California AHMCT Research Center
University of California at Davis
California Department of Transportation

ON-LINE CONTROL ON AN
INDUSTRIAL ROBOT FOR
CRACK SEALING USING
PROXIMITY SENSING

Phillip A. Kahrl
Bahram Ravani

AHMCT Research Report
UCD-ARR-92-12-01-01

Interim Report of Contract
IA65P307 (SHRP H-107A)

December 1, 1992

* This work was supported by the Strategic Highway Research Program and the
California Department of Transportation (Caltrans) Advanced Highway Maintenance and
Construction Technology Center at UC, Davis

Copyright 2011, AHMCT Research Center, UC Davis

Abstract

Each year, the state of California alone spends approximately $10 million on the
sealing and filling of pavement cracks in order to retain structural integrity of roadways
and extend time between major rehabilitions. The associated costs are approximately
$1800 per lane mile with 66% attributed to labor, 22% to equipment and 12% to
materials.

Currently, research is underway at the University of California, Davis to design and
build a prototype Automated Crack Sealing Machine (ACSM). The subsystems of the
ACSM will detect cracks and guide process equipment over the cracks to rout, heat, clean
and seal. For transverse cracking, the process equipment will be manipulated with an
industrial robot arm mounted on the rear of the ACSM support vehicle.

The purpose of this thesis is to develop and test algorithms for crack-following with
a robot manipulator using the relative proximity sensor and to expand upon these
algorithms to incorporate data from the machine vision system as well. The result will be
a flexible and robust control algorithm that will incorporate all available data for control
and will be able to function with failures or errors in the machine vision system and
associated subsystems.

This thesis will briefly address the overall problem of crack sealing. The selection
of an industrial robot and the selection and operation of the relative proximity sensor will
also be addressed. The algorithm for control of the robot with the local proximity sensor
relies heavily on control algorithms developed for compliant motion with endpoint force

sensing.

i
Copyright 2011, AHMCT Research Center, UC Davis

TABLE OF CONTENTS

ABSTRACT ...ttt esessssessssssessessatsesssessesssstssesasassssuesss st sassestensesene 1
CHAPTER 1 - INTRODUCTIONcccvrimiuniiriinnesnrenaeraccnesenesessenssssesssessasssnsnnas 3
1.1 - PROBLEM DESCRIPTIONccteeteintemieeneeerineereaeereeseraeaesensersseennens 3

1.2 - THE NEED FOR AN AUTOMATED CRACK SEALING/FILLING
MAGCHINE ...ttt acsessstssestssssescatneeesestsassentsessesssensesassases 3
1.3 - MACHINE SPECIFICATIONS.cooonininieeeeneneneeenneeeeereeesesennes 4
1.4 - MACHINE ARCHITECTUREcoceemmreinemmnmceeneecntsreneeseessesss s 5
1.5 - MACHINE OPERATIONccooirieeimrennrceetneceeentenetesenssnaeseesenessesanses 6
1.6 - CONTROL OF THE RPS ...ttt eteeee e e 6
1.6.1 - PREVIOUS WORK.......couoiinireiccrnenrencneeneneessessntssesesesessenes 7
CHAPTER 2 - ROBOTIC CRACK SEALINGcitieeeirenrerenrerreeesentssaeneesessaessanes 9
2.1 - REQUIREMENTS OF THE RPS ...t 9
2.2 - SELECTION OF A MANIPULATORccocevtreereneernerrecreeesseaeenenne 10
2.2.1 - SELECTION OF A SCARA ROBOT AND LINEAR SLIDE ...
... 11
2.3 - CONCLUSIONS AND SUMMARYooiieninineenenrnenieennseniesnesnnens 13
CHAPTER 3 - ENDPOINT PROXIMITY SENSING........ccccecemriiercenenreeneenrnnes 15
3.1 - USE OF PROXIMITY SENSING IN ROBOT CONTROL................... 15
3.2 - OPERATION AND SPECIFICATIONS OF THE LSScocoevvennne 17
3.3 - INTERFACING WITH THE LSS......ccooiiieeeiiieieeenie e 19
3.3.1 - DATA TRANSMISSION PROTOCOL.........ccccorvemerrenreaennen 21
3.3.2 - LOW PASS FILTERING OF ERROR DATAcccceueenee. 21
3.3.3 - SIMULATING SENSOR SATURATION......ccecervrreveeruennn 21
3.4 - SUMMARY AND CONCLUSIONSooiienierneetrcnereneetneseeenenas 22
CHAPTER 4 - MOTION CONTROL ALGORITHMccovirrieireneeneeeireeenennees 23
4.1 PROBLEM STATEMENT ...ttt seecnece et eaen 23

4.1.1 PROBLEM STATEMENT FOR FEEDBACK CONTROL
FOR POSITION AND ORIENTATIONccceviverceeceeteenecene 23

4.1.2 PROBLEM STATEMENT FOR USING CLOSED-LOOP
CONTROL FOR POSITION AND OPEN-LOOP CONTROL FOR

ORIENTATION.....crimirnitimieieinenenencnscteaneesenceasseseeneesesnensca 24
4.2 - PREVIOUS WORK ...ttt st eeseenene 24
4.2.1 REVIEW OF PREVIOUS WORKcccocerinvinicecnecenecencnee 25
4.2.2 - DESCRIPTION OF HYBRID CONTROL.......cccoeverirrennnne. 27
4.2.3 - NESTED CONTROL LOOPS USING AN INDUSTRIAL
CONTROLLERuootiiininininrienieeete et ceeneeseeeeseeanesessneseesesseenes 28

4.2.4 DEFINING THE TASK FRAME FOR FORCE CONTROL ... 29
4.2.5 ESTIMATING THE TASK FRAME FOR FORCE

4.3.1 DEFINING THE TASK FRAME FOR RELATIVE
PROXIMITY SENSING USING FERNET SERRET VECTORS 31
4.3.2 ESTIMATING THE TASK FRAME FOR RELATIVE
PROXIMITY SENSING.....oucutiiirineirreneeeeieniecreeeeeenateeceenteseeseeens 33
4.3.3 OBTAINING CRACK DIRECTION USING GLOBAL

Copyright 2011, AHMCT Research Center, UC Davis m

4.3.4 CONTROL ALGORITHM.......ccoueetruierriieeccereneeieeeernenee 41
4.4 COMPUTER SIMULATION OF HYBRID CONTROL..........ccccoeuen..... 42
4.4.1 MODELINGocoiouenimineirisirissessseneeniesnssetesesesestseesensssserens 42
4.4.2 SENSING.....cuieiriiretcriiistcncrcseecencensresteeeseseesssest st eaenssessens 42
4.4.3 HYBRID CONTROL ALGORITHMcccocevtvimrverrrrrerenrennn 44
4.4.4 PROGRAMMING THE SIMULATION.......ccoceevverrmrenrereerenenn. 45
4.4.5 CONTROL WITH RELATIVE PROXIMITY SENSING....... 48
4.5 HYBRID CONTROL WITH AN INDUSTRIAL ROBOT..................... 48
4.5.1 CAPABILITIES AND LIMITATIONS OF INDUSTRIAL
CONTROLLERSotimiriirriicctcecseneeeeencenrareereeseeneesssesesesseseses 49
4.6 COMPLIANT MOTION USING FORCE SENSING WITH THE
ADEPT-3 ROBOTcoumieniiertininiieiseistsneteresesnseesseseesenesesesesesesaesenns 49
4.7 COMPLIANT MOTION USING THE LSScccooiivirininneceeeerene, 50
4.7.1 CONTROL ALGORITHM.......cccccviierrirricntrcirieereenreeenenes 56
4.7.2 CONTROL ARCHITECTURE AND COMMUNICATION... 57
4.7.3 TUNING THE CONTROL LOOPScccccectvirrimnenerenrennn 60
4.7.4 FILTERING OUTPUT OF THE LOCAL SENSING
SYSTEM....uiitiieiinsrcietieecntenseseseese s seeseseesssssssesasssssssssssssesases 62
4.7.5 ESTIMATING CRACK DIRECTION GEOMETRICALLY .. 64
4.8 CRACK SEALING USING HYBRID CONTROLccccceeverrreverrernene 64
4.8.1 FEEDBACK VERSUS OPEN-LOOP CONTROL................... 64
4.8.2 - SOURCES OF ERROR ...t 65
4.8.3 - USE OF CLOSED-LOOP CONTROLccervererrrerrereceennnn 66
4.8.4 MODE 1-OPEN-LOOP CONTROLccccecevemuerreerreerenennen 66
4.8.5 MODE 2-FEEDBACK CONTROL FOR POSITION AND
ORIENTATIONucoumiiiiririeeecrerincetesiseeieeenescenrsseneesemenaesesesessseaseons 67
4.8.6 MODE 3-FEEDBACK CONTROL FOR POSITION AND
OPEN-LOOP CONTROL FOR ORIENTATION.........ccceeceunrrennecne 67
4.8.7 ERROR HANDLINGcotvuemirercnerrcntrereneneeeinnneseseseeeenens 67
4.8.8 - CONTROL ARCHITECTUREcccceotveiennereeirirrnereneseenenes 68
4.8.9 - COMMUNICATIONS ...t et et eaenneenes 69
4.9 - SUMMARY AND CONCLUSIONScocenereriennerernarareraesenseenenens 69
CHAPTER 5 - SIMULATION AND TEST RESULTS.......ccceoevvnerereceeeeeeennecerenens 71
5.1 - RESULTS OF NUMERICAL SIMULATION OF HYBRID
CONTROL....coiritirenircnneestseesesiiensesec st raes e asacesevese e statesenentesssesssssaenenne 71
5.1.1 - SIMULATION OF HYBRID CONTROL WITH FORCE
SENSINGcoititciintnrieinesentenescencteseeseneeseeneeeseseensesessestmssseesencanesees 72
5.1.2 - SIMULATION OF HYBRID CONTROL WITH
RELATIVE PROXIMITY SENSING.covcimietrrecereeenereeeeenne 72
5.2 - HYBRID CONTROL WITH ENDPOINT FORCE SENSING............. 73
5.3 - COMPLIANT MOTION USING THE LSS ..ot 78
5.4 - SUMMARY AND CONCLUSIONSccoeirieceeneertencerseneeeenaeens 87
CHAPTER 6 - CONCLUSIONS AND FUTURE WORK......cccovviricinreiacernenenns 88
6.1 - RECOMMENDATIONS ...ttt 88
6.1.1 - CUSTOM HARDWARE...........ccooviiriicecececieeene 88
6.1.2 - LINEAR SLIDE INTEGRATIONccccoiiiiiiiinieieeecereeeeee 89
6.1.3 - HARDWARE CONFIGURATIONccccccevtrvrrnininererrennene. &9
6.1.4 - PROCESS EQUIPMENT DESIGN107
6.1.5 - TUNING FOR THE ACSMcccociiiiiinenreeeereeee e 90
6.2 - TUNING AND CONTROL ALGORITHMScccoviiiniirincncrreenn 90
6.2.1 - GEOMETRIC BASED ORIENTATION CONTROL............. 92

Copyright 2011, AHMCT Research Center, UC Davis v

LIST OF APPENDICES

APPENDICESooeiiiiiceeencernececneteeecsessnasssassssssssnssssesesessssssssnsssssmseseesnssemsessnns 94
APPENDIX A - CODE FOR SIMULATION OF HYBRID CONTROL WITH
MATLAB. ...ttt s ncests e esensesessssassassssasssss s sssses s sssasssssssesnsnesesanenen 95
APPENDIX B - FORCE CONTROL WITH THE ADEPT-3 ROBOT 101
APPENDIX C - COMPLIANT MOTION USING PROXIMITY SENSING WITH

THE ADEPT-3 ROBOTceeiiceeneercncesesassessnsnssssssssssessssssesssssssesenseessssensseses 116
APPENDIX D - COMPLIANT MOTION WITH- THE GMF-A510 ROBOT......... 117
APPENDIX E - WORKSPACE OF THE GMF-A510 MANIPULATOR............... 128

THE LINEAR SLIDEcutieirteceeecreeeeaerenesesnesssssessssesesessssssse s s e ssssessesmensans 130
F-2 - CODE FOR LINEAR SLIDE INTEGRATIONccooeveeeeeeernnne.n 137

APPENDIX G - PROGRAM FOR INTEGRATED CONTROL OF CRACK

SEALING WITH THE A-510 ...cuueurererrrreeieaeenreessessesessesscesessssessesesasessesessssesasens 140

APPENDIX H - MANUFACTURER'S SPECIFICATIONS FOR THE GMF-
A510 MANIPULATOR AND KAREL CONTROLLER ..o 148
REFERENCES.........otititseccnsnntetssessssssssssesssssessssssesesssssessssesesssssssssnssensassnes 153

