-to-TMC transport, the main factors involved are bitrate, recovery time, and likelihood of stream corruption (network quality). As seen in our test results, the choice of longer GOP intervals can result in bitrate reduction. For very reliable network connections which are unlikely to result in significant frame loss or corruption, such a choice can be beneficial. However, for lower-quality network connections in which stream corruption is more likely, lower GOP intervals may be preferable (even at the cost of higher bitrates) since they generally allow for quicker stream recovery after corruption.

As a starting point in the selection process, we recommend deciding a maximum acceptable value *d* (in seconds) for stream recovery time from a single data loss incident. An appropriate maximum GOP interval n can then be calculated by multiplying *d* by the desired frame rate (per second) *r*:

n = dr

GOP intervals longer than n frames may result in stream recovery (i.e., from data loss incidents) periods longer than d seconds. This n value can then be used as a reasonable initial value for testing. If the bitrate remains higher than desired, n can be increased, but only at the cost of increasing d or reducing r.

Using this device's dynamic ("auto I-frame distance") GOP mode did improve bitrates by a few percent (2.44% lower overall), resulting in the average GOP intervals per frame-rate category listed in Table 5.1.

Frame Rate Category	Average GOP Interval	gop ÷ framerate
1 FPS	13.4	13.4
2 FPS	28.0	14.0
5 FPS	68.7	13.7
15 FPS	110.8	7.4
30 FPS	138.8	4.6

Table 5.1: Compression/quality parameters for static image acquisition

TCP vs. UDP

While there are situations where, with certain network conditions and streaming configurations, switching from UDP to TCP may appear to provide superior results, we believe that this often means that the streaming configuration used was not a good match for the network conditions in the first place. In these cases, switching to TCP may seem to improve the stream, but often comes with other side effects such as progressive degradation or periodic skips.

We recommend using UDP for all real-time field-to-TMC streams unless TCP is required for network policy reasons (e.g., firewall configurations that will not allow UDP streaming).

In our testing on this device, using TCP resulted in bitrates that averaged 4.53% higher than in comparable tests with UDP. Frame loss results were mixed.

JPEG

JPEG image size statistics from our test results can be found in Figure 4.11. Subjective examination of the resulting images reveals that, at least for our test scenes, reasonable images can be acquired from this device at JpegQuality (compression) levels up through 70 or 80. For images on the lower end of the resolution range, using JpegQuality (compression) levels 50 or lower may be best.

CostarHD RISE 4260HD

H.264 High vs. H.264 Main

In our testing on this device, H.264 High delivered results nearly indistinguishable from H.264 Main. Decoder compatibility is likely to be the dominant factor in making this choice.

Constrained Mode

This device has a featured called "Video Constrained Mode". We were unable to find much documentation about this function other than a brief mention that its purpose may have something to do with adherence to the specified maximum bitrate (R_{max}).

Our test results with this mode enabled were nearly indistinguishable from the baseline test group (for which it was disabled). Future investigation is merited.

M-JPEG

Bitrates of M-JPEG streams are typically much higher than those of H.264 streams. However, it's important to note that this device does not allow the specification of H.264 target bitrates (Rtarg) less than 256 kbps, so M-JPEG may be a better choice than H.264 for some streams with lower resolutions or frame rates. See Figure 4.5 and Figure 4.6 as a starting point for making this decision.

GOP Interval

The GOP interval is an important component of an H.264 or H.265 stream configuration, especially when targeting low-bitrate communications links. Selecting an appropriate GOP interval is fundamentally a trade-off between bitrate and how long it takes for a stream to recover from data loss. With the CostarHD RISE 4260HD, GOP intervals can be specified only as a constant value in the range [1, 600].

Our test results demonstrate that stream bitrates can be appreciably lowered by using these methods in conjunction with appropriately chosen parameter values.

While other factors (e.g., playback seeking granularity for recorded streams) can play a role in GOP interval selection, for simple live-streaming applications such as field-to-TMC transport, the main factors involved are bitrate, recovery time, and likelihood of stream corruption (network quality). As seen in our test results, the choice of longer GOP intervals can result in bitrate reduction. For very reliable network connections which are unlikely to result in significant frame loss or corruption, such a choice can be beneficial. However, for lower-quality network connections in which stream corruption is more likely, lower GOP

intervals may be preferable (even at the cost of higher bitrates) since they generally allow for quicker stream recovery after corruption.

As a starting point in the selection process, we recommend deciding a maximum acceptable value *d* (in seconds) for stream recovery time from a single data loss incident. An appropriate maximum GOP interval *n* can then be calculated by multiplying *d* by the desired frame rate (per second) *r*:

n = dr

GOP intervals longer than n frames may result in stream recovery (i.e., from data loss incidents) periods longer than d seconds. This n value can then be used as a reasonable initial value for testing. If the bitrate remains higher than desired, n can be increased, but only at the cost of increasing d or reducing r.

TCP vs. UDP

While there are situations where, with certain network conditions and streaming configurations, switching from UDP to TCP may appear to provide superior results, we believe that this often means that the streaming configuration used was not a good match for the network conditions in the first place. In these cases, switching to TCP may seem to improve the stream, but often comes with other side effects such as progressive degradation or periodic skips.

We recommend using UDP for all real-time field-to-TMC streams unless TCP is required for network policy reasons (e.g., firewall configurations that will not allow UDP streaming).

In our testing on this device, using TCP resulted in mixed results that are difficult to interpret. Future investigation is merited.

JPEG

JPEG image size statistics from our test results can be found in Figure 4.12. Subjective examination of the resulting images reveals that, at least for our test scenes, reasonable images can be acquired from this device at Quality levels down to 40 or 30. For images on the lower end of the resolution range, using Quality levels 60 or higher may be best.

WTI Viper/Sidewinder HD

H.264 High vs. H.264 Baseline vs. H.264 Main

In our testing on this device, H.264 High delivered better results than H.264 Main. Bitrates were significantly lower for all resolution and frame rate groupings, averaging 8.91% lower. Frame ratio results were modestly improved,

averaging 3.23% higher for the 50% nominal rate tests, 3.42% higher for the 80% nominal rate tests, and 3.37% higher for the 100% nominal rate tests.

H.264 Baseline, however, delivered inferior results compared to H.264 Main. Bitrates were significantly higher for all resolution and frame rate groupings, averaging 13.11% higher. Frame delivery was modestly lower, averaging 1.49% lower for the 50% nominal rate tests, 1.70% lower for the 80% nominal rate tests, and 2.29% lower for the 100% nominal rate tests.

Excluding other factors (e.g., decoder compatibility, scene type), H.264 High may be the best choice on this device.

M-JPEG

Bitrates of M-JPEG streams are typically much higher than those of H.264 streams. For this device, bitrates for the M-JPEG test group were much higher for many streams, particularly those with higher resolutions or frame rates (see Figure 4.8. Unless required for compatibility reasons, or when difficulties are encountered configuring H.264 or H.265 streams for low-bandwidth links (e.g., ISDN/POTS), we recommend against choosing M-JPEG for most highway CCTV applications.

GOP Interval

The GOP interval is an important component of an H.264 or H.265 stream configuration, especially when targeting low-bitrate communications links. Selecting an appropriate GOP interval is fundamentally a trade-off between bitrate and how long it takes for a stream to recover from data loss. With the WTI Viper/Sidewinder HD, GOP intervals can be specified only as a constant value in the range [1, 450].

Our test results demonstrate that stream bitrates can be appreciably lowered by using these methods in conjunction with appropriately chosen parameter values.

While other factors (e.g., playback seeking granularity for recorded streams) can play a role in GOP interval selection, for simple live-streaming applications such as field-to-TMC transport, the main factors involved are bitrate, recovery time, and likelihood of stream corruption (network quality). As seen in our test results, the choice of longer GOP intervals can result in bitrate reduction. For very reliable network connections which are unlikely to result in significant frame loss or corruption, such a choice can be beneficial. However, for lower-quality network connections in which stream corruption is more likely, lower GOP intervals may be preferable (even at the cost of higher bitrates) since they generally allow for quicker stream recovery after corruption.

As a starting point in the selection process, we recommend deciding a maximum acceptable value *d* (in seconds) for stream recovery time from a

single data loss incident. An appropriate maximum GOP interval *n* can then be calculated by multiplying *d* by the desired frame rate (per second) *r*:

n = dr

GOP intervals longer than n frames may result in stream recovery (i.e., from data loss incidents) periods longer than d seconds. This n value can then be used as a reasonable initial value for testing. If the bitrate remains higher than desired, n can be increased, but only at the cost of increasing d or decreasing r.

TCP vs. UDP

While there are situations where, with certain network conditions and streaming configurations, switching from UDP to TCP may appear to provide superior results, we believe that this often means that the streaming configuration used was not a good match for the network conditions in the first place. In these cases, switching to TCP may seem to improve the stream, but often comes with other side effects such as progressive degradation or periodic skips.

We recommend using UDP for all real-time field-to-TMC streams unless TCP is required for network policy reasons (e.g., firewall configurations that will not allow UDP streaming).

In our testing on this device, using TCP resulted in mixed results that are difficult to interpret. Future investigation is merited.

JPEG

JPEG image size statistics from our test results can be found in Figure 4.13. Subjective examination of the resulting images reveals that, at least for our test scenes, reasonable images can be acquired from this device at Quality levels down to 30 or 20 for medium-large image resolutions. For images on the lower end of the resolution range, using Quality levels 50 or higher may be best.

References

- [1] MENSI Corporation, "MIC inteox 7100i." https://resources-boschsecuritycdn.azureedge.net/public/documents/MIC_7602_Z30G_Data_sheet_enUS_8 4713573387.pdf
- [2] CostarHD, "Costar RISE 4260HD Series." https://costarhd.com/Product/riserugged-ip/rise-4260hd-series
- [3] WTI, "Sidewinder/ Viper: High Definition (HD)." http://www.gotowti.com/sidewinder/sidewinder_high.asp
- [4] AXIS Communications, "Zipstream technology." https://www.axis.com/vapixlibrary/subjects/t10175981/section/t10048607/display
- [5] AXIS Communications, "Axis Zipstream Technology." https://www.axis.com/dam/public/05/50/de/axis-zipstream-technology:-cutthe-storage,-not-the-quality-en-US-349837.pdf
- [6] CostarHD, "Costar RISE 4220HD and 4260HD Operation Manual." https://costarhd.com/Portals/0/CohuHD%20Downloads/Product%20Docume nts/Current%20Products/Operation%20Manuals/RISE_Operation_Manual.pdf ?ver=YzESTie5P6yNdGb40vrzWw%3d%3d

Appendix A: CCTV Operating Conditions and Characteristics

Based on initial discussions with the PM and project champion, the following CCTV operating conditions and characteristics have been identified as of interest in this study:

- Testbeds
 - o Existing
 - Need to construct
- District type
 - o Rural
- Bandwidth
 - Ultra-low (up to 10 kbps)
 - Low (10 kbps 128 kbps)
 - Medium (128 kbps – 1.5 Mbps) , if available
 - High (greater than
 1.5 Mbps), if available
- JPEG needs for CWWP2
- H.264 needs for streaming / Wowza
 - o RTMP
 - o RTSP
 - HDS
 - o MJPEG
- Decoding digital video at the district office
- Environments
 - Coastal
 - o Mountain
 - o Desert
 - Metropolitan, if available

- Operating temperature range
- Form factor
 - Integrated CCTV
 - Dome
 - Pole-mounted
 360 deg PTZ
 - Stand-alone enclosure
 - Rack-mountable
 - Din-rail
- Cabling and physical interface
 - o Analog
 - BNC (video)
 - Serial (RS-422)
 - Digital
 - Ethernet
- Interfaces
 - o HTTP
 - o SSH
 - o SFTP
 - o Others
- Scene lighting function of CCTV unit
 - \circ Luminaire
 - Moonlight
 - Headlights
 - Integration

Appendix B: Stream Quality Analysis and Average Bitrate Charts

This appendix contains the Stream Quality Analysis and Average Bitrate charts for the test groups in this study.

	R _{nom} , R _{max} , R _{targ} (kbps)												
	9.6 14.	4 28.8		56	128	256	512	768	1000	2000	4000	8000	
	7 11	23	26	44	102	204	409	614	800	1600	3200	6400	
	6 9	18	21	35	81	163	327	491	640	1280	2560	5120	
320x180 @ 1 FPS	69	15	17	26	47	52	53	50	50	50	52	51	
320x180 @ 2 FPS	9 12	18	26	37	85	77	89	90	85	86	82	89	
320x180 @ 5 FPS	11 15	21	23	40	89	154 •••	164	160	153	133	165	149	
320x180 @ 15 FPS	19 22	35	38	44	80	169	295	400	422	373	424	407	
320x180 @ 30 FPS	32 32	43	50	69	83	152	320	409	434	614	661	695	
480x270 @ 1 FPS	7 10	17	20	27	51	90	86	89	92	89	92	89	
480x270 @ 2 FPS	10 14	24	27	34	77	151	159	156	147	138	150	155	
480x270 @ 5 FPS	19 23	27	32	39	89	149	275	244	276	279	268	283	
480x270 @ 15 FPS	37 37	41	45	64 •	87	157	325	483	531	666	642	643	
480x270 @ 30 FPS	58 58	60	63	79 •	137	151	304	431	592	1013	1062	1100	
800x450 @ 1 FPS	20 20	21	25	34 ••	70	146	229	264	274	259	260	244	
800x450 @ 2 FPS	24 25	28	27	45 •	89	156	253 ••	331	430	448	495	444	
800x450 @ 5 FPS	56 54	54	63	61	96	180	369	438	664	876	823	819	
800x450 @ 15 FPS	103 10	5 102 •	103	100	124 •	197	304	504	682	1046	2034	1747	
800x450 @ 30 FPS	157 15		155	158	179	304	337	449	592	1240	2334	3016	
1280x720 @ 1 FPS	51 52	48	50	43 ••	77 ••	170	223	378	589	645	673	699	
1280x720 @ 2 FPS	62 64	60	60	68	116	199	311	520	626	1090	1314	1229	
1280x720 @ 5 FPS	143 14	5 149 •	149	145	161	226	370	536	691	1080	2323	2489	
1280x720 @ 15 FPS	280 293		294	276	295 •	319	487	512	639	1360	2237	4413	
1280x720 @ 30 FPS	388 40		388	393	398 •	405	638 •	857	851	1198	2481	5257	
1920x1080 @ 1 FPS	117 12:	2 119	119	116	101 •	148	315	433	545	869 •	1763	1790	
1920x1080 @ 2 FPS	146 14	3 144	136	140	147	239	374	403	731	1294	2567	3226	
1920x1080 @ 5 FPS	323 32	338	347	333	340	349	480	613	719	1472	2582	5908	
1920x1080 @ 15 FPS	738 71	721	735	735	736	660	739	835	1056	1329	2590	5220	
1920x1080 @ 30 FPS	1047 101	7 1049	1051	1049	1002	986	979	1094				5160	

$\begin{array}{c} R \\ R_{nom} \\ R_{100} \\ R_{80} \\ R_{50} \\ R_{max} \\ R_{targ} \\ F_r \\ F_e \end{array}$: measured average bitrate (kbps) : nominal bitrate for link class (kbps) : net-limit test rate (100% of R_{nom}) : net-limit test rate (80% of R_{nom}) : net-limit test rate (50% of R_{nom}) : specified max. rate (80% of R_{nom}) : specified target rate (80% of R_{max}) : # frames received : # frames expected
R	: R \in [O, R _{targ}]
R	: R \in (R _{targ} , R _{max}]
R	: R \in (R _{max} , ∞)
	: $F_{r}\!\div\!F_{e}\geq90\%$ for R_{100},R_{80},R_{50}
	: $F_{r}\!\div\!F_{e}$ \geq 90% for $R_{100}\text{,}R_{80}$
	: $F_{r}\!\div\!F_{e}$ \geq 90% for R_{100}
•	: $F_r \div F_e \geq$ 90% for no test rates

Device:	Axis Q8752-E
Scene:	scenel
Encoding:	h264 main abr
GOP Mode:	30 f
Compression:	30
ZS Strength:	off

Figure B.1: Stream quality analysis for Axis Q8752-E Baseline (H.264 Main ABR) test