Copyright 2011, AHMCT Research Center, UC Davis

LIST OF FIGURES

Figure 2.1 Conceptual Design for a Robot Arm Positioning Systemccccceevevunnne 11
Figure 2.2 GMF-A510 manipulator and linear slide.......c.cccceeveruereeereeeecerceenenesenesenene 13
Figure 3.1 Structured Light ... eceeeeeereeeeeenieseereseeceseessteeesesseeeseasessssssssasesssnssas 17
Figure 3.2 Filtered Crack Profileccccoerenrienenenrenreeneceneeerereecesesersesssssesssnaseseas 18
Figure 3.3 The Local SENSOTcuiveieieeecirerceceseneeeenscresecesecrenesesnsesssnessesnsessessssessenn 19
Figure 3.4 Flowchart of the Local Sensor Programcceeeeeeeeecveeveenereeeereerenensnen 20
Figure 4.1 Reference Frames for Contour Following.........ccccceeeeeeeveerenneensercnsencennns 28
Figure 4.2 Force Control Loop Closed Around a Position Controller.........ccceceveueene 29
Figure 4.3 Effect or Orientation Error on Estimating the Object Frame 30
Figure 4.4 Spatial Curve with Frenet Serret VECTOrscocceveeeeeenreeeececeserereneereseannees 33
Figure 4.5 Unit Normal and Tangent Vectors for Defining the Task Frame for
Control With Relative Proximity SEnsingcccceeeeeeeestrereeerensensersessescnesscresssssnenns 33
Figure 4.6 Distance Error Caused By Orientation Error Using Relative Proximity
SENSINE «eeneerereeeeeseenrreeeseerneeeessesseenesasssesaessessnsssessesssessesonsessasssassensessanssessasssesesssannsensees 35
Figure 4.7 Offset Error Caused by Tangential Motion with Orientation Error 35
Figure 4.8 Comparison Grid for a Northeast Running Crackccccceeveereveececcrcnnnnee. 36
Figure 4.9 Beziér Curve Between Consecutive Crack Tiles.....ccceveeeercecevervuerenenne. 39
Figure 4.10 Block Diagram for Hybrid Controlc.ceeeveveiecmererrceninnneceeeneneneene 43
Figure 4.11 Flowchart for MATLAB Simulationceeeceeveeenecenerereeeeseneeneeseennenne 46
Figure 4.12 MATLAB Simulation ReESUlLSccccveirinccriininncnniiecsecncenccenecnen. 47
Figure 4.13 Flowchart for Hybrid Control Using Force Sensingcccceeuveeeeverenenene 51
Figure 4.14 Adept Technologies Integrated Force Sensor with Probeccccevueeneee 52
Figure 4.15 The Adept-3 manipulatorccceveeeeeerncesneeceeneeeneencereresseereeseesssrasenes 53
Figure 4.16 Crack following with the Adept-3 and the LSS.ccovivirviicnnriecnenaes 55
Figure 4.17 The GMF-AS510 manipulatorc.cecccveereeeseeseeseensesnescsneesereesseessessasenne 55
Figure 4.18 Crack Following with the GMF-AS510 Robot....cc.eovieeevrieerececeeceene 56
Figure 4.19 Flowchart for Hybrid Control Using the LSS ...ccooiiiicieeeeeee 58
Figure 4.20 Comparison of LSS and controller update times.coccereeverneeseeeserernnnne 59
Figure 4.21 End-effector Orientation Error During Hybrid Controlcccceeeeueenne 61
Figure 4.22 Magnitude-Frequency Plot of a Second Order Chebyshev Filter............ 62
Figure 4.23 Comparison of Filtered and Unfiltered LSS Data.c.ccoeeeeeeervrcrecennne. 63
Figure 5.1 Simulated Comparison of Hybrid Control with a Force Sensor and the
LS S ettt et e e n et s st e et st e st en et e e s an st eme e 74

Copyright 2011, AHMCT Research Center, UC Davis \¢

Figure 5.2 End-Effector Orientation Error (Simulation)cccceeeveevevereevveveveeencrncen 75

Figure 5.3 Comparison of Offset Error Histories (Simulation)cceceeeeereveevenenee 76
Figure 5.4 Result of 2-dimensional contour following using endpoint force

sensing with the Adept-3 TODOL.cccoeririreererereeerrere s s e st sresse e esessanens 77
Figure 5.5 Error history from contour fOlOWIngecceeeeeereeeeevererienenrcneeesennnee 78
Figure 5.6 Offset Error and End-Effector Orientationoeeveeveeeveeeereneseeessnsnencnnes 79
Figure 5.7 Estimated orientation error for crack followingccceceeeevvievevneneann. 80
Figure 5.8 Local sensor output for crack fOlloWingeceeveeveeremeveeeeecnnneeenesenens 81
Figure 5.9 Cartesian Path for Crack FOLIOWINGcceceevevereeiereeeeeeeeeceeecee e 82
Figure 5.10 Input Offset Error for Crack FOLOWING ... v euseveeeeeeeeeeesreesesseessssesesons 83
Figure 5.11 Estimated Rotation Error for Crack Followingccceeeeeeecveecennnne. 84
Figure 5.12 Cartesian Path for Crack FOLIOWINEceeveeeeeveeereeeieecereseseeeeeenees 85
Figure 5.13 Input Offset Error for Crack FOlloWing............ceeveuveecevemeeeeeecneeeennnnne. 86
Figure 5.14 Estimated ROtation EITOTcveieeeeeeeeeeieeeeeeee et e seeee 87
Figure E.1 Workspace of the GMF-AS510 Manipulator..........ccccveeeeueeueceeeeenevenennee. 128
Figure E.2 Workspace of the GMF-A510 Manipulator with Linear Slide................ 129
Figure E.3 Usable Workspace of the A-510 Manipulator and Linear Slide............. 129
Figure F.1 Relative Path of the A-510 for Integrated Motions...........ccceceveuveveuenncnee. 132

vii

Copyright 2011, AHMCT Research Center, UC Davis

ABSTRACT

Each year in California, the State Department of Transportation (CalTrans) spends
over $100 million maintaining approximately 33,000 lane-miles of flexible pavement
(Asphalt Concrete - AC) and 13,000 lane-miles of rigid pavement (Portland Cement
Concrete - PCC). A portion of these maintenance activities involves the sealing and
filling of cracks (approximately $10 million per year) which, when properly performed,
can help retain the structural integrity of the roadway and considerably extend the mean
time between major rehabilitations. A typical operation to seal meandering cracks in AC
pavement involves a crew of about eight individuals which can seal between one and two
lane miles per day. The associated costs are approximately $1800 per mile with 66%
attributed to labor, 22% to equipment and 12% to materials.

Currently, research is underway at the University of California, Davis to design and
build a prototype Automated Crack Sealing Machine (ACSM). The purpose of the
ACSM will be to address both longitudinal and transverse cracks in the pavement. The
subsystems of the ACSM will detect cracks and guide process equipment over the cracks
to rout, heat, clean and seal. For transverse cracking, the process equipment will be
manipulated with an industrial robot arm mounted on the rear of the ACSM support
vehicle.

Cracks will be detected by a machine vision system located at the front of the
ACSM support vehicle. The presence of a crack will be verified by an optical relative
proximity sensor mounted on the robot end-effector. The relative proximity sensor will
also detect the exact positions of cracks more precisely than the machine vision system.
Control of the manipulator will utilize data from both the machine vision system and the
relative proximity sensor.

The purpose of this report is to develop and test algorithms for crack-following

using the relative proximity sensor and to expand upon these algorithms to incorporate

Copyright 2011, AHMCT Research Center, UC Davis

data from both the machine vision system and the proximity sensor. The result will be a
flexible and robust control algorithm that will incorporate all available data for control
and will be able to function with failures or errors in the machine vision system and
associated subsystems.

This report will briefly address the overall problem of crack sealing. The selection
of an industrial robot and the selection and operation of the relative proximity sensor will
also be addressed. The algorithm for control of the robot with the local proximity sensor
relies heavily on control algorithms developed for control with endpoint force sensing.

Once algorithms have been developed for crack following using proximity sensing,
control structures will be introduced that use data from the machine vision system as
well. The result will be a complete control algorithm for the Robot Positioning System of

the ACSM.

Copyright 2011, AHMCT Research Center, UC Davis

CHAPTER 1 - INTRODUCTION

This chapter describes the motivation for and development of an automated crack
sealing machine. Much of this chapter has been extracted from (Velinsky, 1991) and
(Schulteiss and Velinsky, 1991). Details on the development of the automated crack

sealing machine can be found in these references.

1.1 - PROBLEM DESCRIPTION

Worldwide, a tremendous amount of resources are expended annually maintaining
highway pavement. In the state of California alone, the Department of Transportation
(Caltrans) spends approximately $100 million per year maintaining about 33,000 lane-
miles of Asphalt Concrete (AC) pavement and 13,000 lane-miles of Portland Cement
Concrete (PCC) pavement. Approximately $10 million of this maintenance budget is
used to seal and fill cracks in the pavement. When properly performed, crack sealing and
filling can help retain the structural integrity of the roadway and considerably extend the
mean time between major rehabilitation.

Sealing and filling of cracks is a labor-intensive and tedious operation. A typical
operation for sealing cracks in AC pavement involves a crew of eight persons. This crew
can seal approximately 2 lane-miles per day at a cost of about $1800 per lane-mile. 66%

. of this cost is attributed to labor, 22% to equipment, and 12% to materials. Furthermore,
the procedure is not standardized and there is a large distribution in the quality of the
resultant seal. Additionally, the workers must be on the road surface adjacent to moving

traffic, thus exposing them to a great deal of physical danger.

1.2 - THE NEED FOR AN AUTOMATED CRACK
SEALING/FILLING MACHINE

The final goal of the SHRP H-107A project, of which this report project is a part, is
to develop a prototype automated crack sealing machine that will sense, prepare, and seal

(or fill) cracks and joints in AC and PCC pavement. The goal of this project is to

Copyright 2011, AHMCT Research Center, UC Davis

investigate the development of such a machine considering only the topics of road surface
preparation, positioning system (system for positioning the cleaning, heating, routing, and
sealing/filling devices) configuration selection, and positioning system concept design
selection. The primary objectives of the project are to:

* Increase the cost-effectiveness of the crack sealing and filling operations,

* Increase the quality, consistency, and life of the resultant seals and fills,

* Increase the safety of work crews and highway users

* Increase the use of remote and automatic equipment operation and control to
attain the above.

A machine that can satisfy the objectives listed above will have the added benefits
of reducing lane and highway closures and thus, will play a significant role in the
reduction of traffic congestion, a considerable problem in major urban regions around the
world. The cost effectiveness of such a machine will be realized through a combination
of increased speed and reduced manpower, in addition to the higher quality seal which

will reduce the frequency of major highway rehabilitations.

1.3 - MACHINE SPECIFICATIONS
To have the greatest impact, such a machine should satisfactorily perform the
following tasks automatically:

» Sense the occurrence and location of cracks in pavement.

* Prepare the crack and pavement surface for sealing/filling. This task includes the
removal of vegetation, loose debris, dirt film, and moisture. In addition,
preheating of the road surface may be necessary to ensure maximum sealant
adhesion and refacing of reservoirs (routing) may be required.

. Prepare the sealant/filler for application; i.e., heat and mix the material, etc.

* Dispense the sealant/filler over the crack.

» Form the sealant/filler into the desired configuration

¢ Finish the sealer/filler.

Copyright 2011, AHMCT Research Center, UC Davis

The equipment prototypes may be derived from modifying existing equipment or
from the development of new equipment (with preference given to suitable commercially
available equipment), and each equipment design may include one or more pieces of

equipment.

1.4 - MACHINE ARCHITECTURE
Two component systems will be utilized to address the spectrum of commonly
occurring cracks to be sealed. The longitudinal crack sealing machine will seal
construction joints at the edge of the roadway which run parallel to the roadway. The
second machine is the general crack sealing machine which will address the more
complex problem of sealing transverse and random cracks on the road surface.
The automated crack sealing machine (ACSM) architecture has the following major
subsystems:
e Vision Sensing System (VSS)
* Local Sensing System (LSS)
* Applicator Peripherals System (APS)
- Heating/Cleaning/Debris Removal Subsystem
- Router
- Sealant Applicator
* Robot Positioning System (RPS)
- General Machine Positioning System
- Longitudinal Machine Positioning System
¢ Vehicle Orientation and Control (VOC)
e Integration and Control Unit (ICU)
- Systems Integration
- Robot Path Planning (Off-Line)
The purpose of the VSS in conjunction with the LSS is to locate and describe

pavement cracks. The APS includes the Heating/Cleaning/Debris Removal Subsystem,

Copyright 2011, AHMCT Research Center, UC Davis

the Router and the Sealant Applicator. The Heating/Cleaning/Debris Removal
Subsystem will include all hardware and software necessary to heat and clean the road
surface during crack preparation. The router will shape the crack to optimal sealing
geometry. The Sealant Applicator is responsible for sealant dispensing and seal
configuration. The Robot Positioning System is responsible for moving the applicator
assembly along the crack during sealing. On the general machine, the General Machine
Positioning System will consist of a robot manipulator and a controller. On the
longitudinal machine, the Longitudinal Positioning System will position the applicator
using a programmable controller and hydraulic actuators. The Vehicle Orientation and
Control System will monitor changes in vehicle position from when the crack is sensed to
when it is actually sealed. Finally, the Integration and Control Unit will oversee the
entire crack sealing procedure by monitoring all peripherals to ensure proper operation

and controlling communication between subsystems.

1.5 - MACHINE OPERATION

Machine operation will begin with detection of cracks by the VSS which will be
mounted on the front of the support vehicle. The VSS scans the road, detects cracks and
sends the crack positions to the ICU. The VOC transforms the crack locations to the
workspace of the RPS. The LSS will be used to verify and precisely locate the cracks.
The RPS will manipulate the equipment of the APS to heat clean and seal the cracks.

The purpose of this report is to develop control algorithms for the General Machine
component of the Robot Positioning System. For simplicity, we will refer to the General
Machine component of the Robot Positioning System as the RPS for the remainder of this

report.

1.6 - CONTROL OF THE RPS
One of the primary tasks for design of the RPS was to implement ways of tracking

cracks in the pavement using the sensor information available. Sensor information

Copyright 2011, AHMCT Research Center, UC Davis

includes crack locations in the world coordinate system obtained from the VSS and crack
locations with respect to the end-effector of the manipulator using the LSS. The purpose
of the LSS is to verify and precisely locate cracks after initial detection by the VSS. Data
from the VSS is processed in order to detect pavement cracks by comparing gray shades.
Once the data has been collected, a path is planned along a crack and transformed into the
reference frame of the robot (Lasky and Ravani, 1993). The manipulator will then follow
the crack by moving to points defined along the pre-planned crack. Vision data
processing and path planning for crack data from the VSS is primarily a problem of off-
line path planning and will not be addressed in this thesis.

The LSS is extremely accurate and is capable of measuring cracks in three
dimensions. For this reason, the LSS can be used to verify the presence of pavement
cracks and provide data to the robot in order to implement closed-loop control for crack
following. Closed loop control with the RPS and the LSS can be used to account for
inaccuracies in the VSS or as an override in case of failure of the VSS, the ICU or the
VOC. The main limitation of the LSS is that it can only detect cracks along a single line
of laser light; therefore, three-dimensional information can only be obtained by moving
the LSS along a crack. Closed-loop control of the RPS for crack following using data
from the LSS will be the primary focus of this thesis.

1.6.1 - PREVIOUS WORK

A thorough search was conducted in the literature for methods of on-line control for
industrial robots. The search included on-line control of robots using vision and force
sensing and techniques used in automated welding.

Important considerations in the literature search concerned not only the nature of
the task being performed but the type of hardware being used as well. For the ACSM, it
is necessary to implement the control algorithms using an industrial controller. The
primary sensor to be used is the LSS. The operation and capabilities of the LSS is

described in Chapter 2. It can be assumed that a-priori information on the task may not

Copyright 2011, AHMCT Research Center, UC Davis

always be available except the starting location on orientation of a crack.

Much work has been done involving on-line control of robots using visual sensing.
Most of this work involves 2-D cameras using image processing techniques to identify
features or objects in the environment. The work involving vision sensing has little
relevance to the crack following problem since the LSS will be mounted on the end-
effector and is a relative proximity sensor. The LSS is not capable of identifying features
with respect to a fixed reference frame.

Considerable work has also been done in the area of force sensing for on-line
control. Endpoint force sensing is a well developed technology and has been applied to a
wide range of tasks. Some tasks such as contour following with force sensors are
conceptually very similar to the problem of crack following. While force sensing cannot
be used for the task of crack following, many of the algorithms used for control with
force sensing can be used for control with the LSS. On-line control using force sensing
for an industrial robot is discussed in (De Schutter 1988) and (De Schutter 1990).
Furthermore, a generalized approach for control using an arbitrary type of sensor is given
in (Espiau 1990). This topic will be further developed in Chapter 4.

The problem of following cracks in the pavement is similar to seam tracking which
is often used in automated welding. (Bamba 1984) describes an algorithm for seam
tracking for arc welding using a sensor similar to the one used with the LSS. The main
difference between tracking seams in automated welding and tracking cracks for
automated crack sealing is that the welding process is done at a much slower speed than

the crack sealing process.

Copyright 2011, AHMCT Research Center, UC Davis

CHAPTER 2 - ROBOTIC CRACK SEALING

This chapter will discuss the application of robotics to the ACSM. The job of the
robot positioning system (RPS) is to guide all of the sealing equipment over cracks in the
pavement. The RPS is a vital system since performance of the RPS is a limiting factor in
overall performance of the ACSM. Additionally, the use of a robot manipulator on a
vehicle on the highway represents an unusual application of robotics. Most robotics
applications take place in factories which have relatively controlled and structured
environments. The use of robotics in more revolutionary applications outside of the
factory has often involved custom made manipulators and controllers. For the ACSM,
off-the-shelf technologies will be used if possible. Therefore, development of the RPS
represents an unusual and previously untested application of an industrial robot. The first
section of this chapter will outline the requirements of the robot positioning system (RPS)
for the ACSM. Section 2 will outline machine concepts for the RPS and describe how an

appropriate manipulator was selected.

2.1 - REQUIREMENTS OF THE RPS

The requirements of the RPS general machine were set forth in SHRP proposal H-
107 (Velinsky 1990). The purpose of the RPS is to physically connect the various
components of the crack sealing machine. The RPS must move applicator assemblies
and sensors along cracks in the pavement. The original specifications for the RPS sought
a system that would be capable of sealing cracks along a full lane width (approximately
13 feet) at an average vehicle speed of 2 MPH. The specifications also called for a
system capable of accommodating crack preparation methods including routing, heating
and cleaning. Additionally, the machine was to be capable of maintaining the position of
applicator assemblies in the presence of physical disturbances. The time required for
converting the machine from "road travel” configuration to "crack sealing" configuration

was also to be minimized. This is an important factor since the machine must reach a full

Copyright 2011, AHMCT Research Center, UC Davis

13 feet of lane-width while not adding to the overall maximum truck width of § feet.
Finally, the specifications called for a machine composed of as many commercially

available elements as possible.

2.2 - SELECTION OF A MANIPULATOR

Two different types of manipulators were strongly considered for the positioning
system. The first type of system considered was a Cartesian coordinate based system also
commonly referred to as a gantry robot. This type of system has several strong
advantages including no singularities in the workspace, high payload capacity, high speed
and dynamics that are independent of end-effector position. The main disadvantage of
this type of system is the fact that it must be extend beyond a lane width while
conducting the sealing operation. The positioning system must also be stowed to allow
for down-the-road travel of the crack sealing truck.

The other type of system considered was a robotic arm system. The advantages of
this system include the fact that the arm is self-supporting and can extend beyond the
reach of the support vehicle. With a robotic arm system, the internal components of the
applicators and peripherals will be more accessible due to the lack of an outer frame that
would be present with a gantry system. It is also possible to operate two manipulators
simultaneously in the same workspace with this type of system.

A robotic arm system was selected for the positioning system. It was decided to use
this configuration as opposed to a gantry system in order to allow for simultaneous
operations on the same crack and to avoid the difficulties involved with stowing a gantry
system (Schulteiss and Velinsky, 1991). The design concept for the positioning system is
shown in figure 2.1. It will use a pair of manipulators mounted on a linear slide. The
slide will increase the workspace of the manipulator and will eliminate singularities near
the edge of the workspace. Process carts will be used to support the weight of the
applicator assemblies. The process carts will also give the applicator assemblies vertical

compliance with the roadway. This simplifies the problem of controlling the manipulator

Copyright 2011, AHMCT Research Center, UC Davis

10

REAR DOF
CONTROL,POWER, TRUCK

AND FLUID LINES

MANIPULATOR
SYSTEM

VERTICAL DEGREE
OF FREEDOM

MACHINE-TOOL
INTERF ACE
T0 MODULE

CONICAL
ALIGNMENT

(7/

CRACK SEALING-—J///
MODULE

Figure 2.1 Conceptual design for a robot arm positioning system (Velinsky, 1991)
by reducing it to a two-dimensional problem. For the prototype ACSM, only one
manipulator will be used.

The robot arm must be capable of controlling position and orientation in a plane
parallel to the road. The arm must also have good dynamic load carrying capacity and a
large workspace. Of all available robot configurations, SCARA configurations showed
the greatest promise for the RPS.

2.2.1 - SELECTION OF A SCARA ROBOT AND LINEAR SLIDE

A large number of commercially available robots were considered for the RPS.

Custom manipulators and controllers were eliminated due to time and cost constraints.

Among the commercially available manipulators the most important criteria for selection

Copyright 2011, AHMCT Research Center, UC Davis

11

were: workspace, payload, controllability and cost. It was determined that a SCARA
configuration that could be used in an inverted configuration would be preferred because
a larger workspace would be available. SCARA configuration robots are especially well
suited to two-dimensional problems. SCARA manipulators have fewer singularities in a
two-dimensional problems than many manipulators that possess more degrees-of-
freedom. Singularities pose a major problem for on-line control systems. The inverted
configuration will allow the manipulator to reach underneath the slide which effectively
doubles the size of the workspace. An analysis of the workspace of the selected
manipulator is given in Appendix E.

A linear slide also had to be integrated with the manipulator. The linear slide
increases the workspace of the robot and eliminates singularities near the edge of the
workspace. It was desirable to find a linear slide system that could be integrated with the
robot controller in order to simplify the problem of controlling a manipulator with a
redundant degree-of-freedom.

A GMF-A510 manipulator mounted in an inverted configuration on a linear slide
was selected for use by the RPS. The controller is a GMF A-510 RH series KAREL
controller. The KAREL controller is capable of incorporating the slide position into
Cartesian locations for forward kinematics calculations. Additional software was written
to account for the redundant degree-of-freedom in the inverse kinematics. The algorithm
for integrating the linear slide with the manipulator and the associated code written in
KAREL are given in Appendix F. Specifications for the GMF A-510 manipulator, the
KAREL RH series controller and the linear slide are given in Appendix H.

Preliminary tests of control algorithms for the RPS were done using an Adept-3
manipulator with an Adept A-series controller. The Adept-3 is a SCARA configuration
manipulator with kinematics that are very similar to the A-510. The Adept controller and

the GMF KAREL controller are also very similar in function.

Copyright 2011, AHMCT Research Center, UC Davis

12

Figure 2.2 GMF-A510 manipulator and linear slide.

2.3 - CONCLUSIONS AND SUMMARY

This chapter has described the design concept for the RPS and how an appropriate
manipulator and controller were selected. The manipulator to be used is a SCARA
configuration manipulator which has been inverted and mounted on a linear slide. This
configuration was chosen from a selection of commercially available manipulators for
ease of control,ypayload and workspace. The manipulator has a redundant degree-of-

freedom to eliminate some singularities and to increase the workspace. Additional code

Copyright 2011, AHMCT Research Center, UC Davis

13

had to be written by the user to account for the redundant degree-of-freedom in the

inverse kinematics of the robot.

Copyright 2011, AHMCT Research Center, UC Davis

14

Sensors commonly used on robot end-effectors include force, vision, proximity and
tactile. For this work we are primarily interested in proximity sensors. Proximity sensors
return the distance from the sensor to an object in the environment. Proximity sensors
can be either absolute or relative. An absolute proximity sensor returns the distance to an
object at its nearest point. Ideally, an absolute proximity sensor will return the radius of a
sphere centered at the sensor in which the sensed object must lie. A relative proximity
sensor returns the distance to an object relative to the orientation of the sensor. The
reading returned from a relative proximity sensor may not be the shortest distance to the
sensed object. When using a relative proximity sensor it is often desirable to keep the
sensor oriented such that it is normal to the object and hence will return the shortest
distance to the object.

Proximity sensing is similar to force sensing for many tasks. Force sensors usually
return contact forces and torques between the manipulator and the environment. If there
is some compliance between the end-effector tooling and the object being manipulated,
the relative distance between the end-effector and the object can be estimated. This can
be done by dividing the force magnitude by the estimated stiffness between the
manipulator and the object. In this way, a force sensor can be used to return proximity to
an object. Therefore, some algorithms for control using force sensing can also be
accomplished using proximity sensing.

A generalized approach for obtaining task definitions using endpoint sensors is
given in (Espiau, 1992). The approach is valid for any type of sensor. The task
definition consists of a primary sensor controlled task function and a secondary task
function on the subspace of motions that will not affect the sensor readings. Once the
task definition is obtained, it provides the error signal that the controller will try to bring
to zero during the time of the task.

In addition to closed-loop control, proximity sensors can also be used in error

recovery routines. Error recovery is usually implemented if the end-effector loses contact

Copyright 2011, AHMCT Research Center, UC Davis

16

with the object being manipulated before the task is complete. Error recovery may
involve relocating the object in order to complete the task. Proximity sensors are often
very useful in error recovery routines. Objects can be located by conducting a 'search’

algorithm while monitoring the output of the sensor.

3.2 - OPERATION AND SPECIFICATIONS OF THE LSS

The Local Sensing System is a relative proximity sensor for sensing pavement
cracks. The sensor projects structured laser light onto a surface and determines distances
to points on the surface using a CCD camera and the principal of triangulation. The
location of a crack is extracted from the crack profile. The sensor was selected for use on

the ACSM and is manufactured by MVS Modular Vision Systems Inc., De Miniac,

Figure 3.1 Stuctured Light (Krulewich and Velinsky 1992).

Copyright 2011, AHMCT Research Center, UC Davis

17

Montreal, Canada, Model # MVS-30. The sensor was specifically designed for use in
robotics application and can operate in harsh environmental conditions. The sensor data
is processed with an IBM-486 PC. For increased performance, image profile data is
processed via a coprocessor board which plugs into a standard ISA-Bus slot.Each reading
of depths along a scan line produces a surface profile (figure 3.2). A program running on
the IBM 486-33 PC analyzes each profile to determine if there is a crack on the surface.
Cracks are detected by observing gradients between consecutive pixels along the surface
profile. If the height difference between two consecutive points is determined to be
greater than the average surface roughness along the profile, the sensor program
determines that the edge of a crack has been found. Once both edges of a crack have
been found, the location of the center of the crack is determined (Krulewich and Velinsky
1992). This location will always be relative to the center of the sensor. The relative
distance to the center of the crack is the error signal that is returned to the RPS.

The LSS has a an effective field of view of approximately 75 mm. The crack
location program is capable of updating the RPS at 33 Hz. The resolution of the image

data with a 75 mm field of view is less than 0.4 mm. (Krulewich and Velinsky 1992).
FILTERED CRACK PROFILE

6+
44
2 4

-30 -25 -20 -15 -10)-p,Q S5 10 15 20 25 30

depth (mm)

4 4
61

distance (mm)

Figure 3.2 Filtered crack profile. Krulewich and Velinsky (1992)

Copyright 2011, AHMCT Research Center, UC Davis

18

Figure 3.3 The Local Sensor mounted on a test stand. The cables connect to the laser
source, the power supply and the PC.

3.3 - INTERFACING WITH THE LSS

Once the LSS has calculated the offset distance to the center of the crack, or has
determined that there is no crack in its field of view, it must send this information to the
robot controller. Since this data transfer is done in a closed control loop, it must be
accomplished in a quick and efficient manner. Also, the error data generated by the LSS
can be filtered and modified to improve the performance of the closed-loop system with

the RPS.

Copyright 2011, AHMCT Research Center, UC Davis

19

S

Figure 3.4 Flowchart for Crack Locating Program (Krulewich and Velinsky, 1992).

Copyright 2011, AHMCT Research Center, UC Davis

SN, 4

calibrate 2 profile

yes

crack found

20

3.3.1 - DATA TRANSMISSION PROTOCOL

Since most robot controllers and the IBM 486-33 PC are equipped with RS-232
serial ports, a serial line was used to transfer data. In order to simplify communications,
each error is scaled to be transmitted as a single byte. For example, the largest negative
error the sensor can detect (-2.0 in) would be sent as -126 and the largest positive error
(2.0 in) would be sent as 126. The baud rate of the serial communications is set at 4800
baud. The RPS will send a single byte to the LSS PC each time it is ready to receive a
piece of data. For each piece of data sent from the LSS to the RPS, two bytes must be
sent and received. The time to send 2 bytes at 4800 baud is less than 4 milliseconds.
Therefore, the actual transmission of data over the serial line does not cause any
significant delays in the system.
3.3.2 - LOW PASS FILTERING OF ERROR DATA

A flowchart of the LSS program is shown in figure 3.4. The sensor calculates the
offset from each crack profile. Once the error has been calculated, its value is filtered via
a second order low-pass Chebyshev filter. The purpose of filtering the error data from the
LSS will be described in the following chapter. If the RPS has sent a bit requesting data
during the previous cycle, the LSS will send the error to the serial port. Otherwise,
another profile will be analyzed and a new offset error calculated.
3.3.3 - SIMULATING SENSOR SATURATION

If the sensor does not find a crack in its field of view, a 'no crack found' condition
will be generated. In order to make the control scheme more robust, the LSS code was
modified to simulate the condition of sensor saturation. When the sensor is moved such
that the crack passes out of its field of view, the LSS program will set the error to be the
maximum value that the sensor can return on the side on which the crack was last
detected. This value will be run through the low-pass filter along with the other
calculated errors. This process is designed to simulate saturation in an analog sensor and

sends the robot controller more information than a simple 'no crack found' signal. The

Copyright 2011, AHMCT Research Center, UC Davis

21

addition of the saturation condition makes the control loop for crack following more
robust and less sensitive to cases where the sensor may for some reason not detect a

crack.