					R,	nom ,	R _{max}	(kbp	os)					R	:	measured average bitrate (kbps)
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	R _{nom}		nominal bitrate for link class (kbps)
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R ₁₀₀	:	net-limit test rate (100% of $R_{\mbox{nom}})$
320x180 @ 1 FPS	7	8	17	20	34	56	55	53	54	53	51	53	52	R_{80}	:	net-limit test rate (80% of R_{nom})
320x180 @ 2 FPS	9	13	17	21	37	91	95	86	92	92	91	89	90	R ₅₀		net-limit test rate (50% of R _{nom})
320x180 @ 5 FPS	11	14	21	24	38	102	157	179	173	174	175	164	174	R _{max}		specified max. rate (80% of R_{nom}) specified target rate (80% of R_{max}
320x180 @ 15 FPS	20	24	37	38	47	78	173	321	402	422	434	395	428	R _{targ} F _r		# frames received
320x180 @ 30 FPS	34	34	42	49	70	84	154	317	477	583	666	716	704	Fe	:	# frames expected
480x270 @ 1 FPS	9	10	15	22	35	78	95	96	97	93	94	96	99			
480x270 @ 2 FPS	11	15	21	25	37	85	163	158	160	164	165	162	160	R	:	$R \in$ [O, R_{max}]
480x270 @ 5 FPS	20	22	28	30	36	85	••• 184	275	301	295	291	298	294	R	:	R \in (m, ∞)
480x270 @ 15 FPS	• 38	• 38	43	• 45	64	86	••• 159	316	508	579	709	••••	671		:	$F_{r}{\div}F_{e}~\geq~90\%$ for R_{100} , R_{80} , R_{50}
480x270 @ 30 FPS	• 60	• 61	• 60	• 65	• 80	138	••• 145	••• 294	4 51	634	1020	1130			:	$F_{r}{\div}F_{e}~\geq~90\%$ for R_{100} , R_{80}
800x450 @ 1 FPS	• 24	• 23	• 24	• 26	• 36	• 73	146	285	276	••• 278	279	284	280	••	:	$F_r \div F_e~\geq$ 90% for R_{100}
800x450 @ 2 FPS	• 25	• 26	• 29	• 32	46	• 78	••• 165	••• 349	504	501	509	496	494		:	$F_r \div F_e~\geq~90\%$ for no test rates
800x450 @ 5 FPS	• 57	• 56	• 59	• 56	• 68	•• 95	••• 173	••• 366	••• 547	•••• 678	•••• 915	•••• 889	905			
800x450 @ 15 FPS	• 106	• 107	• 104	• 94	• 110	•• 152	211	••• 322	••• 516	••• 639	•••• 1383	•••• 2039	•••• 2134			
800x450 @ 30 FPS	•	• 158	• 160	• 153	• 171	•	•• 311	••• 358	••• 438	••• 589	••• 1227	•••• 2647	•••• 3258	Device	:	Axis Q8752-E
1280x720 @ 1 FPS	• 59	•	• 59	• 60	88	• 73	• 139	••• 310	••• 462	••• 725	••• 735	••• 723	•••• 740	Scene:		scenel
1280x720 @ 2 FPS	•	•	•	•	•	•	•••	•••	•••	•••	••••	••••	••••	Encodi	•	
	63 •	64 •	61 •	66 •	70 •	106	160 ••	352 •••	513 •••	710 •••	1332	••••	1363	GOP M		
1280x720 @ 5 FPS	152	147	141	142	151	173	208	356	543	679 •••	1463	2418	2590	Compr		
1280x720 @ 15 FPS	287 •	281 •	291 •	288 •	277 •	289 •	332 •	500 •	507	613 •••	1232	2793	5064	ZS Strer	ngti	h: off
1280x720 @ 30 FPS	417	423	411	409	284	428	426	645 •	852	881	1165	2429	5030			
1920x1080 @ 1 FPS	141	137	144	141	205	117	173	297	451	593 •	1390	1853	1867			
1920x1080 @ 2 FPS	150	144	153	148	151	152	229	356	532	471	1286	2888				
1920x1080 @ 5 FPS	357	338	348	339	347	342	342	489	620	721		2924				
1920x1080 @ 15 FPS	733	761	726	750	738	749	721	755	886	1046		2860				
1920x1080 @ 30 FPS	1060	1070	1063	1020	692	1038	1020	1041	1131		1971	2442	5453			

Figure B.2: Stream quality analysis for Axis Q8752-E MBR Rate Control test

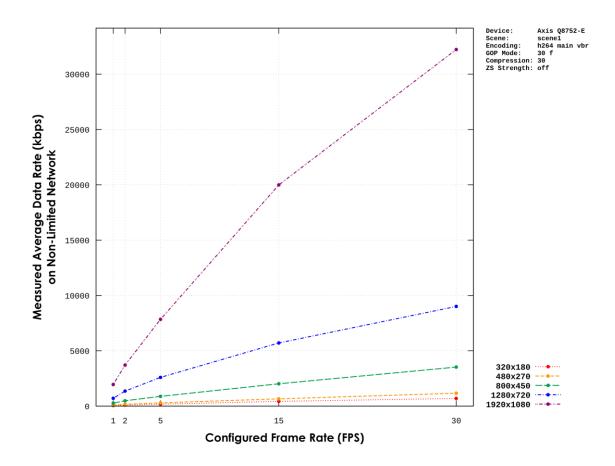


Figure B.3: Average bitrates for Axis Q8752-E VBR Rate Control test

				H	R _{nom} ,	R _{max}	, R _t	arg	(kbps)			
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000
	7	11	23	26	44	102	204	409	614			3200	
	6	9	18	21	35	81	163	327	491	640		2560	
320x180 @ 1 FPS	6 •	9 ••	18 ••	19 •••	26 •	43 ••••	43 ••••	46 ••••	45 ••••	41	45	43	46
320x180 @ 2 FPS	9	12	16 •••	19	37	78 •••	76	72	75	73	77	78	74
320x180 @ 5 FPS	12	15	23	24	38	77	141 •••	142	143	141	132	139	139
320x180 @ 15 FPS	22	22	36	37	49	86	153	294	368	310	347	357	352
320x180 @ 30 FPS	35	36	43	46	68	86	159	307	432	509	534	537	556
480x270 @ 1 FPS	7	10	19	24	32	72	79	81	81	83	79	81	80
480x270 @ 2 FPS	• 9	16	• 20	27	37	•• 78	143	141	128	131	134	138	133
480x270 @ 5 FPS	• 20	23	29	•• 30	40	8 7	••• 141	230	247	253	258	238	235
480x270 @ 15 FPS	• 41	• 40	• 48	• 44	66	90	165	329	516	571	537	•••• 594	•••• 571
480x270 @ 30 FPS	• 63	• 64	• 65	• 64	• 82	142	155	314	439	••• 619	915	1008	931
800x450 @ 1 FPS	• 21	• 21	• 21	• 25	•	• 85	••• 132	••• 232	••• 230	••• 229	243	219	•••• 234
800x450 @ 2 FPS	• 24	• 25	•	• 31	•• 46	••••	••• 179	360	•••• 430	401	409	408	•••• 412
800x450 @ 5 FPS	56	• 59	• 59	• 59	• 69	••• 100	173	330	415	620	760	769	592
	•	•	•	•	•	••	•••	•••	•••	•••	••••	••••	••••
800x450 @ 15 FPS	111 •	114 •	116 •	116	113 •	152	221	313 •••	516 •••	677 •••	1293	1720	1677
800x450 @ 30 FPS	169 •	174	172	175	173	188	315	387	446 •••	602	1211	2366	2996 ••••
1280x720 @ 1 FPS	51 •	52 •	52 •	50 •	46 •	73	198 •••	291	374 ••	534	621	565	583
1280x720 @ 2 FPS	65 •	62 •	66 •	63 •	75 •	121	166	352	495	593	1082	1122	1045
1280x720 @ 5 FPS	157	159	151	150	149	171	238	362	536	681	1337	2249	1755
1280x720 @ 15 FPS	313	314	305	308	317	315	344	528	606	645	1415	2409	4536
1280x720 @ 30 FPS	429	450	436	448	451	458	433	636	866	974	1237		5004
920x1080 @ 1 FPS	120	124	122	119	126	124	163	376	397	572	894	1619	
920x1080 @ 2 FPS	146	152	154	153	152	162	245	387	491	585	1316	2260	3108
920x1080 @ 5 FPS	356	380	• 374	367	360	358	• 354	509	643	702	1428	2702	5072
920x1080 @ 15 FPS	812	800	796	793	810	792	771	776	905	1047	1420	2749	5107
920x1080 @ 30 FPS	1165	1178			1178	1130		1099	1156	1279			

R	:	measured average bitrate (kbps)
R_{nom}	:	nominal bitrate for link class (kbps)
R ₁₀₀	:	net-limit test rate (100% of R_{nom})
R ₈₀	:	net-limit test rate (80% of R_{nom})
R ₅₀	:	net-limit test rate (50% of R_{nom})
R _{max}	:	specified max. rate (80% of R_{nom})
Rtarg	:	specified target rate (80% of R_{max})
Fr	:	
F	:	# frames expected
- 6		
R	:	R \in [O, R _{targ}]
R	:	$R \in (R_{targ}, R_{max}]$
R		$R \in (R_{max}, \infty)$
	:	${ m F_r}{\div}{ m F_e}~\geq$ 90% for ${ m R_{100}}$, ${ m R_{80}}$, ${ m R_{50}}$
••••		$F_{r} \div F_{e} \geq$ 90% for R_{100} , R_{80}
•••		
••	:	$F_r \div F_e~\geq~90\%$ for R_{100}
•	:	$F_r \div F_e~\geq~90\%$ for no test rates
)evice:		Axis Q8752-E
cene:		scenel
ncodir	ng:	h264 high abr
OP M	ode	e: 30 f
Compre	ess	ion: 30
•		

ZS Strength: off

Figure B.4: Stream quality analysis for Axis Q8752-E H.264 High Profile test

							F	l _{nom} ,	R _{max}	, R _t	arg	(kbps	5)			
				9.6	14.4	28.8		56	128	256	512	768	1000	2000	4000	8000
				7	11	23	26	44	102	204	409	614	800	1600	3200	6400
				6	9	18	21	35	81	163	327	491	640	1280	2560	5120
320x180	Q	1	FPS	6	10 •	16 •	18 ••	27 •	38	40	41	41	38	39	39	38
320x180	Q	2	FPS	8	12	20	21	33	65	68	66	75	70	69	64	68
320x180	Q	5	FPS	11	14	20	22	38	79	125	128	129	126	128	127	132
320x180	Q	15	FPS	19	22	34	37	42 ••	80	169	259	286	300	305	295	288
320x180	Q	30	FPS	31	33	41	45 •	63	83	158	316	412	485	528	483	540
480x270	Q	1	FPS	7	10	20	20	36	74	71	70	69	72	74	73	73
480x270	0	2	FPS	9	15	24	25	27	93	121	115	121	126	122	127	124
480x270	Q	5	FPS	18 •	19 •	28 •	29 •	40	95	181	229	227	212	232	228	201
480x270	Q	15	FPS	34	34	39 •	40 •	63 •	82	158	306	445 •••	468	485	494	492
480x270	Q	30	FPS	55 •	54 •	54 •	57 •	74 •	121	156	312	471 •••	580	749	751	846
800x450	0	1	FPS	19 •	18 •	23	24 •	34 •	82	134	199	207	190	197	188	194
800x450	Q	2	FPS	20	21	27	35	41 •	75	146 •••	228	325	327	347	317	329
800x450	Q	5	FPS	45	44	47	47	60	87	169	327	396	592	599	656	631
800x450	Q	15	FPS	90	91	90	89	89	138	198	325	500	602	1206	1510	1505
800x450	Q	30	FPS	139	143	146	145	144	165	288	330	466	610	1206	2337	2583
1280x720	0	1	FPS	44	43	47	48	45 •	72 ••	162	253	303	557	562	518	570
1280x720	Q	2	FPS	50	51	51	49	59 •	96	179	259	431	731	899	912	975
1280x720	Q	5	FPS	104	114	113	119	114	144	214	303	505	618	1133	1887	1910
1280x720	Q	15	FPS	231	227	234	236	237	232	295 •	464	496	632	1329	2327	4328
1280x720	Q	30	FPS	356	340	348	348	331	358	354	607 •	739	768	1223	2679	4912
1920x1080	Q	1	FPS	111 •	111 •	114 •	115 •	117 •	115 •	153	302	435	630	1249	1443	1517
1920x1080	Q	2	FPS	110 •	119	116	123	119 •	137	196 •	315	552	484 •••	1228	2216	2788
1920x1080	0	5	FPS	283	270	286	278	273	268	296	462	534	679	1393	2957	5703
1920x1080	Q	15	FPS	617 •	566 •	592 •	556 •	556 •	580 •	568 •	623 •	806	928 •	1330	2814	5948
1920x1080	Q	30	FPS	876	917	899	902	921	801	913	912	955	1092	1716	2600	5522

R	: mec	asured average bitrate (kbps)
R_{nom}	: nom	inal bitrate for link class (kbps)
R_{100}	: net-l	limit test rate (100% of R_{nom})
R_{80}	: net-l	limit test rate (80% of $R_{ t nom}$)
R_{50}	: net-l	limit test rate (50% of $R_{ t nom}$)
R_{max}	: spec	cified max. rate (80% of $ m R_{nom}$)
R_{targ}	: spec	cified target rate (80% of R_{max})
F_r	: # fra	mes received
F_{e}	: # fra	mes expected
R	: R \in	[0, R _{targ}]
R	: R \in	(R _{targ} , R _{max}]
R	: R \in	(R _{max} , ∞)
	: F_r ÷	$\mathrm{F_e}~\geq~90\%$ for $\mathrm{R_{100}}$, $\mathrm{R_{80}}$, $\mathrm{R_{50}}$
	: F_r ÷	$\mathrm{F_e}~\geq~90\%$ for $\mathrm{R_{100}}\mathrm{,R_{80}}$
	: F_r ÷	$\mathrm{F_e}~\geq$ 90% for $\mathrm{R_{100}}$
	: F_r ÷	$ m F_e~\geq~90\%$ for no test rates
Devile		Auto 00750 5
Device	:	Axis Q8752-E
Scene:		scenel
Encodii GOP M	5	h265 None abr
		30 f 30
•		off
ZS Strer	igin:	OII

Figure B.5: Stream quality analysis for Axis Q8752-E H.265 Main Profile test

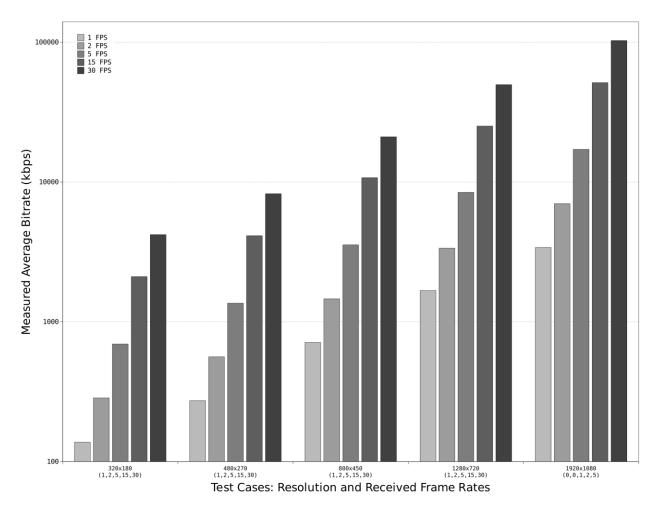


Figure B.6: Average bitrates for Axis Q8752-E M-JPEG test

				R _{nom} , R _{max} , R _{targ} (kbps)												
				9.6	14.4	28.8		56	128	256	512	768	1000	2000	4000	8000
				7	11	23	26	44	102	204	409	614	800	1600	3200	6400
				6	9	18	21	35	81	163	327	491	640	1280	2560	5120
320x180	Q	1	FPS	10 •	15 •	23	24 •••	30 ••	55	60	60	61	62	61	62	63
320x180	0	2	FPS	11 •	14 •	17	22	37	84	97	96	98	94	96	94	88
320x180	Q	5	FPS	12 •	15 •	20 •	23	35	91	144 •••	156	158	154	148	157	156
320x180	Q	15	FPS	17 •	19 •	28 •	30 •	40 ••	92	143 •••	282 •••	336 •••	357	343	381	391
320x180	Q	30	FPS	24 •	24 •	34 •	35 •	51 •	95 •••	160 •••	371	497 •••	509	547	598	496
480x270	Q	1	FPS	16 •	16 •	27 •	29 ••	45 •••	61 •	91 ••	108	108	110	108	109	112
480x270	0	2	FPS	14 •	20 •	28 •	27 •	39	80	148 •••	171	168	167	175	168	171
480x270	Q	5	FPS	22 •	22 •	29 •	32 •	40 ••	82 •••	133 •••	273 •••	279	268	255	288	256
480x270	Q	15	FPS	33 •	32 •	36 •	36 •	52 •	87	188	278	447 •••	527	589	547	562
480x270	Q	30	FPS	46 •	46 •	47 •	48 •	61 •	103	190 •••	327	410 •••	615 •••	941 •••	859	965
800x450	0	1	FPS	41 •	41 •	42 •	43 •	54 •	89	120 ••	238	310	289	303	295	308
800x450	Q	2	FPS	37 •	37	40 •	43 •	55 •	96	168 •••	276	450	498 •••	499	492	520
800x450	Q	5	FPS	62 •	62 •	61 •	64 •	67 •	104	159	338	400	427	841	841	790
800x450	0	15	FPS	95 •	88 •	94 •	89 •	94 •	123	180	383	548	654	1246	1660	1759
800x450	0	30	FPS	123 •	121	129 •	124 •	128 •	142 •	212	365	568	750	1102	2304	3040
1280x720	0	1	FPS	89 •	90 •	86 •	89 •	86 •	103	162 •••	319 •••	375 •	392 •	750	822	771
1280x720	Q	2	FPS	86 •	84 •	87 •	87 •	94 •	131 •	197 •	356	518 •••	635 •••	1232	1245	1365
1280x720	Q	5	FPS	161 •	153	160 •	153 •	158 •	159 •	240	335	520	669	1125	2350	2271
1280x720	Q	15	FPS	264 •	262 •	253 •	259 •	259 •	263 •	291 •	402	555	698	1492	2244	4636
1280x720	Q	30	FPS	344 •	342	346	325	345 •	330	349 •	484	598	733	1452	2683	5847
1920x1080	Q	1	FPS	192 •	186 •	191 •	186 •	190 •	196 •	221 •	341 •••	440	554	931 •••	1975	1921
1920x1080	0	2	FPS	187 •	189 •	192 •	194 •	172 •	199 •	219 •	459 •••	455 •••	574	1441	2024	3427
1920x1080	0	5	FPS	364 •	374	359	348 •	363	305	373	493	605	702	1447	2584	5266
1920x1080	Q	15	FPS	681 •	662 •	668 •	649 •	529 •	632 •	692 •	669	804 •	915	1489	2614	5552
1920x1080	Q	30	FPS	904	874	920	935	632	908	911	797	956	1014	1640	2914	5517

R	: measured average bitrate (kbps)
R_{nom}	: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of $R_{\tt nom})$
R_{80}	: net-limit test rate (80% of R_{nom})
R_{50}	: net-limit test rate (50% of R_{nom})
R_{max}	: specified max. rate (80% of R_{nom})
R_{targ}	: specified target rate (80% of R_{max})
Fr	: # frames received
F_{e}	: # frames expected
R	: R \in [O, R _{targ}]
R	: R \in (R _{targ} , R _{max}]
R	: R \in (R _{max} , ∞)
	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100} , R_{80} , R_{50}
	: $F_r \div F_e \geq$ 90% for R_{100} , R_{80}
•••	: $F_r \div F_e > 90\%$ for R_{100}
••	
•	: F_r \div F_e \geq 90% for no test rates
Device	: Axis Q8752-E
Scene:	scenel
Encodi	ng: h264 main abr
GOP M	ode: 5 s
Compr	ession: 30
ZS Strer	ngth: off

Figure B.7: Stream quality analysis for Axis Q8752-E Varying GOP Interval with Frame Rate test

				F	ł _{nom} ,	R _{max}	, R _t	arg	(kbps	5)			
	9.6	14.4	28.8		56	128	256	512	768	1000	2000	4000	8000
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120
320x180 @ 1 FPS	5 •	5 •	5 •••	5 •••	6	5	6	5	6	6	5	5	6
320x180 @ 2 FPS	7 •	8	9	9	9	8	8	9	9	8	9	8	9
320x180 @ 5 FPS	9	11	15 •	15 ••	15	15	15	15	15	15	15	15	15
320x180 @ 15 FPS	14	20	24 •	26	31	33	30	33	34	33	33	33	33
320x180 @ 30 FPS	20	24	40	41	43 ••	56	56	58	56	57	55	56	57
480x270 @ 1 FPS	5	8	11 ••	11 ••	11	11	10	11	11	10	11	11	11
480x270 @ 2 FPS	9	11	17	18 ••	17	17	18	18	17	18	17	17	17
480x270 @ 5 FPS	12	15 •	22 •	22	27	28	27	28	28	27	28	28	28
480x270 @ 15 FPS	21	25	35	39	47	58	63	62	60	61	63	61	63
480x270 @ 30 FPS	34	35	46	51	71	81	100	102	96	104	100	102	100
800x450 @ 1 FPS	8	9	17	14	29	32	29	31	30	30	29	30	30
800x450 @ 2 FPS	15	17	26	28	42	47	50	49	52	48	52	48	49
800x450 @ 5 FPS	29	28	37	38	48 ••	74	76	79	78	76	79	75	76
800x450 @ 15 FPS	58	58	58	58	72	117	149	161	157	160	157	162	157
800x450 @ 30 FPS	86	83	86	87	95	162	189	252	258	262	254	263	265
1280x720 @ 1 FPS	18	17	23	23	32	75	74	81	73	75	72	76	76
1280x720 @ 2 FPS	34	36	37	40	58	97	126	135	134	134	126	135	134
1280x720 @ 5 FPS	81	79	81	79	78	118	109	218	207	220	206	214	217
1280x720 @ 15 FPS	156	162	154	161	166	179	273	315	399	399	395	409	395
1280x720 @ 30 FPS	216	224	231	212	221	232	325	433	470	531	640	614	627
1920x1080 @ 1 FPS	42	42	42	41	48	82	111	186	169	176	166	162	159
1920x1080 @ 2 FPS	76	80	80	74	77	122	194	308	299	290	305	308	306
1920x1080 @ 5 FPS	177	• 191	142	• 172	• 189	190	247	378	464	513	534	549	515
1920x1080 @ 15 FPS	406	382	395	• 376	• 301	• 377	403	542	688	702	962	966	998
L920x1080 @ 30 FPS	• 579	• 579	• 563	• 580	• 561	• 574	• 519	661	•• 903	1037	1141	1475	•••• 1464

R		isured average bitrate (kbps)														
R_{nom}		iinal bitrate for link class (kbps)														
R_{100}	: net-l	imit test rate (100% of $R_{ t nom}$)														
R_{80}	: net-l	imit test rate (80% of $R_{ t nom}$)														
R_{50}	: net-l	imit test rate (50% of $ m R_{nom}$)														
R_{max}	: spec	cified max. rate (80% of R_{nom})														
R_{targ}	: spec	cified target rate (80% of R_{max})														
F_r	: # fra	# frames received # frames expected														
F_{e}	: # fra	# frames expected														
R	: R \in	[O, R _{targ}]														
R	: R \in	(R _{targ} , R _{max}]														
R	: R \in	(R _{max} , ∞)														
	: F_r ÷	${ t F}_{ extbf{e}}~\geq~90$ % for ${ t R}_{100}$, ${ t R}_{80}$, ${ t R}_{50}$														
	: F_r ÷	${ t F}_{ extbf{e}}~\geq~90$ % for ${ t R}_{100}$, ${ t R}_{80}$														
	: F_r ÷	$\mathrm{F_e}~\geq$ 90% for $\mathrm{R_{100}}$														
	: F _r ÷	$ m F_e~\geq~90\%$ for no test rates														
•	-	o <u>-</u>														
Device	-	Axis Q8752-E														
Scene:		scenel														
Encodi	•	h264 main abr														
GOP M		30 f														
•	ession:	100														
ZS Strei	ngth:	off														

Figure B.8: Stream quality analysis for Axis Q8752-E Compression 100 test

	R _{nom} , R _{max} , R _{targ} (kbps)														R : measured average bitrate (kbps						
	9.6	14.4	28.8			128	256	512			2000	4000	8000	1		nominal bitrate for link class (kbps)					
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R ₁₀₀	: r	net-limit test rate (100% of R_{nom})					
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R ₈₀	: r	net-limit test rate (80% of R_{nom})					
320x180 @ 1 FPS	6	9	16 ••	16 ••	24	40	40	37	38	33	39	38	41			net-limit test rate (50% of R_{nom})					
320x180 @ 2 FPS	9 •	12 •	20 ••	20 ••	41 •••	63	64	67	71	63	65	65	64			specified max. rate (80% of $ m R_{nom}$) specified target rate (80% of $ m R_{max}$					
320x180 @ 5 FPS	12	16 •	19 ••	31	50	85	106	98	97	96	103	99	98			# frames received					
320x180 @ 15 FPS	19 •	24 •	39 •	33	38	78	152	227	188	237	239	230	260			# frames expected					
320x180 @ 30 FPS	27	31	49 •	53 •	55 •	76	146	288	308	371	382	391	417								
480x270 @ 1 FPS	7	10 •	18 ••	20	30	67	66	70	66	77	75	72	72			R \in [O, R _{targ}]					
480x270 @ 2 FPS	11 •	15 •	22	25 ••	34 ••	85	110	119	128	131	121	121	122	R	: I	$R \in (R_{targ}, R_{max}]$					
480x270 @ 5 FPS	18 •	19 •	32	35	44	70	169	195	171	179	192	198	181	R	: I	R \in (R _{max} , ∞)					
480x270 @ 15 FPS	28 •	33 •	42 •	45 •	62 •	76	150	291	403	333	454	406	446		: I	${ m F_r}{ m \div F_e}~\geq~90\%$ for ${ m R_{100}}$, ${ m R_{80}}$, ${ m R_{50}}$					
480x270 @ 30 FPS	49 •	52 •	57 •	61	87 •	111	144	290	415	522	713	761	696		: I	${ m F_r}{\div}{ m F_e}~\geq$ 90% for ${ m R_{100}}$, ${ m R_{80}}$					
800x450 @ 1 FPS	17 •	17 •	20 •	22	35	73	111	222	207	212	215	202	210	••	: I	${ m F_r}{\div}{ m F_e}$ \geq 90% for ${ m R_{100}}$					
800x450 @ 2 FPS	21	23	33	35	47	74	172	329	372	384	339	380	381	•	: I	${ m F_r}{\div}{ m F_e}~\geq~90\%$ for no test rates					
800x450 @ 5 FPS	45 •	47	56	56	62	88	159	345	496	557	588	605	563								
800x450 @ 15 FPS	88 •	90 •	89 •	85 •	92 •	150 •	154 •••	312	464	643	1152	1296	1407								
800x450 @ 30 FPS	128 •	132	128	128	134	183 •	270	313	429	569	1209	2081	2081	Device:		Axis Q8752-E					
1280x720 @ 1 FPS	43	45	44	44	45 ••	80	148	268	325	531	534	577	534	Scene:		scenel					
1280x720 @ 2 FPS	57	58	55	55	74	103	181	296	478	513	1050		1046	Encoding GOP Mo	•	h264 main abr : 30 f					
1280x720 @ 5 FPS	121	125	122	125	127	142	218	355	555	711	1288		1699	Compres							
1280x720 @ 15 FPS	242	258	245	247	254	255	312	434	470	604	1301	2277		ZS Streng	gth:	10					
1280x720 @ 30 FPS	352	362	335	346	337	340	391	640	742	711	1154										
1920x1080 @ 1 FPS	105	104	101	104	69 •	128	152	326	437	538	1157	1542	1415								
1920x1080 @ 2 FPS	130	130	124	120	124	152	210	306	521	557	1204	2437	2790								
1920x1080 @ 5 FPS	303	302 •	293 •	280 •	309	209	340	382	637	714 •••	1527	3031	4620								
1920x1080 @ 15 FPS	651	645	641	613	651	638 •	431	708 •	854	968	1238	2784									
1920x1080 @ 30 FPS	918 •	881	921	884	596	582	893	872	1048	1219	1722	2359	4796								

10	 Inequired average billidie (kbps)
R_{nom}	: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of $R_{\tt nom})$
R ₈₀	: net-limit test rate (80% of R_{nom})
R_{50}	: net-limit test rate (50% of R_{nom})
R_{max}	: specified max. rate (80% of $R_{\mbox{nom}}$)
R_{targ}	: specified target rate (80% of $R_{\text{max}})$
F_r	: # frames received
Fe	: # frames expected
R	: R \in [O, R _{targ}]
R R	: R \in [0, R _{targ}] : R \in (R _{targ} , R _{max}]
	-
R	: $R \in (R_{targ}, R_{max}]$
R R	: $R \in (R_{targ}, R_{max}]$: $R \in (R_{max}, \infty)$
R R	: $R \in (R_{targ}, R_{max}]$: $R \in (R_{max}, \infty)$: $F_r \div F_e \ge 90\%$ for R_{100}, R_{80}, R_{50}
R R ••••	: R \in (R _{targ} , R _{max}] : R \in (R _{max} , ∞) : F _r \div F _e \geq 90% for R ₁₀₀ , R ₈₀ , R ₅₀ : F _r \div F _e \geq 90% for R ₁₀₀ , R ₈₀

Device:	Axis Q8752-E
Scene:	scenel
Encoding:	h264 main abr
GOP Mode:	30 f
Compression:	30
ZS Strength:	10

Figure B.9: Stream quality analysis for Axis Q8752-E Zipstream Strength 10 test

1				E	•	D	P		(khr	2				D .		
	9.6	14 4	28.8		nom, 56	к _{тах} 128	256	<u> </u>	(kbps		2000	4000	8000			isured average bitrate (kbps) inal bitrate for link class (kbps)
	7	11	20.0 23	26	56 44	120	204	409	614			3200		nom		inal bilitate for link class (kbps) imit test rate (100% of R_{nom})
	6	9	18	20	35	81	163	327	491			2560		200		imit test rate (80% of R_{nom})
320x180 @ 1 FPS	5	8	13	18	33	33	31	33	33	34	32	32	32			imit test rate (50% of R_{nom})
320x180 @ 2 FPS	9	••	••	•• 20	• 29	••••	••••	••••	••••	••••	•••• 53	•••• 57	•••• 53	00		tified max. rate (80% of R_{nom})
	•	•	••	••	••	••••	••••	••••	••••	••••	••••	••••	••••		•	ified target rate (80% of R_{max}
	12	12	30	34 •••	33 •••	68 •••	76 ••••	78	76	72	75	71	75 ••••	F_r :	# fra	mes received
320x180 @ 15 FPS	20 •	27 •	29 •	31	39 •••	73 •••	141 •••	187	187	167	169	172	182	F _e :	# fra	mes expected
320x180 @ 30 FPS	26	32	49	52	56	81	143	255	303	311	293	295	296			
480x270 @ 1 FPS	7	10	18	17	27	61	63	65	63	64	62	61	64	R :	${\tt R}~\in$	[O, R _{targ}]
480x270 @ 2 FPS	12	14	23	22	36	67	111	111	112	103	106	105	102	R :	${\tt R}~\in$	(R _{targ} , R _{max}]
480x270 @ 5 FPS	• 16	• 21	30	• 26	••• 42	••• 72	131	143	142	149	148	147	145	R :	${\tt R}~\in$	(R_{max} , ∞)
480x270 @ 15 FPS	27	• 30	• 43	50	56	••• 75	••• 143	••••	•••• 338	351	•••• 324	345	352	:	$\mathbf{F_r} \div \mathbf{I}$	$ m F_e~\geq~90\%$ for $ m R_{100}$, $ m R_{80}$, $ m R_{50}$
480x270 @ 30 FPS	• 45	• 46	• 55	• 58	• 83	102	••• 145	••• 282	•••• 399	480	•••• 592	601	540			$F_e \geq$ 90% for R_{100} , R_{80}
800x450 @ 1 FPS	• 17	• 16	• 20	• 20	• 34	•• 72	••• 139	••• 187	••• 179	••• 184	•••• 192	•••• 176	•••• 176	•••	-	$F_e \geq$ 90% for R_{100}
	26	• 27	30	36	41	89	170	320	345	351	322	324	•••• 347	••	-	
	•	•	•	•	•	•••	•••	•••	••••	••••	••••	••••	••••	• :	F _r ÷.	$ m F_e~\geq~90\%$ for no test rates
800x450 @ 5 FPS	43	41 •	50 •	50 •	58 •	92	175 •••	282	445 •••	494	493	499	485			
800x450 @ 15 FPS	79 •	80 •	81 •	81 •	93 •	145 •	163 •••	292	470	626	982	1017	1108			
800x450 @ 30 FPS	112	115	114	116	127	187	268	297	414	547	1111	1886	1927	Device:		Axis Q8752-E
1280x720 @ 1 FPS	43	44	44	42	44	81	167	280	306	478	496	490	483	Scene:		scenel
1280x720 @ 2 FPS	69	68	68	70	75	107	177	••• 315	482	685	905	899	933	Encoding		h264 main abr
1280x720 @ 5 FPS	• 124	• 118	• 123	• 116	• 114	• 143	217	355	•• 575	620	1210	•••• 1488	•••• 1474	GOP Mod		30 f
	235	228	233	235	233	237	305	••• 394	462	••• 599	••• 1271	2193	••••	Compress ZS Strengt		30 30
	•	•	•	•	•	•	•	•••	•••	•••	•••	•••	••••	25 Silengi		50
	322	314 •	307	300	311	311	385 •	611 •	681 ••	667 •••	1155	•••	•••			
1920x1080 @ 1 FPS	105	104 •	106 •	108 •	107 •	103 •	158 ••	302	481 •••	578 •••	1142	1331	1256			
1920x1080 @ 2 FPS	166	161	158 •	164 •	162 •	164 •	242 •	388 ••	522	582	1292	2382	2393			
1920x1080 @ 5 FPS :	295	292	290	295	285	288	316	408	564	735	1507	2346	4369			
1920x1080 @ 15 FPS	577	563	588	562	589	571	545	685	823	946	1159	2675				
1920x1080 @ 30 FPS	821	793	812	840	806	837	824	870	1023	1227	1591	2275				

test rate (80% of R_{nom}) test rate (50% of R_{nom}) d max. rate (80% of R_{nom}) d target rate (80% of R_{max}) s received s expected), R_{targ}] R_{targ}, R_{max}] R_{\max} , ∞) $\geq~90\%$ for $\,R_{100}\,,R_{80}\,,R_{50}$ $\geq~90\%$ for $R_{100}\,\text{,}\,R_{80}$ \geq 90% for R_{100} \geq 90% for no test rates