3.4 - SUMMARY AND CONCLUSIONS

This chapter has described the Local Sensing System (LSS) which will be used to
detect cracks in the pavement and close a control loop around a robot controller. The
LSS will help account for errors that occur when locating cracks using the VSS .The
requirements of the LSS were presented. These requirements were determined by the
nature of the crack sealing operation as well as environmental conditions. Many
commercially available sensing technologies were examined and a laser scanning sensor
using structured light was selected for the LSS. The sensor uses diffusely reflected light
from a laser to determine distances along a scan line based on the principle of
triangulation. Cracks are detected from analysis of surface profile data from the LSS.
The offset distance between the center of the sensor and the center of a crack is sent to the
RPS via a serial line. Sensor data is filtered via a low-pass filter and code to simulate
sensor saturation has been added in order to improve performance for closed-loop control

with the RPS.

Copyright 2011, AHMCT Research Center, UC Davis

22

CHAPTER 4 - MOTION CONTROL ALGORITHM

The purpose of this chapter is to describe the development of an algorithm for on-
line position control of an industrial robot based on endpoint proximity sensing. This
algorithm will be used to follow cracks in the pavement with a robot using input from the
Local Sensing System (LSS). Section 2 of this chapter will discuss work that has already
been done in similar areas and its relevance to the problem at hand. Section 3 will
develop an algorithm for hybrid control using relative proximity sensing similar to
algorithms for hybrid control using force sensing. Section 4 will describe a computer
simulation of the control algorithm that is developed in section 3. Section 5 will describe
how to implement the algorithm with an industrial controller. Implementation of a
compliant motion algorithm using force control will be covered in section 6. Section 7
will describe the compliant motion algorithm using the LSS as a relative proximity
sensor. Finally, section 8 will describe a control and communications architecture that
will allow the compliant motion algorithm to flexibly interface with other control systems
in order to provide a robust manipulator control system for the automated crack sealing

machine.

4.1 PROBLEM STATEMENT

This chapter will address the problem of crack following using two separate
algorithms. The first algorithm will assume that there is no a-priori information available
about the path to be followed. This algorithm will use feedback from the LSS to control
both the position and orientation of the end-effector. This algorithm will only require the
approximate starting location and direction of the crack to be followed in order to begin
closed-loop control.
4.1.1 PROBLEM STATEMENT FOR FEEDBACK CONTROL FOR POSITION
AND ORIENTATION

The problem to be addressed is to follow a planar path using the LSS mounted on a

Copyright 2011, AHMCT Research Center, UC Davis

23

manipulator end-effector. No a-priori information is given about the path except its
starting position and orientation. The control problem can be broken down into three
parts:

1) Keeping the end-effector centered over the sensed path.

2) Maintaining a specified end-effector velocity tangential to the path.

3) Maintaining end-effector alignment in a direction tangential to the sensed path
4.1.2 PROBLEM STATEMENT FOR USING CLOSED-LOOP CONTROL FOR
POSITION AND OPEN-LOOP CONTROL FOR ORIENTATION

If crack direction information is available from the VSS, the problem to be
addressed will be to use the LSS to keep the end-effector centered over the crack and
move the end-effector tangential to the crack. The crack direction will be determined by
data from the VSS. The problem statement will then consist of the first two parts of the
problem statement given in section 4.1.1.

Design requirements for the ACSM dictate that the above algorithm be
implemented in real-time using an industrial controller and the LSS as off-the-shelf
components. Time and cost limitations on the ACSM project eliminate the building of
custom manipulators and controllers. Additionally, an algorithm that can be implemented
on an industrial controller is much more useful because it can be easily ported to many
other robots presently in production. An algorithm that would work on an industrial

controller will simplify commercialization of the ACSM.

4.2 - PREVIOUS WORK

Much work has been done in the area of compliant motion using force sensing.
Such control schemes are often referred to as "hybrid control”, "stiffness control”
"compliance control” or "force impedance control”". The objective of these control
schemes is to regulate the contact forces between a manipulator and the external
environment. They combine force sensor and position information to control a

manipulator's motion. Although compliant motion is usually done using force feedback,

Copyright 2011, AHMCT Research Center, UC Davis

24

for specifying compliant motion tasks. The formalism is based on the hybrid control
functional specification described by Mason (1981). The second part of the paper
develops an algorithm for compliant motion using external control loops closed around a
robot positioning system. The algorithm developed is similar to the work of Salisbury
except that the use of external control loops makes implementation possible with most
industrial controller. This paper refers to compliant motion with force sensing and does
not directly address compliant motion with other types of sensing such as proximity

sensing. The work of this paper is a primary foundation of work done in this report.

Bamba et. al. (1984) "A Visual Seam Tracking System for Arc-Welding Robots"

This paper addresses the problem of tracking a seam for arc welding using an
optical laser sensor mounted on the end-effector of a robot. The sensor uses a laser diode
and a PIN diode linear sensor chip to detect seams based on the principal of triangulation.
The sensor returns the position of the seam in terms of a radius and an angle in its circular
scan of the laser. The measurement is made relative to the sensor and hence the end-
effector frame of the robot. The circular scan area of the sensor makes it possible for the
sensor to observe the seam ahead of the end-effector. Also the end-effector speed for arc
welding is relatively slow.

The problem addressed in this paper is similar to the crack following problem with
the exceptions that the LSS uses a linear scan and cannot detect the crack ahead of the

end-effector and the end-effector speed for crack following is significantly higher.

Espiau, Merlet and Samson (1990) "Force Feedback Control and Non-Contact Sensing:
A Unified Approach”

This paper proposes a global approach to the problem of proximity and force-based
control applications in robotics. The concept of and interaction screw is introduced

which models how a sensor interacts with the environment. The concept of the

Copyright 2011, AHMCT Research Center, UC Davis

25

for specifying compliant motion tasks. The formalism is based on the hybrid control
functional specification described by Mason (1981). The second part of the paper
develops an algorithm for compliant motion using external control loops closed around a
robot positioning system. The algorithm developed is similar to the work of Salisbury
except that the use of external control loops makes implementation possible with most
industrial controller. This paper refers to compliant motion with force sensing and does
not directly address compliant motion with other types of sensing such as proximity

sensing. The work of this paper is a primary foundation of work done in this thesis.

Bamba et. al. (1984) "A Visual Seam Tracking System for Arc-Welding Robots"

This paper addresses the problem of tracking a seam for arc welding using an
optical laser sensor mounted on the end-effector of a robot. The sensor uses a laser diode
and a PIN diode linear sensor chip to detect seams based on the principal of triangulation.
The sensor returns the position of the seam in terms of a radius and an angle in its circular
scan of the laser. The measurement is made relativé to the sensor and hence the end-
effector frame of the robot. The circular scan area of the sensor makes it possible for the
sensor to observe the seam ahead of the end-effector. Also the end-effector speed for arc
welding is relatively slow.

The problem addressed in this paper is similar to the crack following problem with
the exceptions that the LSS uses a linear scan and cannot detect the crack ahead of the

end-effector and the end-effector speed for crack following is significantly higher.

Espiau, Merlet and Samson (1990) "Force Feedback Control and Non-Contact Sensing:
A Unified Approach"”

This paper proposes a global approach to the problem of proximity and force-based
control applications in robotics. The concept of and interaction screw is introduced

which models how a sensor interacts with the environment. The concept of the

Copyright 2011, AHMCT Research Center, UC Davis

26

interaction screw allows force and proximity sensing problems to be treated in the same
manner. The paper goes on to discuss the development of control laws for compliant
motion using the algorithms and models that have been introduced.

4.2.2 - DESCRIPTION OF HYBRID CONTROL

One of the most common applications for a stiffness control algorithm is a
manipulator trying to fit a peg into a close fitting hole. Without force control, the
position of the hole must be known exactly for the insertion. If there is an error in the
insertion angle, the peg may start to bind. Without force feedback, the manipulator will
try to force the peg into the hole resulting in a jammed or broken peg. Using force
feedback, the manipulator can adjust the position of the peg to reduce the binding force.

Another application of stiffness control involves following a contoured surface with
an end-effector while maintaining a constant contact force by using feedback from an
endpoint force sensor. Figure 4.1 shows a task configuration for the two-dimensional
contour tracking problem. The surface is a unknown and arbitrary but it is continuous.
The object frame is defined at the contact point. One axis is tangential to the surface at
the contact point and the other axis is orthogonal to the contact surface. The task frame
defines which directions are used for force control and which directions are used for
position or velocity control. The contour tracking problem is similar to the crack-
following in many ways. Further development of this problem and its similarity to crack
following with the LSS will be covered in subsequent sections.

For the problem at hand, there is no actual contact between the manipulator and the
environment. However, by reading the output of the LSS, the controller can determine
the offset between a crack in a surface and the end-effector. This reading or offset error
is similar to the force reading returned by an endpoint force sensor. Therefore, even
though there is no actual contact with the environment , stiffness control algorithms with
some modifications can be used to control a manipulator using feedback from the LSS

mounted on the end-effector.

Copyright 2011, AHMCT Research Center, UC Davis

27

28

yb
A yt = yo yee(t= Xo
Xb /
/7
® v/
X N,
- T

0: object frame

t: task frame

ee: end-effector frame X ee
r: world frame

b: robot base frame

ist of ripts : ,‘
BN

Figure 4.1 Coordinate Frames for Compliant Motion.

4.2.3 - NESTED CONTROL LOOPS USING AN INDUSTRIAL CONTROLLER
One problem of implementing a force control scheme with a manipulator is that it
the complex and non-linear dynamics of the manipulator have to be taken into account.
However, an industrial controller can handle the complex manipulator dynamics and
implement position control. It is possible to close a control loop around the position
controller and implement force or hybrid control. In this case, the problem is broken
down into two more manageable sub problems. The industrial position controller handles
the manipulator dynamics while the secondary control loop closed around the controller
handles interaction with the environment. (DeSchutter 1990). Figure 4.2 shows a block

diagram of the system using an external control loop closed around a position controller

Copyright 2011, AHMCT Research Center, UC Davis

to implement force control. This representation assumes that sensor dynamics are
negligible and that the contact forces present are not large enough to effect the dynamics
of the position controller. The contact force is measured and is multiplied by the stiffness
gain K before being fed back to the position controller. Ky is the estimated contact
stiffness between the end-effector and the environment at the contact point. An external
control loop using the LSS does not need to use the stiffness gain Ky since the LSS
measures the actual displacement distance and not contact force. Therefore, the use of Ky
to convert a measured contact force to an estimated distance is one difference between
using a force sensor and the LSS when using the control scheme shown in figure 4.2.

In order to use the task frame described above with external control loops, we have
to make one important assumption. We have to assume that the dynamics of the
manipulator and position controller system which form the inner control loop are
independent of the position of the end-effector and the direction of motion. This
assumption is true for most industrial robots with decentralized controllers as long as the
bandwidths and damping ratio of all independent joint control systems are nearly

identical. (DeSchutter 1990).

Xo (s)
Ey) FORCE X4 | PosiTioN x Y
CONTROLLER [—#=| CONTROLLER |— Ko
+ K(s) h(s)

Figure 4.2 Force control loop closed around a position controller.
4.2.4 DEFINING THE TASK FRAME FOR FORCE CONTROL

In order to implement hybrid control, we must define a task frame which will
determine how the force and position control laws are applied. By properly defining the
task frame, we can use separate, decoupled control loops to handle force control and

position control. By using separate, decoupled control loops, we can avoid the

Copyright 2011, AHMCT Research Center, UC Davis

complexities of control. DeSchutter(1988) defines a task frame for hybrid control which
defines orthogonal force and position control directions for the task frame. Figure 4.3
shows the task frame for the case of the contour tracking problem using force control. By
using the task frame shown in figure 4.3, we can use the one-dimensional force control
scheme in section 4.2.3 to control the contact forces in the force control direction and a

separate control loop to control position or velocity in the position control direction.

Yo Yo

XT> X0

\ path to be followed

Figure 4.3 The object frame is represented by X, and Yy and coincides with the task
frame X;and Y;. Y; will be referred to as the normal position control direction and X;
represents the tangential position direction. AX represents a normal position error. This
error can be detected by a proximity sensor using distance or a force sensor with a

flexible tool attached. The orientation error is represented by o.

4.2.5 ESTIMATING THE TASK FRAME FOR FORCE SENSING
The task frame shown in figure 4.3 changes as the end-effector moves along the

contour. Therefore, the task frame is constantly changing with respect to the world

Copyright 2011, AHMCT Research Center, UC Davis

30

coordinate system. In order to implement on-line hybrid control, it is necessary to
repeatedly calculate the position and orientation of the task frame as the end-effector
moves along the contour. This task is relatively easy to accomplish if a six degree-of-
freedom force sensor is used. If we assume negligible friction between the end-effector
and the object, we can take the arc tangent of the forces measured along the axes of the
world coordinate system and determine a normal to the surface. This normal vector can
then be used to determine the orientation of the task frame or the tracking direction.

It is now possible to control the orientation of the end-effector with respect to the
task frame at any time. This can be done by estimating the tracking direction and
calculating the error between the tracking direction and the actual end-effector
orientation. By applying a control law to this error and feeding it back to the position
controller, we can create another control loop that will control the orientation of the end-
effector with respect to the task frame. Therefore, it is possible to control contact forces,
velocity and orientation of an end-effector following a contoured surface by using three
separate and decoupled control loops closed around a position controller using a force

Sensor.

4.3 CONTROL WITH RELATIVE PROXIMITY SENSING

Now that we have reviewed previous work in control with force sensing and
proximity sensing, we will develop an algorithm for compliant motion using relative
proximity sensing. This section will develop two separate control algorithms. The first
control algorithm (sections 4.3.1-4.3.3) will control both the position and orientation of
the end-effector using feedback from the LSS. The second control algorithm (sections
4.3.4-4.3.6) will use open-loop control for orientation of the end-effector using data from
the VSS and feedback control from the LSS to control position of the end-effector.
4.3.1 DEFINING THE TASK FRAME FOR RELATIVE PROXIMITY SENSING
USING FRENET SERRET VECTORS

Estimating the object frame for contour following with endpoint force sensing is not

Copyright 2011, AHMCT Research Center, UC Davis

31

a difficult process. The vector normal to the surface (the force control direction) can be
measured directly by taking the inverse tangents of the forces measured along the axes of
the world coordinate system. The velocity-controlled direction can then be set normal to
the force-controlled direction in the desired direction of travel. With relative proximity
sensing, the direction of the surface normal cannot be measured directly. Therefore, it is
necessary to estimate the object frame when using relative proximity sensing. In order to
estimate the object frame for proximity sensing, we must first formally define the frame.