Device:	Axis Q8752-E
Scene:	scenel
Encoding:	h264 main abr
GOP Mode:	30 f
Compression:	30
ZS Strength:	30

Figure B.10: Stream quality analysis for Axis Q8752-E Zipstream Strength 30 test

	R _{nom} , R _{max} , R _{targ} (kbps)													
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	
	6	9	18	21	35	81	163	327	491	640		2560		
320x180 @ 1 FP	5 <u>6</u>	8	12	16 •	24	24 ••••	25	25	25	24	25	25	24	
320x180 @ 2 FP	8	10	21	23	29	42	42	39	41	43	43	34	42	
320x180 @ 5 FP	5 12 •	14	24	24	33	50	54	52	56	57	53	56	57	
320x180 @ 15 FP		30	27	35	41	77	123	134	129	126	125	126	132	
320x180 @ 30 FP		35	48	48	55	85	148	217	214	223	223	229	215	
480x270 @ 1 FP		11	18	18	26	50	51	52	54	50	50	54	50	
480x270 @ 2 FP		20	21	27	41	82	88	88	87	87	87	87	89	
480x270 @ 5 FP		19	31	30	48	74	112	111	112	119	111	117	120	
480x270 @ 15 FP	• 24	32	• 45	• 42	• 50	90	145	241	276	266	265	277	265	
480x270 @ 30 FP		44	• 54	• 64	• 82	102	153	283	360	425	473	353	443	
800x450 @ 1 FP		38	• 37	• 41	• 38	6 9	••• 112	154	156	159	156	157	165	
800x450 @ 2 FP	• 64	• 65	• 65	• 75	68	96	•• 165	283	269	282	275	283	271	
800x450 @ 5 FP	• 44	• 48	• 43	• 46	• 55	••• 84	••• 154	••• 283	•••• 397	•••• 388	•••• 397	•••• 395	401	
800x450 @ 15 FP	• 63	• 67	•	• 69	• 86	••• 166	••• 156	••• 311	••• 446	•••• 571	•••• 783	•••• 872	•••• 910	
800x450 @ 30 FP	•	101	109	• 101	•	187	238	302	458	••• 596	••••	1446	••••	
1280x720 @ 1 FP	•	97	96	97	100	103	•• 171	313	415	424	413	421	470	
	•	•	•	•	•	•	•	•••	•••	•••	••••	••••	••••	
1280x720 @ 2 FP	•	177	175	197 •	195 •	204	234 ••	323 •••	424 •••	552 •••	792	832	777	
1280x720 @ 5 FP	151	154	121	141	146	149	217	297	493	574	1161	1229	1314	
1280x720 @ 15 FP	206	198	185	200	206	235	291	358	432	575	1258	2150	2756	
1280x720 @ 30 FP		274	283	284	280	286	366	577	623	618		2353		
1920x1080 @ 1 FP	256	261	244	261	264	250	258	327	490	573		1117	1105	
1920x1080 @ 2 FP	498	501	518	502	490	478	499	572	588	605	1265		1998	
1920x1080 @ 5 FP		391	382	392	348	386	390	446	586	716		2534		
1920x1080 @ 15 FP	525	506	526	528	515	521	551	665	774	909		2543		
1920x1080 @ 30 FP	• 730	763	627	571	769	719	718	824	995	1172		2255		

R	:	measured average bitrate (kbps)
R_{nom}	:	nominal bitrate for link class (kbps)
R_{100}	:	net-limit test rate (100% of R_{nom})
R_{80}	:	net-limit test rate (80% of R_{nom})
R_{50}	:	net-limit test rate (50% of $R_{ t nom}$)
R_{max}	:	specified max. rate (80% of R_{nom})
R_{targ}	:	specified target rate (80% of R_{max})
Fr	:	# frames received
Fe	:	# frames expected
R	:	R \in [0, R _{targ}]
R	:	$R \in (R_{targ}, R_{max}]$
R	:	$R \in$ (R_{max} , ∞)
	:	${\tt F_r}{\div}{\tt F_e}~\geq~90\%$ for ${\tt R_{100}}$, ${\tt R_{80}}$, ${\tt R_{50}}$
•••	:	${\tt F_r}{\div}{\tt F_e}~\geq~90\%$ for ${\tt R_{100}}$, ${\tt R_{80}}$
	:	$F_{r} \div F_{e} \geq$ 90% for R_{100}
	:	$F_r \div F_e~\geq~90\%$ for no test rates
Device		Axis Q8752-E
Scene:	•	scenel
Encodi	na.	
GOP M	•	
Compr		
ZS Strer		
Lo onei	'9''	

Figure B.11: Stream quality analysis for Axis Q8752-E Zipstream Strength 50 test

				R _{nom} , R _{max} , R _{targ} (kbps)													
				9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	
				7	11	23	26	44	102	204	409	614	800	1600	3200	6400	
				6	9	18	21	35	81	163	327	491	640	1280	2560	5120	
320x180	Q	1	FPS	10 •	13 ••	15 ••	23 •	32 •	46	47	49	49	47	46	44	46	
320x180	Q	2	FPS	12	16 •	24	26	33	51	69	68	72	71	70	70	72	
320x180	Q	5	FPS	10 •	12	21	22	25	49	73	73	69	62	71	80	71	
320x180	Q	15	FPS	13	15 •	17 •	17	26 ••	55	109	142	141	138	154	133	143	
320x180	Q	30	FPS	19	21	27	28 •	31	70	112	222	243	258	217	216	249	
480x270	Q	1	FPS	18	19	25	28	38	66 ••	94	121	117	114	123	121	129	
480x270	0	2	FPS	18	20	30	34	42 ••	66	119	155	162	163	161	160	162	
480x270	Q	5	FPS	17	17	26	26	32 ••	52	106	150	151	141	145	146	149	
480x270	Q	15	FPS	20	23	28	29	44	60	95	243	254	267	283	250	272	
480x270	Q	30	FPS	30	34	37	41	54	63	114	275	378	466	443	473	461	
800x450	Q	1	FPS	33	33	43	45 •	56	100	143	202	386	357	386	395	383	
800x450	Q	2	FPS	43	44	54	56	73	118	168	330	428	460	551	521	540	
800x450	Q	5	FPS	52	50	53	60	64	95 ••	145	248	368	437	509	534	546	
800x450	Q	15	FPS	78	77	68	69	86	109	121	255	403	555	953	1051	1006	
800x450	Q	30	FPS	101	98 •	108	97 •	106	143	168	320	497	654	1313	1664	1644	
1280x720	Q	1	FPS	85	89	87	89	86	143	190	309	322	469	962	1006	960	
1280x720	Q	2	FPS	119	117	114	118	136	182	271	342	526	650	1182	1517	1464	
1280x720	Q	5	FPS	150	152	152	152	141	167	226	345	517	615	1025	1643	1720	
1280x720	Q	15	FPS	234	238	232	240	228	241	262	344	427	526	989	2375	3144	
1280x720	Q	30	FPS	293	295	291	287	285	296	358	425	503	679	1288		4287	
1920x1080	Q	1	FPS	212	209	212	210	213	210	249	366	451	513	1110	2228	2238	
1920x1080	Q	2	FPS	244	249	242	243	236	241	329	479	660	719	1262	2051	3367	
1920x1080	Q	5	FPS	366	332	340	352	358	333	368	490	617	697		2496		
1920x1080	Q	15	FPS	593	593	592	534	565	625	548	668	703	872	1116		3860	
1920x1080	Q	30	FPS	773	838	840	829	796	838	827	835	914	983	1344		4130	

$\begin{array}{c} \textbf{R} \\ \textbf{R}_{nom} \\ \textbf{R}_{100} \\ \textbf{R}_{80} \\ \textbf{R}_{50} \\ \textbf{R}_{max} \\ \textbf{R}_{targ} \\ \textbf{F}_{r} \\ \textbf{F}_{e} \end{array}$: nor : net : net : net : spe : spe : # fr	asured average bitrate (kbps) minal bitrate for link class (kbps) -limit test rate (100% of R_{nom}) -limit test rate (80% of R_{nom}) -limit test rate (50% of R_{nom}) ecified max. rate (80% of R_{nom}) ecified target rate (80% of R_{max}) ames received ames expected
R R 	: R (: R (: $F_r - $: $F_r - $: $F_r - $	$ \begin{array}{l} \in \ [0, \ R_{targ}] \\ \in \ (R_{targ}, \ R_{max}] \\ \in \ (R_{max}, \ \infty) \\ \div F_e \ \geq \ 90\% \ \mbox{for} \ R_{100}, R_{80}, R_{50} \\ \div F_e \ \geq \ 90\% \ \mbox{for} \ R_{100}, R_{80} \\ \div F_e \ \geq \ 90\% \ \mbox{for} \ R_{100} \\ \div F_e \ \geq \ 90\% \ \mbox{for} \ R_{100} \\ \div F_e \ \geq \ 90\% \ \mbox{for} \ no \ \mbox{test rates} \end{array} $
Device Scene: Encodii GOP M Compre ZS Strer	ng: ode: ession:	Axis Q8752-E scene 1 h264 main abr 1 f - 300 f 30 30

Figure B.12: Stream quality analysis for Axis Q8752-E Zipstream Strength 30 with Dynamic GOP Interval test

				τ	>	P	D		khne	•				R			
	9.6	14 4	28.8		R _{nom} , 56	128	256	arg (2000	4000	8000		:		isure inal k
	7	11	23	26	44	102	200	409	614			3200		R _{nom} R ₁₀₀	:		limit t
	6	9	18	21	35	81	163	327	491	640		2560		R ₈₀	:		imit t
320x180 @ 1 FPS	7	9	19	21	29	52	52	51	52	52	52	49	53	R ₅₀	:		imit t
320x180 @ 2 FPS	•	13	•• 19	23	• 38	86	93	94	89	86	91	86	86	R _{max}	:	spec	cified
320x180 @ 5 FPS	• 14	• 15	•• 23	•• 24	•• 41	••• 82	166	•••• 163	•••• 170	•••• 179	•••• 163	•••• 175	•••• 172	R _{targ}	:	spec	cified
320x180 @ 15 FPS	• 20	•	38	42	48	81	160	312	420	378	409	400	446	Fr	:		mes
	•	•	•	•	••	•••	•••	•••	••••	••••	••••	••••	••••	Fe	:	# fra	mes
320x180 @ 30 FPS	•	38	49 •	54 •	77 •	90 •••	161 •••	292 •••	471 •••	569 •••	627 ••••	688 ••••	681 ••••			D -	50
480x270 @ 1 FPS	9	10 •	19 •	21 •	32 ••	86 •	87 ••••	91 ••••	94 ••••	97 ••••	98 ••••	91 ••••	94 ••••	R		$\mathtt{R} \in$	
480x270 @ 2 FPS	10 •	16 •	25 •	24 •	39 •••	84	157 •••	161	164	156	152	156	172	R	:	$R \in$	(R _t
480x270 @ 5 FPS	20	23	29	31	40 ••	88	190	263	267	227	275	279	268	R	:	$\mathtt{R} \in$	(R_{rr})
480x270 @ 15 FPS	39	36	46	47	71	92	165	309	514	587	732	619	685		:	F_r ÷	F _e 2
480x270 @ 30 FPS	63	62	65	67	86	147	159	307	462	598	1006	1008	1086		:	F_r ÷	F _e 2
800x450 @ 1 FPS	21	21	20	20	29	92	133	260	276	235	267	311	269		:	F_r ÷	F _e 2
800x450 @ 2 FPS	26	26	32	32	47	87	180	370	492	450	501	434	508		:	F_r ÷	Fe >
800x450 @ 5 FPS	• 58	57	• 58	• 56	• 62	103	184	••• 376	441	718	796	897	813			_	
800x450 @ 15 FPS	• 109	• 109	• 106	• 111	• 98	•• 155	219	310	509	632	1313	2046	•••• 1928				
800x450 @ 30 FPS	• 166	•	• 166	• 160	•	•• 187	•• 311	••• 362	438	••• 599	1183	•••• 2481	•••• 3288	Device			Axis
1280x720 @ 1 FPS	53	•	• 53	• 50	• 44	68	163	••• 351	••• 405	••• 546	••• 652	••• 711	••••	Scene:			sce
	•	•	•	•	•	••	•••	•••	•	•••				Encodir	ng:		h26
1280x720 @ 2 FPS	64 •	64 •	66 •	65 •	69 •	118 •	166 ••	360	535 •••	714 •••	1277	••••	1285	GOP M	ode	e:	30 f
1280x720 @ 5 FPS	155 •	153	150	154 •	151	166 •	221	368	571	736	1144	2528	2283	Compre	essi	ion:	30
1280x720 @ 15 FPS	298 •	290 •	306	308 •	301 •	300	351	512	562	666	1353	2689	4956	ZS Stren	gth	1:	off
1280x720 @ 30 FPS	429 •	425	431	424 •	421 •	430 •	451 •	655 •	870 •	834	1191	2499	4163				
1920x1080 @ 1 FPS	123	122	124	123	125	124	169	364	438	583	1329	1938	1745				
1920x1080 @ 2 FPS	147	143	155	146	151	157	241	337	548	557	1378		3642				
1920x1080 @ 5 FPS	360	355	356	345	353	331	357	501	579	726	1477	2939	5394				
1920x1080 @ 15 FPS	736	731	732	767	767	770	759	750	897	1068			5982				
1920x1080 @ 30 FPS	1085	1068	1070	1063	1074	1078	1096	1058	1154	1259			5259				

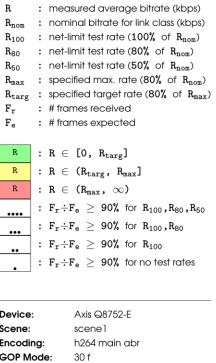


Figure B.13: Stream quality analysis for Axis Q8752-E TCP Streaming test

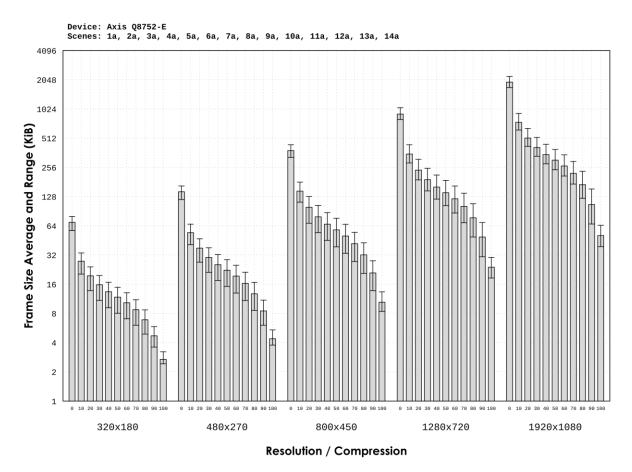


Figure B.14: Image sizes for Axis Q8752-E JPEG test

				F	ł _{nom} ,	R _{max}	, R _t	arg	(kbps	5)				R	:	measured average bitrate (kbps)
	9.6	14.4	28.8			128	256	512	768	1000	2000	4000	8000	R _{nom}	:	nominal bitrate for link class (kbps)
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R_{100}	:	net-limit test rate (100% of R_{nom})
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R ₈₀	:	net-limit test rate (80% of R_{nom})
512x288 @ 1 FPS	5	17	29	31	54	123	275	654	717	789	823	826	830	R_{50}	:	net-limit test rate (50% of R_{nom})
512x288 @ 2 FPS	11	15	30	34	48	107	204	434	659	857	1783	1723	1807	R_{max}	:	specified max. rate (80% of R_{nom})
512x288 @ 5 FPS	22	22	33	•• 36	•• 53	••	221	436	•• 642	•• 847	•• 1677	3311	4180	R_{targ}	:	specified target rate (80% of R_{max})
512x288 @ 15 FPS	57	• 58	•	• 57	••	•• 130	231	442	••• 649	•••	1675	•••	6608	F_r		# frames received
	•	•	•	•	•	••	••	••	•••	844	•••	•••	•••	F_{e}	:	# frames expected
512x288 @ 30 FPS	105	102	101	106	106	156	257	466	679 ••	866	1684	3339	6605			
768x432 @ 1 FPS	11	10	29	31	46	104	239	618	1048	1231	1685	1766	1782	R	:	$R \in [0, R_{targ}]$
768x432 @ 2 FPS	21	21	26	31	51	117	206	702	623	834	1655	3791		R	:	$R \in (R_{targ}, R_{max}]$
768x432 @ 5 FPS	44	45	43	45	57	108	208	436	638	817	1666	3350		R	:	$R \in$ (R_{max} , ∞)
768x432 @ 15 FPS	118	116	147	113	115	135	230	432	652	843	1648			••••	:	${\tt F_r}{\div}{\tt F_e}~\geq~90\%$ for ${\tt R_{100}},{\tt R_{80}},{\tt R_{50}}$
768x432 @ 30 FPS	210	202	210	287	204	209	262	478	667	863	1679	3373			1:	$F_{r} \div F_{e}~\geq~90\%$ for $R_{100}\text{,}R_{80}$
1280x720 @ 1 FPS	22	22	26	22	25	120	157	510	887				4284		1:	$F_{r} \div F_{e}$ \geq 90% for R_{100}
1280x720 @ 2 FPS	48	47	60	47	51	115	226	431	650	809	1603		6967	•	1:	$F_r \div F_e \ \geq \ 90\%$ for no test rates
1280x720 @ 5 FPS	99	95	97	96	97	123	209	408	617	807	1682	3356	6571	•	J	
1280x720 @ 15 FPS	241	247	234	249	249	246	265	456	642	830	1665	3281	6655			
1280x720 @ 30 FPS	• 417	• 441	• 440	• 446	• 441	• 447	•• 443	•• 493	•• 711	891	1714			Device	:	Bosch 7100i
1920x1080 @ 1 FPS	• 48	• 57	• 46	• 49	• 52	• 114	• 234	401	•• 557	897	2244	4941	6733	Scene		scenel
1920x1080 @ 2 FPS	• 98	101	102	• 99	133	106	232	435	•• 581	• 825	1517	3059	• 7340	Encod	ng	
1920x1080 @ 5 FPS	201	205	196	202	203	205	241	438	606	••	••	••	•	Frame		
	•	•	•	•	•	•	••	••	•••	839 •••	1619 •••	•••	6569 ••	GOP N	lod	e: 30 f
1920x1080 @ 15 FPS	492 •	509 •	515 •	518 •	522 •	490 •	506 •	474 ••	663	843	1615	3298	6531			
1920x1080 @ 30 FPS	912 •	853	917	900	867	1105	929	902 •	826	967	1643	3391	6706			

Figure B.15: Stream quality analysis for Bosch MIC inteox 7100i Baseline (H.264 High) test

				F	R _{nom} ,	R _{max}	, R _t	arg	(kbps	5)				R	:	measured average bitrate (kbps)
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	R_{nom}	:	nominal bitrate for link class (kbps)
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R_{100}	:	net-limit test rate (100% of $R_{\tt nom})$
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R ₈₀		net-limit test rate (80% of $R_{ t nom}$)
512x288 @ 1 FPS	6 •	13	36	30	5	139	264	531	680	815	855	852	817	R ₅₀		net-limit test rate (50% of R_{nom})
512x288 @ 2 FPS	8	16	34	36	54	109	212	597	666	856	1649	1630	1647	R _{max}		specified max. rate (80% of R_{nom})
512x288 @ 5 FPS	16	18	33	37	54	112	221	437	644	834	1670	3331	4009	R_{targ}		specified target rate (80% of R_{max}
512x288 @ 15 FPS	41	41	• 47	• 52	•• 69	•• 131	239	••• 448	••• 649	••• 840	•••	••• 3313	6657	F _r Fe		# frames received # frames expected
512x288 @ 30 FPS	•	•	• 76	• 76	• 95	•• 152	•• 263	•• 471	••• 676	••• 874	•••	3335	6658	г _е	·	# lidines expected
	•	•	•	•	•	•	••	••	••	••	•••	•••	•••	R		
768x432 @ 1 FPS	7	7 •	31	32 ••	61 ••	126	244 •	527 ••	710	875 ••	1627	1827	1811			$R \in [0, R_{targ}]$
768x432 @ 2 FPS	13	13	30	35	51 ••	121	224	414	665	906	1682	3442	3515	R	:	$R \in (R_{targ}, R_{max}]$
768x432 @ 5 FPS	26	27	32	36	58	115	217	431	648	847	1676	3325	6632	R	:	$ extbf{R} \in (extbf{R}_{ extbf{max}}, \infty)$
768x432 @ 15 FPS	65	62	66	67	73	133	237	436	656	858	1667		6618		:	$F_{r} \div F_{e} \geq 90\%$ for R_{100} , R_{80} , R_{50}
768x432 @ 30 FPS	114	116	118	114	118	162	268	466	690	861	1694	3341	6615		:	${ m F_r}{\div}{ m F_e}$ \geq 90% for ${ m R_{100}}$, ${ m R_{80}}$
1280x720 @ 1 FPS	•	13	• 13	• 16	• 49	• 108	•• 196	•• 539	•• 719	•• 868	••• 1711	••• 3312	4322	•••		$F_r \div F_e > 90\%$ for R_{100}
1280x720 @ 2 FPS	• 25	•	•• 26	• 26	•• 51	•••	• 246	•• 430	•• 659	•• 906	••	3678	6698	••		
	•	•	•	•	••	••	••		••	••	••	••	•••	•	•	$\mathrm{F_r}{\div}\mathrm{F_e}~\geq~90\%$ for no test rates
1280x720 @ 5 FPS	48 •	51 •	52 •	49 •	51 •	121	223	440 ••	647 •••	850			6694			
1280x720 @ 15 FPS	118 •	110	122	118	120	140 •	242	458 ••	646	831	1689	3338	6676			
1280x720 @ 30 FPS	204	193	230	207	209	211	286	462	684	924	1755	3373	6686	Device	:	Bosch 7100i
1920x1080 @ 1 FPS	28	26	28	27	26	89	210	493	711	876	1744	3466	6621	Scene:		scenel
1920x1080 @ 2 FPS	• 50	• 53	• 51	• 54	•• 50	124	••• 250	466	•• 646	•• 861	•• 1724	•• 3591	7246	Encodii		
1920x1080 @ 5 FPS	103	• 99	•	• 101	102	•• 113	231	424	637	•• 816	••	•••	6575	Frame I		
	•	•	•	•	•	••	••	•••	•••		•••		•••	GOP M	od	de: 30 f
1920x1080 @ 15 FPS	210	237	238	235	229	237	248 ••	450 ••	659 ••	857	1702	3342	6637			
1920x1080 @ 30 FPS	378 •	399 •	467	364	389 •	394 •	399 •	502	711	922	1682	3368	6727			

Figure B.16: Stream quality analysis for Bosch MIC inteox 7100i H.265 Main Profile test

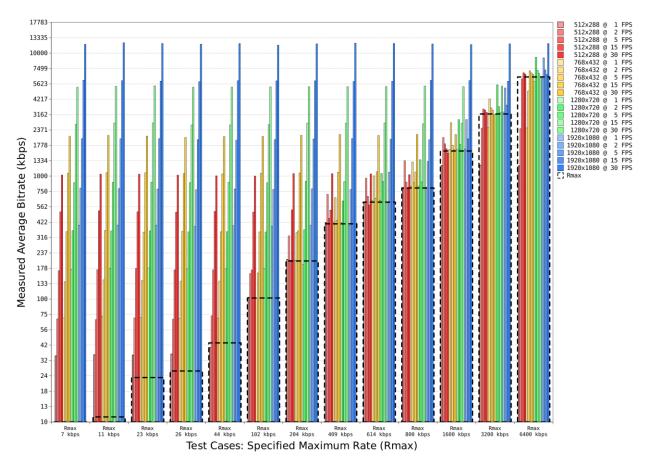


Figure B.17: Average bitrates for Bosch MIC inteox 7100i M-JPEG test

				F	ł _{nom} ,	R _{max}	, R _t	arg	(kbps	5)				R	:	measured average bitrate (kbps)
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	R _{nom}	:	nominal bitrate for link class (kbps)
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R ₁₀₀	:	net-limit test rate (100% of $R_{\tt nom})$
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R ₈₀	:	net-limit test rate (80% of $R_{\tt nom}$)
512x288 @ 1 FPS	8	15 •	23	29 •	31	147 •••	189 •	597 •	721	797 ••	850	849	848	R ₅₀		net-limit test rate (50% of R_{nom})
512x288 @ 2 FPS	12	16	26	29	44	101	204	411	600	804	1798	1809	1799	R _{max}		specified max. rate (80% of R_{nom})
512x288 @ 5 FPS	23	24	40	36	53	110	217	428	641	835	1656	3314	4084	R _{targ}		specified target rate (80% of R_{max})
512x288 @ 15 FPS	• 57	• 53	• 55	• 57	•• 70	•• 132	•• 230	446	••• 659	847	1666	3317	6622	F _r		# frames received
512x288 @ 30 FPS	• 94	• 97	• 98	• 95	•	•• 156	•• 259	•• 464	••• 679	••• 874	1688	••• 3339	••• 6656	Fe	:	# frames expected
	•	•	•	•	•	•	••	••	••	••	•••		•••	Б		
768x432 @ 1 FPS	13	14	28	29 •	42 •	64 ••	218 ••	668 •	1074	1227	1695	1788	1879	R		$R \in [0, R_{targ}]$
768x432 @ 2 FPS	23	24	28	31	46	109	187	413	593	753	1689	3602	3766	R		$R \in (R_{targ}, R_{max}]$
768x432 @ 5 FPS	47	47	46	47	57	110	216	429	642	832	1666	3305	6596	R	:	$\mathtt{R} \in (\mathtt{R}_{\mathtt{max}}, \infty)$
768x432 @ 15 FPS	112	113	114	109	110	136	237	447	653	853	1679	3333	6561		:	$F_{r} \div F_{e} \geq 90\%$ for R_{100} , R_{80} , R_{50}
768x432 @ 30 FPS	199	189	198	199	198	•• 198	•• 260	•• 475	••• 682	••• 868	••• 1703	••• 3340			:	$F_r \div F_e > 90\%$ for R_{100}, R_{80}
1280x720 @ 1 FPS	• 28	•	• 29	• 48	• 50	• 36	•• 140	•• 671	•• 792	•• 1188	2493	3397	4331	•••		$F_r \div F_e \ge 90\%$ for R_{100}
1280x720 @ 2 FPS	52	• 50	50	• 54	• 53	111	•• 199	377	607	755	•	•	6983	••		
	•	•	•	•	•	••	••	••	••	••	••	•	•	•	:	$\mathrm{F_r}{\div}\mathrm{F_e}~\geq~90\%$ for no test rates
1280x720 @ 5 FPS	100	101	97	98 •	100	125	215	420	625	825	1664	3305	6596 ••			
1280x720 @ 15 FPS	237	236	236	236	238	228	261	445	637	845	1652	3298	6631			
1280x720 @ 30 FPS	398	396	474	523	397	402	408	496	691	881	1676	3361	6665	Device		Bosch 7100i
1920x1080 @ 1 FPS	60	67	68	• 72	61	61	191	273	•• 510	•• 791		4537	6627	Scene:		scenel
1920x1080 @ 2 FPS	• 111	• 101	108	• 113	• 112	••	204	385	618	•	•	• 3132	• 6975	Encodir	ng:	H.264
1920x1080 @ 5 FPS	198	212	207	201	208	200	240	••	••	•• 797	•	••	6575	Frame I		
	•	•	•	•	•	•	••	429 ••	631 •••		•••	•••	••	GOP M	od	e: 5 s
1920x1080 @ 15 FPS	487 •	481 •	472	516 •	487 •	487 •	490 •	514 ••	676	857	1602	3331	6568			
1920x1080 @ 30 FPS	809	832	770	793 •	808 •	818 •	812	780 •	799 •	947 ••	1712	3399	6522			

Figure B.18: Stream quality analysis for Bosch MIC inteox 7100i Varying GOP Interval with Frame Rate test

				F	ł _{nom} ,	R _{max}	, R _t	arg	(kbps	5)				R	:	measured average bitrate (kbps)
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	R_{nom}	:	nominal bitrate for link class (kbps)
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R_{100}	:	net-limit test rate (100% of $R_{\tt nom})$
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R_{80}	:	net-limit test rate (80% of R_{nom})
512x288 @ 1 FPS	10	13	26	21	35	70 ••	316	616	717	796	832	838	827	R_{50}	:	net-limit test rate (50% of R_{nom})
512x288 @ 2 FPS	11	14	28	29	50	108	356	424	642	842	1740	1677	1736	R _{max}		specified max. rate (80% of R_{nom})
512x288 @ 5 FPS	22	22	32	35	53	110	215	423	641	832	1668	3285	4023	R_{targ}		specified target rate (80% of R_{max})
512x288 @ 15 FPS	• 55	• 54	• 54	• 55	•• 71	•• 129	•• 226	••• 448	••• 655	••• 845	1666	••• 3311	6606	F_r		# frames received
512x288 @ 30 FPS	98	95	99	•	•	157	261	456	670	868	•••	3329	•••	F_{e}	:	# frames expected
	•	•	•	•	•	•	••	••	••	••	•••		•••	D		
768x432 @ 1 FPS	11	10	27	32	44	95 •	238	633 •	1047	1247	1652	1763	1758 ••••	R		$R \in [0, R_{targ}]$
768x432 @ 2 FPS	21	20	26	31	52	110	212	755	606	803	1681	3679	3723	R	:	$R \in (R_{targ}, R_{max}]$
768x432 @ 5 FPS	42	42	42	41	55	110	213	430	631	828	1636	3270	6646	R	:	R \in (R _{max} , ∞)
768x432 @ 15 FPS	106	106	109	108	104	135	234	438	655	851	1665	3322	6590		:	${ m F_r}{ m \div}{ m F_e}~\geq~90\%$ for ${ m R_{100}}$, ${ m R_{80}}$, ${ m R_{50}}$
768x432 @ 30 FPS	• 195	• 193	• 191	•	• 193	•• 183	•• 258	480	••• 657	••• 890	••• 1695	••• 3337	6596	••••		$F_r \div F_e > 90\%$ for R_{100}, R_{80}
1280x720 @ 1 FPS	• 24	•	• 23	• 22	•	• 129	••	•• 491	•• 917	•• 1214	••• 2415	2400	4278	•••		
	•	•	•	•	•	•	••	••	•	••	•	••	•••	••		$F_r \div F_e \geq$ 90% for R_{100}
1280x720 @ 2 FPS	45 •	43 •	44	48 •	44 •	109 ••	210 ••	416 ••	625 ••	830 ••	1585 ••	••	6963 ••	•	:	${ m F_r}{\div}{ m F_e}~\geq~90\%$ for no test rates
1280x720 @ 5 FPS	88	90	90	87	91 •	116	217	427	635	836	1634	3256	6493			
1280x720 @ 15 FPS	225	228	225	231	269	232	263	450	675	852	1659	3298	6609			
1280x720 @ 30 FPS	392	395	404	403	392	468	411	496	681	862	1721	3294	6637	Device	:	Bosch 7100i
1920x1080 @ 1 FPS	48	47	44	• 53	• 47	• 122	• 71	339	667	970	2300	4829	6 700	Scene:		scenel
1920x1080 @ 2 FPS	• 96	• 92	• 92	• 87	• 94	•	•	•	•••	•• 830	• 1659	•	•	Encodi	ng:	H.264
	•	•	•	•	•	••	••	••	••	•••	••	••	•	Frame	Мо	de: IBP
1920x1080 @ 5 FPS	186 •	181	188	199 •	176	185 •	231	429 ••	616 •••	847 •••	1642	3279	6448 ••	GOP M	od	e: auto f - auto f
1920x1080 @ 15 FPS	444 •	462	439	471	558 •	468 •	465 •	504	652	860	1689	3352	6626			
1920x1080 @ 30 FPS	771	809	796	811	795 •	782 •	1168	809	801	917	1731	3387	6668			