We will use the principles of local curve theory to help define the task frame for
relative proximity sensing. Consider a parametric curve in 3-D space. The curve can be
expressed either as a function of time ¢(t) or as a function of arc length a(s). At each
point along o.(s) there exists a tangent vector T(s) which is defined as T(s)=do/ds=0".
Hence if o lies in a plane, we can express o(s) in the form a(s)=(x(s),y(s),0) and the
tangent vector field can be expressed as T(s)=(x'(s).y'(s),0). We can also define the
principal normal vector field N(s) such that N(s)=T'(s)/x(s) where x(s)=IT'(s)l. Finally,
we can define the binormal vector field to oi(s) as B(s)=T(s)XN(s). These definitions for
the tangent vector field, the principal normal vector field and the binormal vector field
are from the Frenet Serret apparatus for a spatial curve.

The vector fields of the Frenet Serret apparatus can be used as a basis for the
definition of the object frame for hybrid control using relative proximity sensing. For our
purposes, it is necessary to redefine the principal normal and binormal vector fields. The
principal normal vector field is always defined such that it always points towards the
center of curvature of a. For the object frame in hybrid control it is desirable to define
the normal vector such that its direction is constant relative to the direction of travel of
the end-effector. Therefore, we will define the path to be followed as o and the
tangential vector field as T = &' as in the Frenet Serret apparatus. The path will be

assumed to lie in a plane such that o = xi+ y:i where and are the unit vectors of the axes

Copyright 2011, AHMCT Research Center, UC Davis

32

T(s)

Figure 4.4 A spatial curve a(s) with the normal vectors N(s) and tangent vectors T(s)
shown.

of the world coordinate system. We will now define the binormal vector to be constant
such that B' = k and the principal normal vector will be defined as N' =B'XT. With
these definitions, the direction of the normal vector will be only dependent on the
direction of the tangent vector. The task frame will now be defined as follows. Let the
path to be followed lie on a plane and be defined as o.. Let t and f be the unit vectors of
T and N' respectively. The task frame will then consist of the axes defined by t and f

where t denotes the tangential direction and i denotes the normal direction

~
~ t ~

-t 7
-t ?

Figure 4.5 Normal and tangential unit vectors for defining the task frame for hybrid

control with relative proximity sensing.

4.3.2 ESTIMATING THE TASK FRAME FOR RELATIVE PROXIMITY
SENSING

Copyright 2011, AHMCT Research Center, UC Davis

33

So far, this paper has discussed hybrid control using a force sensor and the LSS in
the same manner. However, there are important differences between these different types
of sensing. Force sensing provides both a force magnitude and the direction of the force.
Figure 4.4 illustrates sensing using the LSS. The displacement error (Ax) measured by the
sensor is dependent upon o, which is the error between the end-effector orientation and
the tracking direction. Therefore, the LSS only returns accurate information when the
end-effector is aligned with the tracking direction. Since the LSS is not capable of
detecting the direction of the path as a force sensor is, the path direction must be
estimated by looking at previous end-effector locations and the associated LSS readings.
Since it is impossible to estimate the tracking direction with complete accuracy and the
accuracy of the displacement reading is dependent on aligning the end-effector with the
tracking direction, a coupling effect exists between the orientation control loop and the
normal direction control loop. The cause of the coupling affect is shown in Figure 4.6.
Error in estimating the task frame causes motion in the tangential direction which affects
offset in the normal direction. This error can cause overshoot and oscillations in end-
effector motion which in turn make it more difficult to estimate crack direction. This
coupling effect is due to the nature of the sensing. Both the normal direction loop and the
orientation control loop must be heavily damped when using the LSS, since instability in
one loop will tend to propagate to the other loop.

In order to use the task frames described above with external control loops, we have
to make one important assumption. We have to assume that the dynamics of the
manipulator and position controller system which form the inner control loop are
independent of the position of the end-effector and the direction of motion. This
assumption is true for most industrial robots with decentralized controllers as long as the
bandwidths and damping ratio of all independent joint control systems are nearly

identical. (DeSchutter 1990).

Copyright 2011, AHMCT Research Center, UC Davis

34

~—__line of sensor scan

distance \ actual distance to path
measured
by sensor

@ = sensor orientation error

Figure 4.6 Distance error caused by an orientation error with a relative proximity

sensor.

path of crack ___,.

offset error

vg vg(sin(e))

o = orientation error
Figure 4.7 Offset error caused by motion in the tangential direction when an orientation
error is present.
4.3.3 OBTAINING CRACK DIRECTION USING GLOBAL VISION DATA
This section will discuss how data path planning is done for the RPS based on data
from the VSS. The subsystems involved include the Vision Sensing System (VSS), the
Vehicle Orientation an Control System (VOC) and the Path Planning module. Processing

of vision data and the development of the path planning module is not a part of the work

Copyright 2011, AHMCT Research Center, UC Davis

35

Vehicle Orientation an Control System (VOC) and the Path Planning module. Processing
of vision data and the development of the path planning module is not a part of the work
of this report and is included for completeness. Details on processing of vision data can
be found in Kirschke and Velinsky (1992) and the path planning module is discussed in
Lasky and Ravani (1993).

The VSS acquires images of the road using a line scan camera. Scans are taken as
the vehicle moves forward. Each scan is 1/16 inch deep and 12 feet wide. The data from
the scans are buffered up to build an image consisting of 2"X2" tiles, each of which
consists of a 32X32 grid of 1/16" pixels. The VSS software then builds a histogram of
gray shades within each tile and computes a statistical moment for each histogram. The
tiles are then compared within independent 5X35 tile areas. The comparison algorithm
looks for tiles which have a greater amount of contrast relative to neighboring tiles. An
example of a comparison grid is shown in Figure 4.7. In this case the algorithm is
checking for a crack running in the Northeast direction. A crack will be said to exist if all
of the moments of the tiles labeled 'D' and the center tile are greater than the moments of
all of the tiles labeled 'C'. Thus, the algorithm will determine if each tile contains a crack.
If the tile is determined to contain a crack it will also have an associated direction number

from the 5X5 comparison grid. The direction numbers will be in increments of 22.5°.

C|C|C D
C|C D
C O C
D ci|C
D Ci|C|C

Figure 4.8 VSS Comparison (C) and Direction (D) tiles for a Northeast running crack.
The job of the path planning module is to convert the output of the vision software

into useful paths for the robot manipulator. The raw vision data is insufficient, as it is

just an array of potential crack locations, without any sense of relationship between tiles.

The path planning algorithm will process this data by filtering out noise, filling in blank

Copyright 2011, AHMCT Research Center, UC Davis

36

The path planning algorithm operates with a set of points P corresponding to the
centers of tiles where a crack exists. Each point P, also has an associated direction
number. The algorithm begins filtering the data by removing isolated image points. The
algorithm then looks for connections between isolated segments of points. It does this by
finding the endpoints of each section and then 'growing' the endpoints to connect
segments that are close together. The 'grown' data is then thinned to unit tile thickness
using a simple heuristic algorithm (Lasky and Ravani, 1993).

The algorithm then defines a set of 'visited' points based on the workspace of the
manipulator. The set of 'visited' points will consist of consecutive points defining a
single path from one end of the manipulator workspace to the other.

Once the set of visited points has been established, a continuous path is created by
splining the discrete points together with third order Bézier curves. At each path point,
an approximate tangent is known based on the direction number set by the vision system

or created during the grow/thin process. This information, along with the order in which
the points arranged, can be used to compute the unit tangent vector fk at each point.

With this information, the Bézier control points g, =[g, gy gy, dk,]1 for each path

segment k can be computed as follows:

g, =P, (4-1a)
Gr, =P +1, (4-1b)
G, = Pru —fen (4-1c)
Gk, = Py (4-1d)

Now that Bézier curves have been defined between consecutive points, the entire
path can be defined as a collection of intervals which constitute a Bézier spline curve. In
order to obtain crack direction information for the robot manipulator, it is necessary to
find tangents to the spline curves as a function of the world coordinate 'x'. For the crack
sealing operation, we can assume that the curve is monotonic in 'x' and therefore can be

expressed as a function of 'x'.

Copyright 2011, AHMCT Research Center, UC Davis

37

Let the spline curve be denoted as o(u) where u is the parameter for the entire

curve. We will now define the local parameter ¢ for each interval as follows:

u-u, _u-u,

t= (4-2)
Ugg—Uy AU,

Note that ¢ =(0,1) for each interval (ugug.,).

The derivative at any point in the interval is as follows:

do. 1 do (1)

—_— el 4-3

du Au, dt 3

. L do () . .

The derivative ot can be calculated from the control points and the Bernstein
polynomial for each segment as follows:

d ‘a -

—g"(t)=n3 Ag, Bj”(t) (4-4)

dt j=0 /
where:

Agk, =Gk, ~ 9k (4-5)

and 9, denotes the jth control point in the interval k. The polynomial B/(t) is defined

explicitly by:
n
B/(t) =(i)t’(1—-t i (4-6)

This derivative will be in terms of ¢ rather than 'x'. We can solve for ¢ at a desired
x and use the result to obtain a derivative in terms of 'x'; however, this process is
somewhat tedious. In this case, finding ¢+ will involve solving a cubic equation and then
taking the solution that lies within the interval (0,1).

The above method will return the exact tangent vector to the spline curve at any
given point; however, for our purposes an approximate tangent vector as a function of 'x'
will be sufficient. Therefore, a simpler method can be devised to extract the approximate
tangent vector without the need to solve a cubic equation for 7.

Consider a single interval on the spline curve. We have already defined the local

Copyright 2011, AHMCT Research Center, UC Davis

38

parameter ¢ that varies for 0 to 1 as 4 varies from u; to ug,;. We will now define local
parameters for arc length and chord length. The local arc length s will be defined as the

length of the curve between P; and a(t):

t
s= ! }%ldt 4-7)

The total arc length between points Prand Py, ; will be defined as s, where:

1
5= do (4-8)
0

at

Finally, we will define ¢ as the local chord length along the interval which will be

the distance along a chord drawn between P and Py,; The total chord length will be

denoted as ¢, where c; is the magnitude of a vector between P, andPy,; or:
P~ P (4-9)

C, =

Figure 4.9 Beziér curve between points Py and Py.; The chord for the interval is
denoted by 'c’.
We will now make an approximation and map the arc length along the interval into

the chord length along the interval such that:
2.2 (4-10)
sk ck

Copyright 2011, AHMCT Research Center, UC Davis

39

40

For the crack sealing operation, we will assume that the curve o.(s) can be expressed
as a function of the Cartesian variable 'x'. and, since the endpoints of each interval are
known, it is easy to calculate ¢ for a given value of 'x'. on any interval. Now we have a

function that will map the Cartesian variable 'x'. to the local arc length s.

The next step is to reparametrize the curve from o(t) to o(s). We can now express

the derivatives of the curve as:
do ds do
—_—— 4-11
at dt ds ()

we will assume that the speed along the curve %l? is constant.

Therefore, the derivatives of the curve with respectto ¢ and s are proportional:
do do.
—=K— 4-12
at ds ¢-12)

If we recall the definition of arc length, this relationship implies that we can map ¢

at each interval into arc length as follows:

== (4-13)
Sk

We now use the mapping approximation between ¢ and s:

s.c (4-14)
sk ck

¢ is mapped to the Cartesian value x. as follows:
C__ X=X (4-15)

Co Xiwr — Xy

This yields an approximation for ¢ along each interval as:

X% (4-16)
Xyrr — Xy

We can now find the derivative in any interval by using the approximation for ¢ and
calculating the derivative with equation (4-4). The direction of the derivative vector will
be the tangent to the path at that point. This will allow us to calculates tangent to the
curve as a function of x.

The path planning module will identify a crack in the workspace of the manipulator

and send the starting location and direction of the crack along with an array containing

Copyright 2011, AHMCT Research Center, UC Davis

values of x. in the Cartesian frame along with the associated crack direction values. The
controller will then use the crack direction values to define the task frame and orient the
end-effector. The position of the end-effector will be controlled by trying to zero the
offset error from the LSS while moving tangential to the crack directions received from
path planning.
This control algorithm will be useful if the VSS can accurately determine the shane of a
crack, but the exact location of the crack is not known due to errors in the VSS or the
VOC. Knowing the crack direction a-priori eliminates the difficulties of trying to
estimate crack direction from previous crack locations from the LSS.
4.3.4 CONTROL ALGORITHM

Recall the block diagram for a force control loop closed around an industrial
position controller shown in Figure 4.2. A similar diagram for closing a control loop
using the LSS is given in Figure 4.10. The controller manipulator system is shown with
its separate parts consisting of the inverse kinematics module, the joint controller and the
manipulator. Together they take a desired Cartesian input xp and the end-effector moves
to the desired position producing the output of the actual end-effector position xg. The
end-effector position and the local sensor output can be combined to produce the crack
location with respect to the task frame. The end-effector frame is used as the task frame
since the object frame is not exactly known. The crack location in the task frame is
multiplied by the gain vector to generate a new location in task space. The new location
is then converted to a location with respect to the world coordinate system and sent to the
position controller. The position controller calculates the desired joint angles and servos
the joint motors to obtain the next end-effector location.

The block diagram of Figure 4.10 describes the control algorithm using feedback
control for both position and orientation. The feedback error is a three element vector of
the Cartesian location and an orientation. This same block diagram can be used for the

algorithm with open-loop control for orientation if dr becomes a two element vector of

Copyright 2011, AHMCT Research Center, UC Davis

41

Cartesian position only and the orientation from the VSS is fed directly to the position

controller to become part of the desired Cartesian location Xp.

4.4 COMPUTER SIMULATION OF HYBRID CONTROL

Pending delivery of a robot for use for the ACSM, it was decided to run a computer
simulation of the hybrid control algorithm. The purpose of the simulation was twofold:
(1) verify the validity of the algorithm for proximity sensing since no documentation had
been found on the implementation of hybrid control using proximity sensing and (2) to
gain insight into tuning the control laws of the external control loops in a safe simulation
environment before implementation with hardware.
4.4.1 MODELING

In order to implement a numerical simulation, it is necessary to model the plant, the
sensor and the control laws being used. In this case the plant will be the position
controller around which the external control loops will be closed. The simulation will
assume a simple plant model and use a robust control law to account for uncertainties in
the model. The plant model used was a second order system which was approximated
from the dynamics of a single joint controller for the Stanford-JPL arm. Approximating
plant dynamics from the dynamics of a single joint was suggested by (DeSchutter 1990).
In this case, we used the joint with the largest natural frequency. Like most industrial
controllers, this system is heavily damped to minimize overshoot. We will assume that
the plant model for a position input will be independent of the position of the end-effector
or the direction of the motion. For the simulation, sensor dynamics will be neglected
although the type of sensing used will be discussed in following sections. Specifics of
the modeling for the plant in the simulation can be found in Appendix A.
4.4.2 SENSING

The simulation was designed to simulate hybrid control using three different types
of sensing as described below:

FORCE SENSING

Copyright 2011, AHMCT Research Center, UC Davis

42

wo3v1q 3201g OI'F 24n31,

tangential movement

l ROBOT POSITION CONTROLLER

__>®_D_r> INVERSE JOINT
+ KINEMATICS | + CONTROLLER

MANIPULATOR

==~ - -

¢ wmaw mmem mmmm e amme wwem mmee gmew —

Copyright 2011, AHMCT Research Center, UC Davis

19174

This will simulate the a sensor that can accurately determine the distance between
the sensor and the desired path and the direction of the desired path at any time.
PROXIMITY SENSING

The simulation will be run with a sensor that can detect the shortest distance
between the end-effector and the desired path but not the direction of the path.
RELATIVE PROXIMITY SENSING

The simulation will be run with a sensor that emulates the LSS. The sensor will
return the distance between the end-effector and the desired path relative to the current
orientation of the end-effector. The sensor cannot directly measure path direction.

4.4.3 HYBRID CONTROL ALGORITHM
PROBLEM STATEMENT

The problem to be addressed by the simulation is the same as in the problem
statement of section 4.1 which is to follow a path on a two-dimensional surface using one
of the types of endpoint sensing described. No a-priori information is given about the
path except its starting position and orientation. Based on the task frames defined in the
previous section, the control problem can be broken down into three separate parts:

1) Keeping the end-effector centered over the sensed path.
2) Maintaining a specified end-effector velocity tangential to the path
3) Maintaining end-effector alignment parallel to the tracking direction.

Part 1 of the problem will involve using a control loop in the normal position
direction of the task frame using feedback from the sensor. Part 3 will measure the path
direction and adjust the end-effector orientation appropriately. Part 2 will not use a
feedback loop because the desired velocity is known and can be specified through the
position controller.

A flowchart of the hybrid control algorithm is given in figure 4.11. The control
algorithm will use velocity vector inputs to the position controller that will be calculated

from sensor readings and the desired tangential velocity. Initially, the controller will be

Copyright 2011, AHMCT Research Center, UC Davis

given approximate information on the starting location and orientation of the path. The
manipulator will then move tangential to the path and take a sensor reading to obtain its
displacement from the center of the path. The sensor input will be run through a digital
PID control law to obtain a gain for the velocity to be specified in the normal direction.
The manipulator will then move the end-effector normal to the path with the specified
velocity. The end-effector will then be rotated so that it is aligned with the tracking
direction. A velocity tangential to the path will be specified, the end-effector will move
and a new sensor reading will be taken. The loop will continue until the controller
receives a signal that the task is complete.

4.4.4 PROGRAMMING THE SIMULATION

The hybrid control simulation was done using MATLAB. MATLAB can be used to
obtain time responses of dynamic system models and can be structured into programs
similar to many higher-order programming languages. The simulation was constructed to
model the manipulator and position controller as described in section 4.4.1. Additionally,
the simulation allows the user to specify any one of the three types of sensing discussed
in section 4.4.2. The desired path for the manipulator to follow as well as the given
starting position and orientation of the end-effector can also be specified. The rate at
which the plant controller receives sensor data (the update rate) can also be set.

The transfer function modeling the plant was used to determine the position and
velocity of the end-effector in response to a velocity input after set amount of time equal
to the sensor update period. This position and velocity are then used as initial conditions

for the plant when responding to the next velocity input signal. A separate function
calculates velocity gains for the normal position direction using a digitally implemented
PID control law. The gains for the PID control law were determined by applying loop
shaping to obtain a robust controller for a continuous-time model of the plant. The value

of the output of the plant at the end of each time step are stored so that the position of the

Copyright 2011, AHMCT Research Center, UC Davis

45

<

initialize

Y

input starting
position, orientation

v

move w/
tangential
velocity

Y

il mr———

/ read sensor /

normal
position
control law

'

move w/
normal
velocity

!

adjust
orientation

Figure 4.11 Algorithm for simulated hybrid control.

Copyright 2011, AHMCT Research Center, UC Davis

46

Cartesian path of end-effector

15

0 2 4 6 8 10 12 14 16
X

Figure 4.12(a) Simulated trajectory of the end-effector using relative proximity sensing
for hybrid control. The path used uses the function y=x. The end-effector was started at
the location (0,1). The dashed line represents the sensed path and the solid line
represents the end-effector trajectory.

Cartesian path of end-effector

15

10

X

Figure 4.12b) Simulation results same as above except using the function y=x for x<=4
and y=0.5*(x-4) for x>4 for the sensed path..

time. Documented code for the simulation is given in Appendix A. Results of a

simulation are shown in Figure 4.12.

Copyright 2011, AHMCT Research Center, UC Davis

47

4.4.5 CONTROL WITH RELATIVE PROXIMITY SENSING

Compliant motion control using relative proximity sensing has problems additional
to those encountered for compliant motion control using force sensing. Since orientation
errors of the end-effector cause errors in proximity measurement, special measures must
be taken to control end-effector orientation. Small errors in orientation will cause
proximity errors that can be accounted for in the design of a robust controller. Large
errors in orientation, however, can cause proximity measurement errors large enough to
make the system unstable. The largest errors occur when:

1) The end-effector oscillates to resume tracking following a disturbance.
2) The end-effector orientation is programmed to follow the tracking direction
without accurately knowing the tracking direction.

This problem can be resolved taking the dynamics of the end-effector into account
and designing a compensator which will act as a low-pass filter to keep the orientation
from responding to oscillations in the end-effector position such as those caused by
disturbances. The necessary factors in compensator design are:

1) Dynamics of end-effector orientation plant.
2) Oscillation frequencies of end-effector position.
3) Response time to changes in path orientation.
Any compensator design will involve compromises in disturbance and error

rejection, response time and stability.

4.5 HYBRID CONTROL WITH AN INDUSTRIAL ROBOT

There are many problems associated with implementing any closed-loop control
scheme on an off-the-shelf industrial robot controller. However, the availability of
industrial controllers and the effort and costs associated with developing a custom
controller make industrial controllers appealing for most applications. Also, most
industrial controllers and robot programming languages are similar so that it is often an

easy task to port a control scheme that works on one controller to most other controllers

Copyright 2011, AHMCT Research Center, UC Davis

48

on the market. For this reason, a control scheme using any industrial controller is likely
to be usable on most robots presently in use.
4.5.1 CAPABILITIES AND LIMITATIONS OF INDUSTRIAL CONTROLLERS

Two separate controllers were used to implement the hybrid control algorithm
developed in this thesis. These controllers are the Adept A-series controller
manufactured by Adept Technology in San Jose, California and the GM-Fanuc RH
controller manufactured by GM-Fanuc Robotics of Auburn Hills, Michigan. These
controllers and other similar controllers represent nearly half of all operational robot
controllers in the United States. The Adept and GMF controllers are very similar in
capabilities and programming structure.

The primary task that an industrial controller can accomplish is moving its
manipulator between two points in Cartesian space. Most controllers can perform this
task with a variety of motion profiles and using almost any defined reference frame.
Most controllers also have the ability to move along a series of defined points that form a
path. While moving along a path, the manipulator can cause the joint decelerations for
moving to one point to be smoothly joined to the joint accelerations for moving to the
next point. This creates a smooth continuous movement through a series of points. The
manipulator may not necessarily pass through each point exactly when following a path.

The primary limitation of industrial point-to-point controllers is the inability to
change the destination of the end-effector once a move command has been given. Due to
this fact, it is impossible to continuously update the position of the end-effector. If the
position can't be updated continuously or at least at known time intervals, then most
control theory will not apply to external control loops around the position controller. For
this reason, there are limitations to the performance of a system with external control
loops closed around an industrial controller that are greater than would be predicted by

the dynamics of the controller-manipulator system by itself.

4.6 COMPLIANT MOTION USING FORCE SENSING WITH THE

Copyright 2011, AHMCT Research Center, UC Davis

49

ADEPT-3 ROBOT

The hybrid control algorithm was implemented on the Adept-3 robot using force
sensing. This was done prior to integration with the LSS to test the hybrid control
algorithm. A 6-axis force sensor was integrated with the Adept controller. This sensor
allowed the control algorithm to be implemented and tested with a minimal amount of
time devoted to the task of sensor integration.

A flowchart of the hybrid control algorithm is given in figure 4.13. For each move
of the manipulator, the force sensor is read and the force magnitude and direction is
calculated from the force reading. The force magnitude is run through a PID control law
and multiplied by the estimated stiffness of the end-effector and the environment at the
contact point. At the same time, the force direction is compared to the end-effector
orientation. The difference between the end-effector orientation and the force direction is
also run through a PID control law to obtain an updated orientation. The new point and
orientation is used in a move command, the sensor is read and the cycle repeats until the
task is complete.

The results of the tests with force control loops control loops closed around the
Adept-3 manipulator confirmed the validity of the hybrid control algorithm. No attempt
was made to optimize the control loops for the force control loop since a higher priority
was set on implementing hybrid control with the LSS for use with the ACSM. Code for

implementation of the force control routine and results are in Appendix B.

4.7 COMPLIANT MOTION USING THE LSS

This section will discuss the implementation of hybrid control using feedback from
the LSS with two separate industrial SCARA configuration manipulators. The hybrid
control algorithm was first tested on the Adept-3 robot. The algorithm was modified
slightly and ported to the GMF A-510 robot. Section 4.7.1 will discuss the control

algorithm used and any differences between the algorithm used for the simulation or

Copyright 2011, AHMCT Research Center, UC Davis

50

initialize

Y

move to starting
position and
orientation

read
sensor

Y

caiculate force magnitude
and direction in tool frame

]

Y

transform force direction
to world reference frame

Y

Apply control law to error
between force direction
and end-effector orientation
to obtain new orientation

1

calculate force error from
force magnitude and desired
contact force

Y

apply control law to force
error to obtain force gain

use force gain, desired
tangential velocity and
new orientation to
calculate position offset

Copyright 2011, AHMCT Research Center, UC Davis

Y

add position offset
to present location
to obtain new location

Y

move to new location
and orientation

task
complete?

no

Figure 4.13 Algorithm for hybrid control using force sensing.

51

Figure 4.14 Adept Technologies 6-axis integrated force sensor with probe attached for

contour following.

Copyright 2011, AHMCT Research Center, UC Davis

b

.
o

¢

%%

- -
-

-
-

f} -
//_g .

Figure 4.15 The Adept-3 manipulator with endpoint force sensor attached.

Copyright 2011, AHMCT Research Center, UC Davis

. -
,w -

.

.

-

.
.

.
.
.

N

.
.

-

.

L

B .
AN

-
-
-

-
-

.
-

- -

é'/ - - -

- -

Figure 4.16 Crack following with the Adept-3 and the LSS.

Copyright 2011, AHMCT Research Center, UC Davis

Figure 4.17 The GMF-A510 manipulator,
LSS attached.

Copyright 2011, AHMCT Research Center, UC Davis

inverted, mounted on the linear slide with the

55

55

Figure 4.18 Crack following with the GMF-A510 and the LSS.

force sensing. Interfacing the robots with the LSS and the control architecture will be
discussed in section 4.7.2. Section 4.7.3 will discuss tuning the controller and section
4.7.4 will discuss filtering of the LSS output to obtain improved performance.
4.7.1 - CONTROL ALGORITEM

A flowchart of the algorithm used to implement hybrid control with the LSS is
given in figure 4.19. After all variables have been initialized the end-effector must be

moved to the start of the crack and aligned with the direction of the crack at that point. A

Copyright 2011, AHMCT Research Center, UC Davis

sensor reading is then taken and the sensor error is run through a PID control law. At the
same time the direction of the crack is estimated by looking at previous end-effector
positions and the associated sensor readings. This provides estimated positions of the
crack at the previous two points. The estimated orientation is calculated by taking a
secant between these two points. The difference between the actual end-effector
orientation and the estimated crack direction is also run through a PID control law to
obtain a gain that is added to the current end-effector orientation to obtain the new
orientation input. A new offset point is calculated relative to the current position using
the normal direction gain, the new orientation and the tangential velocity gain (which is
set as constant). The offset point is then added to the current position to transform it to
the world coordinate system. The new point is then used as a motion input, a sensor
reading is taken and the loop continues until the controller receives a signal that the task
is complete.

Both the Adept and GMF controllers will process commands while a move
command is taking place. Therefore, it would seem that using the above algorithm, the
controller will generate points at the same rate at which the controller could cycle through
the loop. However, the motion constraints of the controller will only allow the controller
to have at most two move commands whose destination points have not yet been reached.
If it receives a move command for a third point, it will halt program execution until one
of the previous points has been reached. Once the controller is executing the loop, the
cyclic rate will be the same as the time necessary for the end-effector to move between
two consecutive generated points. This time varied between 50 ms and 500 ms during
tests with the algorithm using the Adept-3 manipulator. Figure 4.20 illustrates the
differences between the update rate of the controller and the update rate of the LSS.

4.7.2 CONTROL ARCHITECTURE AND COMMUNICATION
Interfacing the Adept or GMF controller with the LSS is essential to closing the

normal direction control loop for hybrid control. The error data from the LSS is

Copyright 2011, AHMCT Research Center, UC Davis

57

initialize

v

move to starting
position and
orientation

\j

read sensor offset %

Y

Y

end-effector orientation

between estimated crack direction and

Estimate crack direction and calculate error l

apply control law to sensor
reading to obtain normal

Y

direction gain

new orientation

Apply control law to error between estimated
direction and end-effector orientation to obtain

Figure 4.19 -

Copyright 2011, AHMCT Research Center, UC Davis

Y

use normal direction gain, desired tangential velocity
and new orientation to calculate position offset

Y

add position offset
to present location
to obtain new location

Y

move to new location
and orientation

Flowchart

task no

complete?

for hybrid control using

the

LSS

38

CONTROLLER CYCLES

I I I O A O .
ot
2in_J|_
SENSOR OUTPUT
T b, bt o
K
_2in T=27 ms

Figure 4.20 Comparison of LSS and controller update times.

processed from raw sensor data using an IBM PC (see chapter 3). The error information
is passed from the PC to the controller via an RS-232 serial line at a transmission rate of
4800 baud. For ease of transmission each error reading was scaled to be transmitted as a
single byte. Since the LSS generates error data faster than it can be used by the
controller, a 'software handshaking' protocol was implemented so that excess error data
will not accumulate on the serial port buffer of the controller. When the controller is
ready to receive a piece of data, it sends a signal byte to the IBM PC being used by the
LSS. Each time the LSS determines a new error signal, it checks to see if the controller
has requested information. If the controller has requested information, the error signal is
sent. If the controller is not ready for new information, the LSS loops through another

scan until it determines a new error signal and again checks the serial line for a data

Copyright 2011, AHMCT Research Center, UC Davis

request from the RPS. Due to the time it takes for the LSS program to loop and the time
required to both receive and send data bytes, time delays due to communications can be
as long as 40 milliseconds. This delay could be substantially reduced by implementing a
service interrupt routine for serial communication on the PC processing the LSS data
(Krulewich and Velinsky, 1992). Details on operation of the LSS are given in Chapter 3.
4.7.3 TUNING THE CONTROL LOOPS

The hybrid control algorithm uses two separate control loops. One loop is the
normal direction control loop that is closed around the LSS and the other loop is the
orientation control loop which is closed by estimating the crack direction. These control
loops are dynamically coupled due to the relative nature of the proximity sensing as
described in section 4.2.3. In order to deal with the coupling effects, both control loops
should be tuned to have a high damping ratio to insure high stability. If both loops are
very stable, oscillations in one loop will not propagate to the other loop and cause the
system to become unstable.