Figure B.19: Stream quality analysis for Bosch MIC inteox 7100i Dynamic GOP Interval test

				F	ł _{nom} ,	R _{max}	, R.	arg	(kbps	5)				R	:	measured average bitrate (kbps)				
	9.6	14.4	28.8			128	256		-		2000	4000	8000	R _{nom}		nominal bitrate for link class (kbps)				
	7	11	23	26	44	102	204	409	614	800	1600	3200	6400	R_{100}	:	: net-limit test rate (100% of $R_{\mbox{nom}})$				
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R_{80}						
512x288 @ 1 FPS	7	15	6	31	54	117	310	650	802	869	920	910	884	R_{50}	:	net-limit test rate (50% of R_{nom})				
512x288 @ 2 FPS	12	17	32	35	52	110	223	429	645	852			1795	R_{max}		specified max. rate (80% of R_{nom})				
512x288 @ 5 FPS	26	26	37	39	56	115	227	448	664	862	1715	3395	4236	R_{targ}		specified target rate (80% of R_{max})				
512x288 @ 15 FPS	• 64	• 65	• 63	• 66	•	•• 134	•• 244	•• 466	•• 670	••• 866	1706	3385	6812	Fr		# frames received				
512x288 @ 30 FPS	•	•	•	•	•	••	••	••	••	••	•••	•••	•••	F_{e}	:	# frames expected				
	•	119	119	118 •	119 •	170	278	487 ••	710	898 ••	1739	•••	•••							
768x432 @ 1 FPS	12	12	32	34	49 •	127	219	615 •	1081	1270	1855	1953	1957	R	:	$R \in [0, R_{targ}]$				
768x432 @ 2 FPS	23	22	29	31	56	117	228	450	652	825	1706	3768	3844	R	:	$\mathtt{R}~\in~(\mathtt{R}_{\mathtt{targ}},~\mathtt{R}_{\mathtt{max}}]$				
768x432 @ 5 FPS	49	48	47	49	61	120	223	447	662	858	1713	3385	6760	R	:	R \in (R _{max} , ∞)				
768x432 @ 15 FPS	119	125	124	120	119	141	248	458	676	873			6726		:	$F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100},R_{80},R_{50}				
768x432 @ 30 FPS	221	225	229	226	222	220	278	489	701	929	1727		6799		:	$F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100},R_{80}				
1280x720 @ 1 FPS	26	24	26	27	59	103	264	416	856	1300			4685	••	:	$F_r \div F_e~\geq$ 90% for R_{100}				
1280x720 @ 2 FPS	47	47	49	47	50	125	239	448	659	837	1592		7055		:	$F_r \div F_e~\geq~90\%$ for no test rates				
1280x720 @ 5 FPS	105	103	100	101	105	119	234	444	672	860		3428								
1280x720 @ 15 FPS	258	261	251	259	254	244	259	455	685	843	1692	3413	6742							
1280x720 @ 30 FPS	435	464	462	444	466	455	457	•• 516	•• 702	902			•• 6828	Device	:	Bosch 7100i				
1920x1080 @ 1 FPS	52	• 53	54	• 55	5 1	•	• 271	•• 541	5 19	•• 881		4990	7171	Scene:		scenel				
1920x1080 @ 2 FPS	•	101	98	• 105	• 101	• 102	236	438	657	844	1671	• 3047	6675	Encodi	ng					
1920x1080 @ 5 FPS	214	211	• 216	214	214	215	232	•• 445	683	•• 838	••	••	6773	Frame						
	•	•	•	•	•	•	••	••	••	••	•••		•••	GOP M	od	le: 30 f				
1920x1080 @ 15 FPS	535 •	515 •	532	533 •	503 •	529 •	528 •	512	691	857	1668 ••	3421	6790							
1920x1080 @ 30 FPS	944 •	942	939	887	927 •	914 •	864	916	923 •	993 ••	1704	3372	6844							

Figure B.20: Stream quality analysis for Bosch MIC inteox 7100i TCP Streaming test

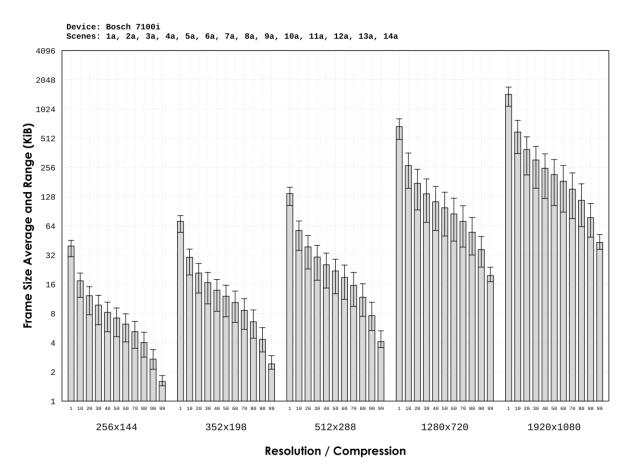


Figure B.21: Image sizes for Bosch MIC inteox 7100i JPEG test

					R _{nom}	, R _{ta}	arg ((bps)	
				512	768	1000	2000	4000	8000
				327	491	640	1280	2560	5120
352x240	0	1	FPS	243 •••	241	238	254	256	240
352x240	0	2	FPS	340	447 •••	426	414 ••••	422	431
352x240	0	5	FPS	340 •••	512 •••	673 •••	886	877	890
352x240	0	15	FPS	344	517 •••	673 •••	1344	2223	2220
352x240	0	30	FPS	347	523	677	1348	2717	4057
720x480	0	1	FPS	325	495 •••	690	1046	1034	1086
720x480	0	2	FPS	287 •••	437 •••	616	1334	1901	1824
720x480	0	5	FPS	318 •••	465 •••	611 •••	1330	2709	4011
720x480	0	15	FPS	355	530	688 •••	1365	2719	5384
720x480	0	30	FPS	354	518 •••	674 •••	1363	2691	5433
1280x720	0	1	FPS	327	491 •••	622	1300	2587	2595
1280x720	0	2	FPS	290	442 •••	554	1126	2640	4584 •••
1280x720	0	5	FPS	332	473	598	1152	2600	5367
1280x720	Q	15	FPS	354	529	662	1375	2679	5429
1280x720	Q	30	FPS	350	517	675 •••	1344	2719	5420
1920x1080	0	1	FPS	324	476	594	1265	2595	5383
1920x1080	0	2	FPS	288	429 •••	562	1139	2268	5420
1920x1080	0	5	FPS	328	498 •••	620	1174	2240	5204
1920x1080	0	15	FPS	381	528	663	1330	2731	5366
1920x1080	0	30	FPS	529	586	669	1367	2682	5423

R	: measured average bitrate (kbps)
$R_{\texttt{nom}}$: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of $R_{\tt nom})$
R_{80}	: net-limit test rate (80% of R_{nom})
R_{50}	: net-limit test rate (50% of R_{nom})
R_{max}	: specified max. rate (80% of $R_{\tt nom})$
$\mathtt{R}_{\mathtt{targ}}$: specified target rate (80% of $R_{\text{max}})$
F_r	: # frames received
F_{e}	: # frames expected
R	: R \in [O, R _{targ}]
R	: R \in (t, 1.25t]
R	: R \in (1.25t, ∞)
••••	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100},R_{80},R_{50}
•••	: $F_{r} \div F_{e}~\geq~90\%$ for $R_{100}\text{,}R_{80}$
••	: $F_{r} \div F_{e}~\geq~90\%$ for R_{100}
•	: $F_r \div F_e \geq$ 90% for no test rates
Dovioo	

Device:	Cohu 4261
Scene:	scenel
Encoding:	H264 Main CBR
GOP Mode:	30 f
Constrained:	Off

Figure B.22: Stream quality analysis for CostarHD RISE 4260HD Baseline (H.264 Main) test

					R_{nom}	, R _{ta}	arg ((bps)	
				512	768	1000	2000	4000	8000
				327	491	640	1280	2560	5120
352x240	0	1	FPS	262 •••	258	258	267	252	232
352x240	0	2	FPS	343 •••	424 •••	422	431 ••••	444 ••••	431 ••••
352x240	0	5	FPS	342 •••	514 •••	673	910 ••••	916 ••••	922 ••••
352x240	0	15	FPS	353	526	686	1364	2299	2215
352x240	0	30	FPS	353	522 •••	678 •••	1361	2715	4049 •••
720x480	0	1	FPS	319 •••	526	681	991 •••	1094	1003
720x480	0	2	FPS	303	475 •••	607 •••	1313	1824	1892 ••••
720x480	0	5	FPS	318 •••	497 •••	612 •••	1325	2686	3962
720x480	0	15	FPS	355	530	687 •••	1363	2676	5417
720x480	0	30	FPS	347	527	688 •••	1365	2714	5426
1280x720	0	1	FPS	338	493 •••	637 •••	1327	2438	2700
1280x720	0	2	FPS	301	443 •••	575	1157	2630	4729
1280x720	0	5	FPS	298 •••	468	594	1143	2584	5401
1280x720	0	15	FPS	355	529	689	1336	2727	5426
1280x720	Q	30	FPS	360	519	685	1362	2715	5427
1920x1080	0	1	FPS	330	495 •••	595 •••	1233	2483	5388
1920x1080	0	2	FPS	285	440 •••	550	1115	2286	5427
1920x1080	0	5	FPS	297	479 •••	633	1166	2231	5198
1920x1080	0	15	FPS	376	529	687	1372	2728	5359
1920x1080	0	30	FPS	536	586	696	1339	2716	5420

$\begin{array}{c} R \\ R_{nom} \\ R_{100} \\ R_{80} \\ R_{50} \\ R_{max} \\ R_{targ} \\ F_r \\ F_e \end{array}$	 measured average bitrate (kbps) nominal bitrate for link class (kbps) net-limit test rate (100% of R_{nom}) net-limit test rate (80% of R_{nom}) net-limit test rate (50% of R_{nom}) specified max. rate (80% of R_{nom}) specified target rate (80% of R_{max}) # frames received # frames expected
R R R	: $R \in [0, R_{targ}]$: $R \in (t, 1.25t]$: $R \in (1.25t, \infty)$
 	: $F_r \div F_e \ge 90\%$ for R_{100} , R_{80} , R_{50} : $F_r \div F_e \ge 90\%$ for R_{100} , R_{80} : $F_r \div F_e \ge 90\%$ for R_{100} : $F_r \div F_e \ge 90\%$ for no test rates
Device	: Cohu 4261

Device:	Cohu 4261
Scene:	scenel
Encoding:	H264 High CBR
GOP Mode:	30 f
Constrained:	Off

Figure B.23: Stream quality analysis for CostarHD RISE 4260HD H.264 High Profile test

					R_{nom}	, R _{ta}	arg ((bps)	
				512	768	1000	2000	4000	8000
				327	491	640	1280	2560	5120
352x240	Q	1	FPS	292 •••	272 •	275 •	267	277 •	286
352x240	0	2	FPS	343 ••	455 •••	468	469 ••	480 •	465 •
352x240	0	5	FPS	347 •••	516 •	680	946 •	916 •	904 ••••
352x240	0	15	FPS	345 ••	519 •	676 ••	1351 •	2261 ••	2271 •
352x240	0	30	FPS	348 ••	522 •	678 •••	1350	2700 •	3861 ••
720x480	0	1	FPS	325	468 •••	669 •	1160	1061	1102
720x480	Q	2	FPS	307	451 •••	594	1324	1966	1906 ••
720x480	0	5	FPS	318 •••	485 •	620 •	1342	2693	4042
720x480	0	15	FPS	343	517 •••	674 •••	1346	2702	5397
720x480	0	30	FPS	347	521	676	1350	2698	5410
1280x720	0	1	FPS	347 ••	495 ••	647 •••	1223	2775	2731
1280x720	0	2	FPS	316	474 •••	607 •••	1178	2682	4943
1280x720	0	5	FPS	322	480 •••	614 •••	1189	2700	5355
1280x720	0	15	FPS	343	513	667	1340	2688	5372
1280x720	0	30	FPS	344	519 •	674	1346	2689	5394
1920x1080	Q	1	FPS	351	514	647 •••	1243	2669	5376
1920x1080	0	2	FPS	319	474 •••	611	1198	2436	5464
1920x1080	0	5	FPS	331	504	645 •••	1162	2588	5306
1920x1080	0	15	FPS	365	511	665	1341	2668	5525
1920x1080	0	30	FPS	446	547	682	1360	2711	4955

R	: measured average bitrate (kbps)
R_{nom}	: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of $R_{\tt nom})$
R_{80}	: net-limit test rate (80% of R_{nom})
R_{50}	: net-limit test rate (50% of R_{nom})
R_{max}	: specified max. rate (80% of $R_{\tt nom})$
$\mathtt{R}_{\mathtt{targ}}$: specified target rate (80% of $R_{\tt max})$
F_r	: # frames received
Fe	: # frames expected
R	: R \in [O, R _{targ}]
R	: R \in (t, 1.25t]
R	: R \in (1.25t, ∞)
••••	: $F_{\tt r} \div F_{\tt e}~\geq~90\%$ for R_{100},R_{80},R_{50}
•••	: $F_{\tt r} \div F_{\tt e}~\geq~90\%$ for $R_{100}\text{,}R_{80}$
••	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100}
•	: $F_r \div F_e \geq$ 90% for no test rates
Device	Cobu 4261

Cohu 4261
scenel
H264 Main CBR
5 s
Off

Figure B.24: Stream quality analysis for CostarHD RISE 4260HD Varying GOP Interval with Frame Rate test

					R_{nom}	, R _{ta}	arg (kbps)	
				512	768	1000	2000	4000	8000
				327	491	640	1280	2560	5120
352x240	0	1	FPS	252 •••	240	249	251	242	253
352x240	0	2	FPS	345	424 •••	439	414 ••••	419	440
352x240	0	5	FPS	342	512	672 •••	894	882	889
352x240	0	15	FPS	352	520	674 •••	1353	2218	2225
352x240	0	30	FPS	352	529	684 •••	1360	2709	4070
720x480	0	1	FPS	321	514 •••	680	1016	1076	1044
720x480	Q	2	FPS	305	464	660	1333	1826	1867
720x480	0	5	FPS	339	509	637 •••	1327	2682	3789
720x480	Q	15	FPS	349	517	687 •••	1361	2710	4570
720x480	0	30	FPS	347	519	680	1348	2716	5395
1280x720	Q	1	FPS	330	486 •••	622	1161	2594	2508
1280x720	Q	2	FPS	303	438	569	1135	2651	4705
1280x720	Q	5	FPS	334	455	613	1157	2549	5429
1280x720	0	15	FPS	347	523	687	1365	2716	5421
1280x720	0	30	FPS	355	528	686	1363	2719	5429
1920x1080	0	1	FPS	338	492 •••	611	1233	2517	5331
1920x1080	0	2	FPS	289	432	561	1097	2279	5312
1920x1080	0	5	FPS	297	501	623	1159	2219	5166
1920x1080	0	15	FPS	376	529	684	1358	2702	5419
1920x1080	0	30	FPS	532	575	685	1365	2720	5425