It is not possible to rigorously apply control theory to the control loops in the hybrid
control algorithm. This is primarily due to the fact that point inputs to the controller can't
be updated once the motion has begun as described in section 4.4.1. Also, the cycling
time of the control program varies between 50 and 500 milliseconds. If the cycling time
of the control program were constant it would be possible to model the system as a digital
system with a sampler and zero-order hold. The LSS data could be treated as a sampled
input and move commands to the motion controller could be treated as discrete output
followed by a zero-order hold. The dynamics of the plant could be roughly modeled by
empirically measuring motion of the manipulator and fitting the data to a second-order
system model. However, since the sensor updates at approximately 33 Hz and the
controller cycles at anywhere between 20 Hz and .5 Hz, the resulting system is a multi-
rate discrete system where the time of the hold for the output varies with each cycle. No

existing control theory can reasonably handle such a system in a rigorous manner.

Copyright 2011, AHMCT Research Center, UC Davis

60

Therefore, the control loops of the hybrid control algorithm had to be tuned using trial-
and-error and applying general principles of control theory rather than specific laws.

The parameters for tuning the normal position control loop are dictated in a large
part by the nature of the crack sealing operation. First, extreme accuracy is not required.
Errors of up to an inch are perfectly acceptable for the task. Secondly, the type of cracks
to be addressed by the ACSM will not make sharp changes in direction (greater than 25
degrees). The path of the end-effector should also be smooth, therefore the system should
not respond to sméll oscillations in crack direction (which will appear as high frequency
signals to the LSS). Finally, the system should be tuned to be as stable as possible due to
inherent instabilities induced by position-orientation coupling and a variable cyclic rate.
Therefore, the compensator for the normal position direction should emphasize stability
and noise rejection at the expense of response time and steady state error.

The control law for the orientation error of the end-effector should act as low-pass
filter. A sample of the orientation error is given in figure 4.21. Since the crack direction
is estimated by using what essentially is a numerical differentiation algorithm, the

Estimated End Effector Rotation Error

40

20 .

220 i

1

Rotation Error (Degrees)
=)

0 10 20 30 40 50 60 70 80 90 100
Number of Samples

Figure 4.21 End-effector orientation error during hybrid control.

Copyright 2011, AHMCT Research Center, UC Davis

61

estimated crack direction tends to be a very noisy signal. Once again, stability and
disturbance rejection in the control loop should be emphasized over response time and
accuracy.
4.7.4 FILTERING OUTPUT OF THE LOCAL SENSING SYSTEM

It was determined that system performance using hybrid control could be improved
by applying a low pass filter to the output of the LSS. All of the data read by the LSS is
filtered with a second-order filter. The most recent filtered error is sent to the RPS each
time data is requested. There are several reasons why the filter will improve system

performance.

1.2 Magnitude vs. Frequency for 2nd order Chebyshev Filter

0.8

Magnitude
o
(=)

0.4}

0.2

0 0.5 1 15 2 25 3
Normalized frequency

Figure 4.22 Magnitude-frequency plot of a type-1 second order Chebyshev filter. The

cutoff frequency for this filter was set at 4 Hz assuming a sampling rate of 33 Hz. The

normalized frequency is such that

_on
normalized ™
s

w

where g is the sampling frequency.

Copyright 2011, AHMCT Research Center, UC Davis

62

S

Without the filter, the controller uses the most recent output for each cycle in the
algorithm. The sensor can update many times faster than the controller can accept data.

Therefore, much of the data from the LSS is lost if a filter is not used.

Comparison of raw and filtered LSS data

24

23 -

(millimeters)

nN
N
L

Error

21 T T Y T Y T T T

LSS Reading Number

Raw Data

—————— Filtered Data

Figure 4.23 Comparison of filtered and unfiltered sensor data from a test of the hybrid

control algorithm. The test was run using a crack routed in plywood.

A smooth path of the end-effector is desirable for the crack sealing operation.
Pavement cracks are often rough and have many small deviations. In order to achieve a
smooth end-effector motion these small deviations must be filtered out as if they were
high frequency noise.

An integral gain was originally used in the normal position control loop for the

Copyright 2011, AHMCT Research Center, UC Davis

63

hybrid control algorithm. However, due to the dynamic coupling with orientation and the
multi-rate effects, the system often became unstable with even small integral gains. It
was therefore decided to eliminate the integral gain for the normal control direction at the
controller and achieve disturbance rejection characteristics and a high damping ratio by
filtering input from the LSS.

For testing purposes on cracks routed in plywood, the filter cut-off frequency was
set at 4 Hz. For operation on pavement, the optimal filter cut-off frequency can be
determined from frequency analysis of LSS data while operating in a crack following
operation. The cut-off frequency is a function of end-effector speed as well as crack
geometry. Frequency analysis of test on pavement cracks may also reveal the need to use
a higher order filter.

4.7.5 ESTIMATING CRACK DIRECTION GEOMETRICALLY

An alternate method of calculating the end-effector orientation through geometric
means was also tested. Problems arise with the control algorithm for end-effector
orientation due to the fact that noise is tends to be amplified and the time step for the
control law is unknown and varies with each step. The geometric method looks at
previous points and finds the tangent through a interpolation or curve fit in Cartesian
space. This method has been tested by using a least squares linear regression on the five

most recent points along the crack to calculate a tangent angle.

4.8 CRACK SEALING USING HYBRID CONTROL

The following section will describe how the compliant motion algorithm with the
local sensor is used on the ACSM. A control architecture is developed that combines all
available information from the Vision Sensing System, the Path Planning system as well
as the Local Sensing System. The object of the architecture is to implement crack
following as quickly and efficiently as possible while making allowances for failures or
errors in individual subsystems.

4.8.1 FEEDBACK VERSUS OPEN-LOOP CONTROL

Copyright 2011, AHMCT Research Center, UC Davis

64

Two types of control are available for the controller. The first type is open-loop
control using the data from the VSS. Open-loop control assumes that the information
from the VSS is available and correct. The data from the VSS will be processed to
produce Cartesian locations in the workspace of the manipulator. The location data will
consist of points along a crack as well as the crack direction at each point. Open-loop
control has no way of the accuracy of the data.

The second type of control is closed-loop or feedback control. This is the type of
control that is done using the output of the LSS. Feedback data can only reveal past
locations and has no a-priori knowledge of the crack. Feedback control can correct errors
in the manipulator position by feeding an error signal back to the controller. The LSS is
only capable of returning the offset position of the crack in its field of view with respect
to the end-effector frame of the manipulator. The crack direction in feedback control can
be estimated by looking at previous points along the crack.

Controlling the manipulator can involve open-loop control, feedback control or a
combination of both. There will be 3 distinct modes of control based on the type of
control. Mode 1 will use open-loop data and verify it with the LSS data. Mode 2 will use
feedback data from the LSS to control both position and orientation and Mode 3 will use
feedback control to control position and open-loop control to control orientation.

4.8.2 - SOURCES OF ERROR

Two likely sources of errors for sensing cracks are the Vision Sensing System
(VSS) and the Vehicle Orientation and Control System (VOC). The purpose of the VSS
is to detect cracks in front of the support vehicle by using an area scan camera. The
algorithm used by the VSS divides the scanning area into 2x2 inch pixels. The VSS
compares gray shades to determine if a crack exists in each pixel. Errors of greater than
an inch are possible simply due to the resolution of the pixels. These errors are added on
to hardware errors such as camera resolution and vibration of the camera mount.

The purpose of the VOC is to kinematically transform the cracks detected by the

Copyright 2011, AHMCT Research Center, UC Davis

65

VSS in front of the vehicle to the workspace of the robot which is behind the vehicle as
the vehicle moves forward. There will be more than a 40 foot separation between the
front and rear of the vehicle. The VOC will determine vehicle motion by monitoring
encoder wheels attached to the vehicle frame. Sources of error for the VOC include
slippage of the encoder wheels on the pavement and the resolution of the encoder wheels.
Errors from the VOC will be added to the errors already present from the VSS.

After a crack is detected, the vehicle moves forward until the crack is in the
workspace of the robot. Due to the errors described above position errors of several
inches are possible. It is also possible that no crack actually exists since the VSS can
only detect gray shades and therefore can be fooled by grease stains, shadows and already
sealed cracks. The field of view of the LSS is only 3 inches, so it is highly probable that
once the manipulator moves to the start of the crack, the error will be great enough that
the crack will not even be in the field of view of the LSS. It is also possible that the
detected crack does not even exist.

4.8.3 - USE OF CLOSED-LOOP CONTROL

Many of the problems associated with errors from the VSS and the VOC can be
eliminated by incorporating a compliant motion algorithm with the LSS. However, crack
following using the compliant motion algorithm with LSS limits the manipulator speed.
The speed limitations are due to the fact that the algorithm must define many points to
constantly control the manipulator motion. The use of a higher point density causes more
joint accelerations and decelerations and hence tends to slow the speed of the end-
effector.

4.8.4 MODE 1-OPEN-LOOP CONTROL

The concept for the control architecture is to use a pre-planned path generated from
VSS data as much as possible. The compliant motion algorithm will be used to search
for the crack if the errors in the pre-planned path become larger than the field of view of

the LSS. Once the crack is located by the compliant motion algorithm, the actual crack

Copyright 2011, AHMCT Research Center, UC Davis

66

location can be sent back to the ICU. The error in the crack location can then be used to
help correct errors in the pre-planned path.
4.8.5 MODE 2-FEEDBACK CONTROL FOR POSITION AND ORIENTATION

The compliant motion algorithm can also completely override use of a pre-planned
path in the event of a system failure of the VSS, the VOC or the ICU. In this case, the
end-effector can be moved to the beginning of the crack and aligned with the starting
direction of travel using the teach pendant. The compliant motion algorithm will then be
executed for the crack following operation. The end-effector speed using the compliant
motion algorithm will be slower than if pre-planned path data were available.
4.8.6 MODE 3-FEEDBACK CONTROL FOR POSITION AND OPEN-LOOP
CONTROL FOR ORIENTATION

A scheme that uses the LSS to control the position of the end-effector and data from
the VSS to control the orientation of the end-effector can also be used. This scheme will
work well if there are errors in the location of the crack from the VSS, but its shape is
generally known. The direction of the crack will be sent to the RPS according to its
location along the 'x' axis of the world coordinate system. The control algorithm will use
the LSS to follow the crack, but the direction information from the VSS will replace the
orientation control loop of the algorithm. This scheme will require the approximate
Cartesian location of the starting of the crack.
4.8.7 ERROR HANDLING

An error handling routine will be called any time the crack is lost from the field of
view of the local sensor. The same error handling routine will be used regardless of
whether the motion was being controlled by data from the VSS or the LSS. The search
algorithm will search at right angles for the crack according to the most recent crack
direction. The searching algorithm is essentially the same as the compliant motion
algorithm except that the tangential velocity is set to zero. If the crack is not in the field

of view of the sensor, an extreme error value must be given to indicate which direction to

Copyright 2011, AHMCT Research Center, UC Davis

67

start the search. If the crack is still not found, a search will be conducted in the opposite
direction as well. Limits are set on the distance to be searched.
4.8.8 - CONTROL ARCHITECTURE

The control architecture will be defined by the following algorithm:

(1) The location of crack will be determined by the VSS, VOC etc. and a path
consisting of Cartesian points within the workspace of the robot will be calculated and

sent to the RPS.

(2) The manipulator will move to the beginning of the crack using the path

generated by the ICU and path planning.

(3) The local sensor will be checked to determine if a crack is present. If no
crack is found, the RPS will signal the ICU and begin searching for the crack at right
angles using the LSS. The result of the search--either 'no crack found' or the location of
the crack will be sent to the ICU. The RPS will then wait for an updated path to be sent

from the ICU and will resume motion with step (2).

(4) Once the location of the crack has been verified by the LSS and the path has
been updated (if necessary) the manipulator will follow the crack and the LSS output will
be monitored. The LSS data can be used to determine if the manipulator runs off of the
crack. If this occurs, the ICU will be signaled and a search for the crack will begin as in
step (3). Once again, the result of the search will be sent to the ICU and the RPS will

wait for an updated path before resuming motion as in step (2).

(5) When the manipulator reaches the last point defined on the path it will signal

the ICU to indicate that the end of the crack has been reached.

Copyright 2011, AHMCT Research Center, UC Davis

68

Additional options:

(a) It will be possible to define a maximum offset within the field of view of the
sensor. If the offset from the end-effector to the crack exceeds the maximum offset, the
manipulator will center itself on the crack using the LSS and signal the ICU in similar

manner to the signaling for the search routine described above.

(b) It will be possible to override all data from the ICU and follow cracks using
only the RPS and the LSS. This override will require the manipulator to be moved to the
start of the crack and aligned in the direction of travel using the teach pendant. The
motion speed for this override will be much slower than if global data were used.

(c¢) Crack following can also be conducted using crack direction data from the
VSS and using closed-loop control with the LSS for position control.

4.8.9 - COMMUNICATIONS

Communication to and from the RPS will be accomplished by means of serial lines.
Two separate lines will be used, one for communication with the LSS and one for
communications with the ICU. Specifics on the data transfer can be found in the

documented code for integrated control in Appendix G.