R	· maggiurad guaraga bitrata (kbas)								
	: measured average bitrate (kbps)								
R_{nom}	: nominal bitrate for link class (kbps)								
R_{100}	: net-limit test rate (100% of R_{nom})								
R_{80}	: net-limit test rate (80% of $R_{ t nom}$)								
R_{50}	: net-limit test rate (50% of R_{nom})								
R_{max}	: specified max. rate (80% of $R_{\tt nom})$								
$\mathtt{R}_{\mathtt{targ}}$: specified target rate (80% of $R_{\text{max}})$								
Fr	: # frames received								
F_{e}	: # frames expected								
R	: R \in [O, R _{targ}]								
R	: R \in (t, 1.25t]								
R	: R \in (1.25t, ∞)								
••••	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100},R_{80},R_{50}								
•••	: $F_r \! \div \! F_e \geq 90\%$ for R_{100} , R_{80}								
••	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100}								
•	: $F_r \div F_e \geq$ 90% for no test rates								
Device	: Cohu 4261								
Scene:	scenel								

Device:	CONU 4201
Scene:	scenel
Encoding:	H264 Main CBR
GOP Mode:	30 f
Constrained:	On

Figure B.25: Stream quality analysis for CostarHD RISE 4260HD Constrained Mode test

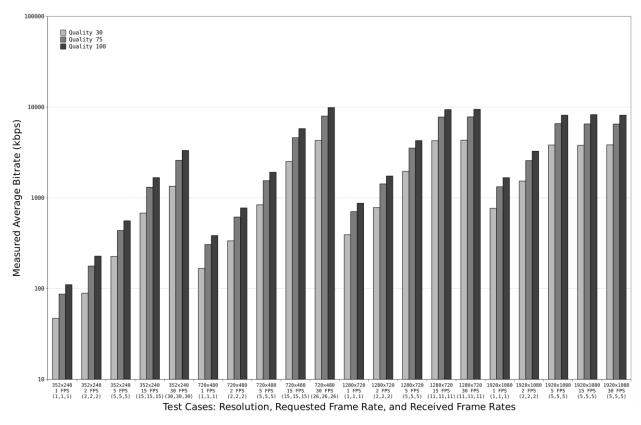


Figure B.26: Average bitrates for CostarHD RISE 4260HD M-JPEG test

					R_{nom}	, R _{ta}	arg ((bps)	
				512	768	1000	2000	4000	8000
				327	491	640	1280	2560	5120
352x240	0	1	FPS	264 •••	257	268	250	254	262
352x240	0	2	FPS	343 •••	438 •••	437	459 ••••	443 ••••	463
352x240	0	5	FPS	372 •••	555 •••	702	975 ••••	973 ••••	980 ••••
352x240	0	15	FPS	373 •••	557 •••	721 •••	1435	2464	2511
352x240	0	30	FPS	379 •••	572	725 •••	1438	2851	4207
720x480	0	1	FPS	332	516 •••	676 •••	1053	1082	1103
720x480	0	2	FPS	297	458 •••	627 •••	1381	1939	1887
720x480	Q	5	FPS	348 ••	486 •••	648 •••	1413	2799	4228
720x480	Q	15	FPS	222	555	723	1429	2845	5629
720x480	0	30	FPS	57	561	727	1433	2854	5675
1280x720	Q	1	FPS	137	485 •••	642	1331	2812	2587
1280x720	Q	2	FPS	30	436	567	1147	2130	4750
1280x720	Q	5	FPS	196 •	516	649	1247	2655	5505
1280x720	0	15	FPS	78 •	555	703	1426	1315	5592
1280x720	0	30	FPS	66 ••	561	727	1431	697	5653
1920x1080	0	1	FPS	2	483	614 •••	1234	2257	5429
1920x1080	0	2	FPS	75	459 •••	561	1137	1201	5432
1920x1080	0	5	FPS	103 •	522	691	1203	2534	5587
1920x1080	0	15	FPS	63 •	554	719	1397	2831	5642
1920x1080	0	30	FPS	51	633	716	1420	2835	5646

R	: measured average bitrate (kbps)
R_{nom}	: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of $R_{\hbox{nom}})$
R_{80}	: net-limit test rate (80% of R_{nom})
R_{50}	: net-limit test rate (50% of R_{nom})
R_{max}	: specified max. rate (80% of $R_{\tt nom})$
$\mathtt{R}_{\mathtt{targ}}$: specified target rate (80% of $R_{\text{max}})$
F_r	: # frames received
F_{e}	: # frames expected
R	: R \in [O, R _{targ}]
R	: R \in (t, 1.25t]
R	: R \in (1.25t, ∞)
••••	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100},R_{80},R_{50}
•••	: $F_{r} \div F_{e}~\geq~90\%$ for $R_{100}\text{,}R_{80}$
••	: $F_{r} \div F_{e}~\geq~90\%$ for R_{100}
•	: $F_r \div F_e~\geq~90\%$ for no test rates
Device	Cohu 4261
Scene	scenel

Device:	Cohu 4261
Scene:	scenel
Encoding:	H264 Main CBR
GOP Mode:	30 f
Constrained:	Off

Figure B.27: Stream quality analysis for CostarHD RISE 4260HD TCP Streaming test

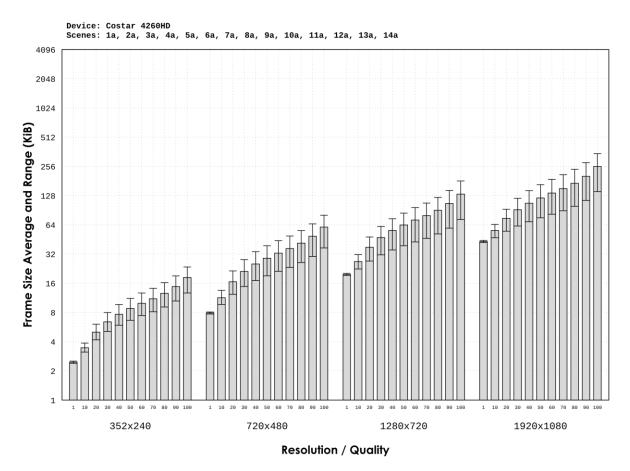


Figure B.28: Image sizes for CostarHD RISE 4260HD JPEG test

					Rn	_{om} ,]	Rtarg	(kbp	os)					R	:	measured (
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	R_{nom}	:	nominal bit
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	R ₁₀₀	:	net-limit tes
320x240 @ 1 FPS	7	8	18	22	35	77	163	334	464	537	540	560	560	R ₈₀	:	net-limit tes
320x240 @ 2 FPS	15	16	19	23	37	86	168	340	516	670		1007	1018	R_{50}	:	net-limit tes
320x240 @ 5 FPS	27	29	28	27	••• 37	84	••• 171	••• 341	••• 511	665	1329			R _{max}		specified m
320x240 @ 15 FPS	• 62	• 60	• 58	• 56	51	••• 87	••• 168	••• 338	••• 510	662	1320	2641	5269	R _{targ} F _r		specified to # frames re
320x240 @ 30 FPS	• 102	• 103	• 67	• 94	• 84	104	••• 176	••• 342	••• 511	667	1324	••• 2642	•••	F _r F _e		# frames ex
640x240 @ 1 FPS	• 19	• 19	• 19	• 19	• 32	•••	••• 169	••• 337	••• 485	••• 652	••• 1156	••• 1222	••• 1201	- 6		
640x240 @ 2 FPS	39	• 32	34	34	40	85	167	335	509	651	1314	2407	2314	R	:	$R \in [0, 1]$
	•	•	•	•	••	•••	•••	•••	••	•••	•••	•••	••••	R	:	$R \in (t,$
640x240 @ 5 FPS	76	64	63 •	66 •	62 •	89	168	339	512	661	•••	2639	•••	R		$R \in (1.2)$
640x240 @ 15 FPS	•	146 •	145 •	140 •	138 •	136 •	178 •••	338	508 •••	661	1318	2636	•••			
640x240 @ 30 FPS	267	264	246	31	249 •	219	330	353 •••	511 •••	666	1323	2641	5267	••••		$F_r \div F_e \geq$
704x480 @ 1 FPS	29 •	31	31 •	29 •	33 ••	86	169 ••	320	454 •••	631	1278	2262	2387	•••	:	$\mathtt{F_r} \div \mathtt{F_e} \geq$
704x480 @ 2 FPS	56	53	56	55	56	84	173	340	506	683	1327	2703	4647		:	${\tt F_r}{\div}{\tt F_e}$ \geq
704x480 @ 5 FPS	105	97	105	105	103	107	165	337	505	661	1335	2638		•	:	$\mathtt{F_r}{\div}\mathtt{F_e}~\geq$
704x480 @ 15 FPS	215	213	199	202	197	212	226	337	506	658	1318					
704x480 @ 30 FPS	326	350	351	322	372	346	322	374	513	665	1322	2640	5283			
1280x720 @ 1 FPS	•	• 78	• 68	• 73	• 77	• 77	150	••• 340	••• 512	642	••• 1151	2422	••• 4947	Device		WTI SW7
1280x720 @ 2 FPS	• 136	• 137	• 142	• 138	• 141	•	168	338	496	656	1313	2615	5294	Scene:		scenel
1280x720 @ 5 FPS	• 262	• 267	• 264	• 262	• 260	• 268	••• 257	••• 346	••• 505	••• 657	••• 1320	••• 2633	•••	Encodir	-	
1280x720 @ 15 FPS	•	569	579		- 543	499	501	496	••• 549	670	1317		5285	GOP M		e: 30 f 30
	•	•	•	•	•	•	•	•	•••	•••	•••	•••	•••	Quality		30
1280x720 @ 30 FPS	•	791 •	828 •	775 •	782 •	745 •	642 •	728 •	772 ••	780	1333	2643	•••			
1920x1080 @ 1 FPS	147 •	128	133	131	123	123	123	330	474 •••	614 •••	1183	2316	4700 •••			
1920x1080 @ 2 FPS	254	254	260	252	268 •	245 •	245 •	328	510	657	1309	2599	5270			
1920x1080 @ 5 FPS	515	515	531	488	504	475	490	485	573	669	1319	2640	5286			
1920x1080 @ 15 FPS	989	917	945	971	985	923	902	920	941	963		2635				
1920x1080 @ 30 FPS	1880	1909	1902	1809	1797	1729	1858	1753	1895	1740			5280			

R	: measured average bitrate (kbps)
R _{nom}	: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of R_{nom})
R ₈₀	: net-limit test rate (80% of R_{nom})
R ₅₀	: net-limit test rate (50% of R_{nom})
R _{max}	: specified max. rate (80% of R_{nom})
R_{targ}	: specified target rate (80% of R_{max})
Fr	: # frames received
Fe	: # frames expected
R	: R \in [O, R _{targ}]
R	: R \in (t, 1.25t]
R	: R \in (1.25t, ∞)
	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100},R_{80},R_{50}
	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for $R_{100}\text{,}R_{80}$
	: $F_r \! \div \! F_e \geq 90\%$ for R_{100}
•	: $F_r \div F_e \geq$ 90% for no test rates

Device:	WTI SW720P
Scene:	scenel
Encoding:	h264main constant
GOP Mode:	30 f
Quality:	30

Figure B.29: Stream quality analysis for WTI Viper/Sidewinder HD Baseline (H.264 Main) test

					Rn	.om,]	R _{targ}	(kbp	OS)					1
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000	1
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120	1
320x240 @ 1 FPS	7 •	7 •	19 •••	21 •	36	85	160 •••	307	413	414	433	426	426]
320x240 @ 2 FPS	12 •	13 •	18 ••	22	37	86	162 •••	328	496	662	841	848	849]
320x240 @ 5 FPS	21	21	23	24	37	87	171	340	504	655	1310	1861	1874]]
320x240 @ 15 FPS	45	43	41	40	45 ••	87	172	341	508	664	1320	2635	4961	1
320x240 @ 30 FPS	74	69	63	63	65	95	175	341	510	665	1323	2645	5277	1
640x240 @ 1 FPS	• 15	• 15	15	• 17	• 37	81	169	337	481	651	906	859	923	_
640x240 @ 2 FPS	• 26	27	27	28	•• 37	83	••• 168	322	••• 487	••• 660	1307	1756	•••• 1838	
640x240 @ 5 FPS	• 51	• 47	• 48	• 50	•	••• 84	••• 169	••• 340	••• 507	••• 659	••• 1309	2646	•••• 4160	
640x240 @ 15 FPS	•	111	• 101	• 100	•• 94	105	173	340	••• 509	••• 661	1319	2637	5268	
640x240 @ 30 FPS	170	166	167	163	• 140	155	189	341	••• 510	663	1321	2639	5277	
	•	•	•	••	•	•	•••	•••	•••	•••	•••	•••	•••	\vdash
704x480 @ 1 FPS	23	21 •	23	23	33	83	168	325 •••	494 •••	614 •••	1266	1770	1807	┢
704x480 @ 2 FPS	43 •	43 •	43 •	42 •	44 ••	84 •••	173	343 •••	503	658 •••	1328	2627	3563	┝
704x480 @ 5 FPS	77	74 •	73	76 •	75 •	97	168 •••	344 •••	513 •••	668	1324	2639	5278	
704x480 @ 15 FPS	161 •	157 •	155 •	158 •	154 •	155 •	183 •••	346 •••	510	663	1321	2634	5278	
704x480 @ 30 FPS	234	254	252	239	251	250	246	348	509	661	1320	2637	5274	_
1280x720 @ 1 FPS	56	59	60	60	59	64	166	328	491	640	1311	2471	5138	D
1280x720 @ 2 FPS	113	116	109	113	116	113	173	334	499	677	1292	2577	5319	So
1280x720 @ 5 FPS	• 213	• 210	• 211	• 209	• 217	• 219	••• 198	3 42	523	669	1328	2644	5285	Er G
1280x720 @ 15 FPS	• 441	• 443	• 414	• 428	• 442	• 424	412	424	525	6 70	1325	2643	5264	6
1280x720 @ 30 FPS	• 655	• 641	• 680	• 669	• 660	• 679	• 641	•• 593	••• 628	•••	••• 1311	••• 2632	••• 5281	
1920x1080 @ 1 FPS	123	126	121	126	•	122	131	328	••• 490	618	1209	2508	4996	
1920x1080 @ 2 FPS	221	236	230	233	233	226	225	345	504	661	1352	2665	5348	
	•	•	•	•	•	•	••	•••	•••	•••	•••	•••	•••	
1920x1080 @ 5 FPS	425	427	452	266	455	442	422	435	524 •••	666	1323	2669	5277	
1920x1080 @ 15 FPS	853 •	849 •	855	896 •	887 •	484	850 •	810 •	808 •	906 ••	1325	2639	5280	
1920x1080 @ 30 FPS	1653	1700	1696	1665	1711	1655	1668	1531	1615	1662	1692	2631	5269	

R	: measured average bitrate (kbps)
R_{nom}	: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of R_{nom})
R_{80}	: net-limit test rate (80% of R_{nom})
R_{50}	: net-limit test rate (50% of R_{nom})
R_{max}	: specified max. rate (80% of $R_{\tt nom})$
$\mathtt{R}_{\mathtt{targ}}$: specified target rate (80% of $R_{\text{max}})$
F_r	: # frames received
Fe	: # frames expected
R	: R \in [O, R _{targ}]
R	: R \in (t, 1.25t]
R	: R \in (1.25t, ∞)
	: $F_{r}\!\div\!F_{e}~\geq$ 90% for R_{100} , R_{80} , R_{50}
•••	: $F_{r}\!\div\!F_{e}$ \geq 90% for $R_{100}\text{,}R_{80}$
	: $F_r \div F_e~\geq$ 90% for R_{100}
	: F_r \div F_e \geq 90% for no test rates

Device:	WTI SW720P
Scene:	scenel
Encoding:	h264high constant
GOP Mode:	30 f
Quality:	30

Figure B.30: Stream quality analysis for WTI Viper/Sidewinder HD H.264 High Profile test

					Rn	om, I	R _{targ}	(kbj	OS)					R : measured average bitrate (kb	ps)
	9.6	14.4	28.8	33.6	56	128	256	512	768	1000	2000	4000	8000		
	6	9	18	21	35	81	163	327	491	640	1280	2560	5120		(mo
320x240 @ 1 FPS	9	9	17	22	36	78	162	315	499	580	558	597	592	R_{80} : net-limit test rate (80% of $R_{ m not}$	
320x240 @ 2 FPS	17	17	20 •	23	36	86	168	348	498 •••	659	1153	1160	1147	R_{50} : net-limit test rate (50% of R_{nor}	
320x240 @ 5 FPS	29	30	32	33	38	85	169	338	509	648	1317	2623		R _{max} : specified max. rate (80% of F R _{targ} : specified target rate (80% of	
320x240 @ 15 FPS	64	70	74	73	61	87	169	339	507	662	1322	2633			• max
320x240 @ 30 FPS	101	113	128	128	102	104	176	342	509	663	1322	2641		F _e : # frames expected	
640x240 @ 1 FPS	23	23	23	23	31	79	159	319	493	603	1292	1273			
640x240 @ 2 FPS	46	45	45	37	36	84	163	335	513	666	1320	2384		$\frac{R}{R} : R \in [0, R_{targ}]$	
640x240 @ 5 FPS	88	87	84	77	70	90	170	336	507	663	1319	2653	5261	$\begin{array}{c} \texttt{R} \\ \texttt{R} \end{array} : \texttt{R} \in \texttt{(t, 1.25t]} \end{array}$	
640x240 @ 15 FPS	213	234	216	217	174	162	190	338	506	660	1320	2646		R : R \in (1.25t, ∞)	
640x240 @ 30 FPS	313	392	436	396	338	244	259	359	531	663	1323	2628		: F_r \div F_e \geq 90% for R ₁₀₀ ,R ₈₀	, R ₅₀
704x480 @ 1 FPS	34	37	31	33	33	84	168	319	478	652	1172	2450	2367	. Fr \div Fe \geq 90% for R ₁₀₀ , R ₈₀	
704x480 @ 2 FPS	68	64	61	60	57	83	172	333	509	658	1316			. Fr \div Fe \geq 90% for R ₁₀₀	
704x480 @ 5 FPS	120	117	116	119	112	109	168	338	507	663	1317	2631		${f \cdot}$: ${f F_r}$ $\div {f F_e}$ \geq 90% for no test rate	es
704x480 @ 15 FPS	252	261	244	254	248	216	217	340	507	658	1320	2638			
704x480 @ 30 FPS	389	434	409	426	364	330	365	402	531	662	1325	2635			
1280x720 @ 1 FPS	82	84	85	89	83	74	147	305	507	647	1271	2325			
1280x720 @ 2 FPS	165	169	159	163	150	153	168	329	503	669	1318		5254	Scene: scene1 Encoding: h264base constant	
1280x720 @ 5 FPS	320	322	302	303	283	281	282	380	507	646	1306	2664			
1280x720 @ 15 FPS	603	617	634	633	569	581	571	621	632	714	1316	2634	5275		
1280x720 @ 30 FPS	914	936	917	871	886	828	836	956	893	961	1332	••• 2645			
1920x1080 @ 1 FPS	• 154	• 170	• 165	• 151	• 139	159	139	316	• 484	6 02	1229				
1920x1080 @ 2 FPS	• 295	303	303	• 309	• 287	• 288	279	••• 313	511	663	••• 1279	2619			
1920x1080 @ 5 FPS	• 585	• 608	• 600	• 594	• 575	• 572	• 574	607	621	737	1315	••• 2647			
1920x1080 @ 15 FPS	• 1128	• 1172	•	1203	• 1074	• 1145	•	• 1172	•• 1146	1141	1399	••• 2634			
1920x1080 @ 30 FPS	2346	2375	2469	2516	• 2421	2323	2295	2543	2363	2435	2527	2856	5283		

mit test rate (100% of R_{nom}) mit test rate (80% of R_{nom}) mit test rate (50% of R_{nom}) ified max. rate (80% of R_{nom}) ified target rate (80% of R_{max}) mes received mes expected [O, R_{targ}] (t, 1.25t] (1.25t, ∞) $F_{e}~\geq~90\%$ for R_{100} , R_{80} , R_{50} $F_{e}~\geq$ 90% for R_{100} , R_{80} $F_{e}~\geq$ 90% for R_{100} $F_{
m e}~\geq~90\%$ for no test rates

Device:	WTI SW720P
Scene:	scenel
Encoding:	h264base constant
GOP Mode:	30 f
Quality:	30

Figure B.31: Stream quality analysis for WTI Viper/Sidewinder HD H.264 Baseline **Profile test**

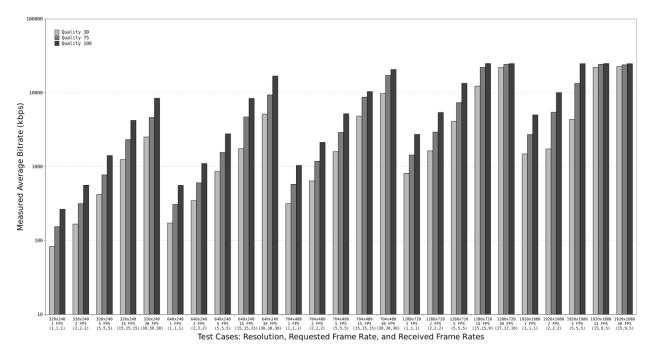


Figure B.32: Average bitrates for WTI Viper/Sidewinder HD M-JPEG test

					D		D	(kbr	26)					Р	
	9.6	14 4	28.8	33 6	56	om,] 128	R _{targ}	512	768	1000	2000	4000	8000	R	:
	6	9	18	21	35	81	163	327	491	640		2560		R _{nom} R ₁₀₀	:
320x240 @ 1 FPS	13	13	19	19	37	85	171	315	434	513	556	569	567	R_{80}	:
	•	•	••	••	•••	•••	•••	•••					••••	R ₅₀	:
320x240 @ 2 FPS	19 •	19 •	20 •	22 ••	39 •••	81 •••	175 •••	330 •••	516 •••	654 •••	1043	1052	1058	R _{max}	:
320x240 @ 5 FPS	28	29	28	29 •	37	81 •••	168 •••	339	508	655	1312	2415	2414	Rtarg	:
320x240 @ 15 FPS	52	52	53	48	50	86	170 •••	339 •••	509	661	1320	2634	5265	Fr	:
320x240 @ 30 FPS	77	76	73	72	78	99	173	340	510	664	1324	2643	5276	Fe	:
640x240 @ 1 FPS	• 28	• 28	• 29	• 28	• 32	78	152	••• 340	456	626	1100	1163	1178		
640x240 @ 2 FPS	• 39	•	• 42	• 41	••• 42	••• 88	••• 178	••• 335	••• 510	656	1330	•••• 2229	•••• 2319	R	:
	•	•	•	•	••	•••	•••	•••	•••	•••	•••	•••	••••	R	•
640x240 @ 5 FPS	66 •	68 •	64 •	65 •	70 •	86 •••	168 •••	338	507 •••	661 •••	1307	2625	5290 •••	R	
640x240 @ 15 FPS	132	136	136 •	135 •	127	126	172 •••	339 •••	508 •••	660	1320	2634	5254		:
640x240 @ 30 FPS	204	191	193	195	200	199	210	340	510	663	1321	2642	5270	••••	:
704x480 @ 1 FPS	46	45	46	47	47	82	179	333	503	643	1227	2203	2349		:
704x480 @ 2 FPS	• 65	• 67	• 67	• 67	• 71	•••	••• 168	••• 345	••• 532	••• 641	1332	2606	4597		:
704x480 @ 5 FPS	• 109	• 109	• 108	• 105	• 108	109	160	••• 336	••• 514	••• 652	1328	• 2614	5 244		:
	•	•	•	•	•	••	•••	•••	•••	•••	•••	•••	•••	•	
704x480 @ 15 FPS	180 •	181 •	182 •	184 •	182 •	183 •	194 •••	339 •••	508 •••	661 •••	1320	2641	5275 •••		
704x480 @ 30 FPS	288	254	255	253	280	237	271	359	510 •••	663	1322	2642	5277		
1280x720 @ 1 FPS	105	104	112	110	114	109	159	338	524	685	1340	2402	4972	Device	:
1280x720 @ 2 FPS	168	160	168	164	164	161	168	351	514	667	1348	2648	5422	Scene:	
1280x720 @ 5 FPS	289	284	• 271	• 274	• 275	•• 260	256	••• 352	483	6 54	1306	2633	5254	Encodi GOP M	•
1280x720 @ 15 FPS	• 478	• 511	• 467	• 501	• 501	• 475	• 209	•••	••• 547	•••	1322	••• 2641	•••	Quality	
	•	•	•	•	•	•	•	•••	•••	•••	•••	•••	•••	Quality	•
1280x720 @ 30 FPS	628 •	615 •	642 •	660 •	634 •	590 •	602 •	359 •	597 •••	754 •••	1321	2642	5278		
1920x1080 @ 1 FPS	192 •	189 •	190 •	191 •	194 •	192 •	190 ••	344 •••	540 •••	681	1340	2423	5072 •		
1920x1080 @ 2 FPS	296	300	299	297	309	290	304	358	532	673	1350	2691	5353		
1920x1080 @ 5 FPS	517	499	514	502	493	481	484	493	577	652	1302	2605	5271		
1920x1080 @ 15 FPS	• 895	• 912	• 914	• 898	• 919	• 838	• 859	• 890	921	952	1347	2635	••• 5278		
1920x1080 @ 30 FPS	•	•	•	• 2042	•	• 1868	• 1810	•	•• 1880	•	••• 1988	••• 2639	•••		
132081000 @ 30 FF5	-2100	1908	2045	042	2040	•	•	•	•	•	1900	2039	0219		

R	: measured average bitrate (kbps)
R_{nom}	: nominal bitrate for link class (kbps)
R_{100}	: net-limit test rate (100% of $R_{\tt nom})$
R_{80}	: net-limit test rate (80% of $R_{\hbox{nom}})$
R_{50}	: net-limit test rate (50% of R_{nom})
R_{max}	: specified max. rate (80% of $R_{\tt nom})$
R_{targ}	: specified target rate (80% of $R_{\text{max}})$
Fr	: # frames received
Fe	: # frames expected
R	: R \in [0, R _{targ}]
R	: R \in (t, 1.25t]
R	: R \in (1.25t, ∞)
	: $F_{\tt r} \div F_{\tt e}~\geq~90\%$ for R_{100},R_{80},R_{50}
	: $F_{r} \div F_{e}~\geq~90\%$ for $R_{100}\text{,}R_{80}$
	: $F_{r}\!\div\!F_{e}~\geq~90\%$ for R_{100}
•	: $F_r \div F_e \geq$ 90% for no test rates
Device	WTI SW720P

Device:	WTI SW720P
Scene:	scenel
Encoding:	h264main constant
GOP Mode:	5 s
Quality:	30

Figure B.33: Stream quality analysis for WTI Viper/Sidewinder HD Varying GOP Interval with Frame Rate test

					Rn	om, 1	R _{targ}	(kb	OS)					R : measured average bitrate (kbps)
	9.6	14.4	28.8	33.6	56	128	256	512		1000	2000	4000	8000	R_{nom} : nominal bitrate for link class (kbps
	6	9	18	21	35	81	163	327	491	640	1280		5120	
320x240 @ 1 FPS	9 •	8	16	23	33	83 •••	177	280 •••	400	420	436	562	418	R_{80} : net-limit test rate (80% of R_{nom})
320x240 @ 2 FPS	16 •	16 •	1	23 ••	32	74	147 •••	294	433	591	879	1117	880	R_{50} : net-limit test rate (50% of R_{nom}) R_{max} : specified max. rate (80% of R_{nom})
320x240 @ 5 FPS	27	28	1	30	35	0	181	296	453	583	1162	2622	2162	R_{max} : specified max. rate (80% of R_{nom} R_{targ} : specified target rate (80% of R_{max}
320x240 @ 15 FPS	56	56	71	65	54	83	185	306	452	696	1169	2766	4661	F_r : # frames received
320x240 @ 30 FPS	102	0	105	0	7	1	167	310	455	697	1160		4603	F _e : # frames expected
640x240 @ 1 FPS	1	20	19	16	28	75	129	258	384	665	955	996	1279	
640x240 @ 2 FPS	1	26	39	0	32	75	178	294	442	690	1142			$\frac{R}{R} : R \in [0, R_{targ}]$
640x240 @ 5 FPS	50	56	59	1	54	78	149	299	447	696	1163		4594	$\frac{R}{R} : R \in (t, 1.25t]$
640x240 @ 15 FPS	0	121	195	129	1	0	164	304	452	696	1164	•• 2342		R : R \in (1.25t, ∞)
640x240 @ 30 FPS	217	229	324	234	251	230	243	••• 320	••• 455	6 96	••• 1157		• 4601	: $F_r \div F_e \ge 90\%$ for R_{100} , R_{80} , R_{50}
704x480 @ 1 FPS	31	31	29	33	33	67	167	280	412	606	1037	1682	• 1932	: F_r \div F_e \geq 90% for R ₁₀₀ , R ₈₀
704x480 @ 2 FPS	1	24	51	60	62	0	178	302	447	713	1174			: $F_r \div F_e \ge$ 90% for R_{100}
704x480 @ 5 FPS	100	97	90	82	111	0	177	299	452	697	1170		5531	. $F_r \div F_e \ge 90\%$ for no test rates
704x480 @ 15 FPS	1	1	192	176	226	0	235	305	450	698	1166		5538	
704x480 @ 30 FPS	275	375	344	291	349	347	344	343	459	694	1160		4631	
1280x720 @ 1 FPS	75	74	64	62	81	69	159	277	386	659	971		4341	Device: WTI SW720P
1280x720 @ 2 FPS	123	113	121	146	128	124	163	292	443	694	1135	2358	4666	Scene: scenel
1280x720 @ 5 FPS	253	220	287	284	230	217	283	307	••• 447	704	1171		• 4629	Encoding: h264main constant GOP Mode: 30 f
1280x720 @ 15 FPS	• 522	535	492	558	454	• 449	• 564	492	519	704	1172	••• 2321		Quality: 30
1280x720 @ 30 FPS	• 783	• 773	829	• 841	• 832	• 798	801	824	772	697	1369		• 5510	
1920x1080 @ 1 FPS	• 134	• 107	• 110	• 141	• 104	• 107	• 106	• 335	• 404	• 657	1339	2642		
1920x1080 @ 2 FPS	• 274	• 272	• 289	• 279	• 229	• 289	235	• 363	•• 542	718	1392	2799		
1920x1080 @ 5 FPS	• 425	• 512	435	• 532	• 431	• 414	• 419	538	605	709	1393		• 5494	
1920x1080 @ 15 FPS	• 954	• 923	1002	1005	• 836	1065	• 844	992	969	980	1390		• 5527	
1920x1080 @ 30 FPS	1814	1897	1995	2080	2265	2182	1936	2325	2094	1941	1957	2336	• 5537	

Figure B.34: Stream quality analysis for WTI Viper/Sidewinder HD TCP Streaming test

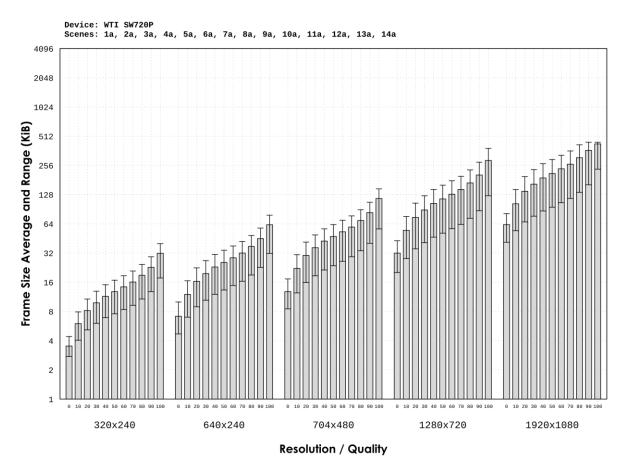


Figure B.35: Image sizes for WTI Viper/Sidewinder HD JPEG test