4.9 - SUMMARY AND CONCLUSIONS

This chapter has addressed the problem of developing a motion control algorithm
for hybrid control of an industrial robot. Hybrid control algorithms for both force and
relative proximity sensing were developed. The purpose of the hybrid control algorithm
is to follow cracks in the pavement with an industrial robot using the local sensor as part
of the ACSM.

The first section of this chapter defined the problem to be addressed and divided it

into three tasks, two of which implement control loops around the robot controller. The

Copyright 2011, AHMCT Research Center, UC Davis

69

second section discussed previous work that has been done in the area of hybrid control.
Most of the work that has been done with hybrid control involves endpoint force sensing
rather than proximity sensing. This section also discussed the advantages of using
control loops closed around an industrial controller. The task frame for the problem was
presented and the difference between implementing hybrid control with force and relative
proximity sensing was also discussed.

The third section of chapter 4 presented a numerical simulation of hybrid control
using MATLAB. The MATLAB simulation revealed important qualitative results on
hybrid control using relative proximity sensing. The simulation showed that there is a
coupling effect between position and orientation control when using relative proximity
sensing. Therefore, an algorithm for hybrid control using the LSS should have
compensators for orientation control as well as control of position normal to the path.
Both compensators should be designed to yield a system that is heavily damped.

The fourth section began actual implementation of hybrid control using industrial
robots. The hybrid control algorithm was implemented on the Adept-3 robot using both
endpoint force sensing and endpoint relative proximity sensing with the LSS. Hybrid
control was also implemented on a slide-mounted GMF A-510 manipulator using the
LSS.

Due to the limitations of an industrial controller, it is difficult to rigorously apply
control theory to control loops that are closed around an industrial controller. However,
the best performance is achieved when the gains were adjusted so that the system is
heavily damped. Also performance was increased by filtering the error data from the
LSS with a low-pass filter.

The final section of the chapter discussed how the hybrid control algorithm fits into
the overall architecture of the ACSM. The architecture attempts to combine off-line
machine vision data along with closed-loop control using the LSS to create an efficient

and robust crack-following capability for the ACSM.

Copyright 2011, AHMCT Research Center, UC Davis

70

CHAPTER - 5§ SIMULATION AND TEST RESULTS

This chapter will discuss the results of implementing hybrid control on industrial
controllers. Results of the hybrid control simulation programmed on MATLAB will also
be presented. The results will show how the hybrid control algorithm with the LSS was
refined progressively from the MATLAB simulation to implementation on the Adept-3 to
its final implementation on the slide-mounted GMF-A510 robot. The results presented
will be mostly qualitative in nature. The main criteria for the results are that the
algorithm is capable of performing the desired operation of crack following. The gains
for the controllers were adjusted until performance was satisfactory before data was
collected for results in this section. Because control theory cannot be rigorously applied
to the hybrid control algorithm, it is impossible to determine what optimal performance
of the system should be (section 4.6.3). However, the control laws should take
anticipated crack geometry into account (such as how quickly cracks change direction
and the amount the cracks jog from side to side).

Section 5.1 will discuss results of the MATLAB simulation. Section 5.2 will
discuss results of hybrid control using an endpoint force sensor on the Adept-3 robot.

Results of hybrid control using the LSS will be presented in section 5.3.

5.1 - RESULTS OF NUMERICAL SIMULATION OF HYBRID
CONTROL

A simulation of the hybrid control algorithm was done using MATLAB. There
were several reasons for performing the simulation. First, the simulation was to test the
validity of the compliant motion algorithm using endpoint force sensing and obtain some
idea of how well it would perform. Secondly, the simulation was to determine what
differences exist between using force sensing and relative proximity sensing for hybrid
control. Finally, it was hoped that the simulation could be used to help determine optimal

control gains for the hybrid control algorithm for implementation with an actual robot.

Copyright 2011, AHMCT Research Center, UC Davis

71

The simulation was done prior to the arrival of the Adept-3 robot and therefore provided
a head-start for implementing hybrid control.
S.1.1 - SIMULATION OF HYBRID CONTROL WITH FORCE SENSING

The simulation was first performed for compliant motion using force sensing. The
force sensor is simulated such that it will accurately return the distance between the end-
effector and the desired path as well as the direction of the desired path. This simulates
using a force sensor with a flexible tool attachment. The distance measurement can be
obtained by dividing the measured force magnitude by the estimated stiffness between
the end-effector and the environment at the contact point. The direction of the desired
path can be obtained by taking the inverse tangent of the measured forces along the axes
of the world coordinate system.

The hybrid control algorithm with force sensing uses one control loop to control
motion in the force-controlled direction based on the force reading. Velocity and
orientation control are done open-loop. The gains for the force control loop were chosen
such that the system has a heavily damped response. This was done because stability was
determined to be the most important criteria for crack following.

5.1.2 - SIMULATION OF HYBRID CONTROL WITH RELATIVE PROXIMITY
SENSING

After the hybrid control algorithm was simulated for force control, the same
algorithm was tested using a simulation of the LSS. The simulation of the LSS measures
the distance between the end-effector and the crack along the scan line of the LSS and is
not capable of measuring the direction of the path directly. The direction of the path
using the LSS is determined by looking at previous positions of the end-effector and
taking secant lines. This method of estimating the tracking direction tends to make the
system less stable. Applying a low-pass filter to the estimated tracking direction
improves system stability. Although a low pass filter for orientation was never used in

the simulation, the need was recognized and a filter was used for hardware

Copyright 2011, AHMCT Research Center, UC Davis

72

implementation. Filtering allows the end-effector to be aligned with the tracking
direction while not responding to oscillations in end-effector motion due to disturbances.

The hybrid control algorithm for the LSS uses two control loops; one for the normal
direction to the path and one for end-effector orientation. Overall, the hybrid control
algorithm simulation using the LSS has a less stable response than the algorithm using
force sensing because the LSS cannot directly sense path direction. The response of the
algorithm using both simulated force sensing and a simulation of the LSS is shown in
figure 5.1. Furthermore, the simulation revealed a coupling effect between the two
control loops of the algorithm using the LSS. Instability in one loop will tend to
propagate to the other loop. Therefore, the external control loops for hybrid control using
the LSS must be chosen such that the system response is heavily damped.

Code for the MATLAB simulation and the models that were used are contained in

Appendix A.

5.2 - HYBRID CONTROL WITH ENDPOINT FORCE SENSING

This section will discuss the results of implementing hybrid control on the Adept-3
manipulator using an Adept A-series controller with an integrated 6-axis force sensor.
The work that was done in force sensing is rather brief since it took place while waiting
for a hardware problem with the LSS to be corrected. No attempt was made to optimize
the external control loop gains on the algorithm since priority was placed on
implementing hybrid control with the LSS. Hybrid control using loops closed around the
Adept-3 controller did in fact work, but a certain amount of passive compliance between
the end-effector and the environment was necessary. The need for a certain amount of
passive compliance when implementing counter following using force control is

mentioned in De Schutter (1988). The algorithm used was as described in section 4.6.

Copyright 2011, AHMCT Research Center, UC Davis

73

Hybrid control comparison with force sensor and LSS.

X

~~~~~~~~ Actual Path of crack
—————— Path using force sensing
Path Using LSS

Figure 5.1 The simulation results for hybrid control using simulated force sensing and the
LSS. The end-effector was started with a one inch offset in both cases.. For the same

system, the algorithm is less stable and has higher overshoot when using the LSS.

Copyright 2011, AHMCT Research Center, UC Davis

74



End-effector orientation error

1.2
-
1.0 ,/ \\
/ \
I, \
— ”—~N\\
'g 0.8 - / \\ /, \\\
[ L 2. b~
R \ / \ 7 ==
v / \\._,r/
c \ /
° 064 \ 1}
E \\ //
1 \
® v/
S  04- N
0.2 T 1 Y T Y T r 1 r
0 10 20 30 40 50

Number of cycles

Actual crack direction
————— End-effector orientation

Figure 5.2 The end-effector orientation error from hybrid control simulation using the
LSS. This result shows the need for a low-pass filter to damp out oscillations in the

estimated tracking direction.

Copyright 2011, AHMCT Research Center, UC Davis



Comparison of offset error histories

0.6

0.4 -

0.2 4

error

0.0-

Offset

-0.2 -

-0.4 -

i M 1 T |} M i '
10 20 30 40 50
Cycles

Hybrid contro with force sensing
------ Hybrid control with LSS

Figure 5.3 Comparison of the offset errors for the hybrid control simulation using a

force sensor and the LSS.

The results show that the external control loops must heavily

damped to achieve stable tracking when using the LSS for hybrid control.

Copyright 2011, AHMCT Research Center, UC Davis



End effector position during force control

800
700 -

—_ 600 -

(]

-

2

o

E 500

E

S 400 4
300 +
200

800

X (millimeters)

Figure 5.4 Result of 2-dimensional contour following using endpoint force sensing with
the Adept-3 robot. The contour consisted of a flexible plastic circle. The undeformed

contour and the actual path of the end-effector are shown.

Copyright 2011, AHMCT Research Center, UC Davis

71



Force error history during compliant motion

E

g

o =

S

Q

% 2l |
3L i
-4 . . ,

0 50 100 150 200

point index

Figure 5.5 Error history from contour following shown in Figure 5.4. The sharp spikes

are disturbances due to friction.

5.3 - COMPLIANT MOTION USING THE LSS

The hybrid control algorithm was implemented on the Adept-3 robot with the
algorithm given in section 4.6.1. There were two main problems encountered with the
algorithm. The first problem simply involved adjusting the gains of the control loops to
achieve good performance. The second problem was how to handle cases where the
crack moved out of the field of view of the LSS.

The control laws used for hybrid control are digital implementations of PID control.
One difficulty of implementing a digital control law in this case is the fact that the
sampling rate isn't accurately known. Therefore, an estimated time step is used which is
approximately the time it takes for the manipulator to make a single point-to-point move
in the algorithm. The difference between the actual and estimated move time varies with

each move.

Stability is an important criteria for the algorithm, since overshoots can cause the

Copyright 2011, AHMCT Research Center, UC Davis

78



crack to move out the field of view of the local sensor. Originally, both the position and
orientation control loops used digitally implemented PID compensators. Better
performance was obtained when the position control loop was reduced to a PD
compensator since this tends to make the system more stable. The orientation control
loop was left as a PID compensator since the estimated orientation tends to be a very
noisy signal (see Figure 5.7).

Tests with the Adept-3 were also the basis for adding the sensor saturation features
and the low-pass filter features to the LSS (see sections 3.3.2 and 3.3.3).

The tests for crack following were run on cracks routed in plywood. Data from

tests of crack following with the LSS and the Adept-3 are given in Figures 5.6 and 5.7.

Offset error and end-effector orientation

20 - 40
7]
@
e
o

- @

2 ‘C

2 A

-]

E 5

= %

E T

= 2

- )

o

b

o o
°

- [

@ -

= 5

S :
w

-20 r T T T v 10
0 50 100 150
Number of cycles
Oftsetetrror 0 0m=——=— End-effector orientation

Figure 5.6 Offset error and end effector orientation for crack following with the Adept 3.
The graphs illustrate how the orientation is adjusted to follow the direction of travel of
the end-effector.

Copyright 2011, AHMCT Research Center, UC Davis

79



Estimated orientation error

- 40
"]
]
2
o
O
z
[ 20'
[] 1
bod
-]
g i
2
s 0-
s
2
E 5
(=]
C
[+]
= -20
E
)
[
|21

-40 ' . . r .

0 50 100 150

Number of cycles

Figure 5.7 Estimated orientation error for crack following using the Adept-3.

Copyright 2011, AHMCT Research Center, UC Davis

80



Offset error from LSS

20
»
-
2 104
]
E
E
| - 0 “1
[]
t
|
t
[-4]
°
g -10 4
(o)
-20 T T T T T T T T
100 300 500 700 900

LSS Cycles

Figure 5.8 Local sensor output for crack following using the GMF A-510 manipulator.

Copyright 2011, AHMCT Research Center, UC Davis

81



Cartesian path of manipulator

1000

500 -

(millimeters)
o
(]

IYl

'500 v 1] T 1
-1200 -200 800

‘X'  millimeters

Figure 5.9 Cartesian path of manipulator. for crack following with the GMF A-510. The
starting point is at the right-hand side of the graph. Some oscillation was present in end-

effector motion.

Copyright 2011, AHMCT Research Center, UC Davis

82



Error read by controller

ot M

{millimeters)
n
o
1

Error
e —

Offset

-20 ¥ T ¥ T v
0 50 100 150

Controller Cycle Number

Figure 5.10 The LSS error as read by the controller for the same run as shown in figure

5.9. Oscillations in position can be seen in the offset error.

Copyright 2011, AHMCT Research Center, UC Davis



Estimated rotation error

100

(degrees)
—

|

el

: | h
P H M

g I\

Controller Cycles
Figure 5.11 Estimated rotation error for same run as above. The oscillations in

orientation error show the coupling effects between position and orientation control.

Copyright 2011, AHMCT Research Center, UC Davis

84



Cartesian Path of Manipulator

1000
‘E 500 -
2
o
E
E
>  0-

'500 T 1 ¥ 1 Y T T T T

-1200 -800 -400 0 400 800

'X'  millimeters

Figure 5.12 Cartesian path of manipulator for same crack used in Figure 5.11 The
speed of the manipulator was reduced to obtain a more stable response. The starting

point was near (800,200).

Copyright 2011, AHMCT Research Center, UC Davis

85



Offset Error Read By Controlier

60
»
e
2
o
E
:-E;
o
o
=
m L
;,,: -20 -
o ]
-40 -
-60 T T Y T v T ¥ T T T
0 40 80 120 160 200

Controller Cycles

Figure 5.13 Offset error from LSS read by controller for same run as above.

Copyright 2011, AHMCT Research Center, UC Davis



Estimated Rotation Error During Crack Following

100
@
Q o
®
o
[
g 50
" |
(=]
B
e
[11]
s 07 N
© |
s ] H
0@
° 50
[+]
E
“}; o
(31
'100 Y 1 T 1 Y T Y
10 60 110 160 210

Controller Cycles

Figure 5.14 Estimated rotation error for same run as above.

5.4 - SUMMARY AND CONCLUSIONS

This chapter has presented results from implementing hybrid control using a
computer simulation, force sensing and relative proximity sensing. Two different
industrial robots were used. The most important result is that hybrid control using the
LSS can be used for on-line control in crack following for the ACSM. The largest
problems encountered were maintaining stable control loops while using an uncertain
time step in digital control law and the limited field of view of the LSS. In order to
maintain stable control loops the gains must be adjusted so the system response is heavily
damped. The field of view of the local sensor is effectively increased by simulating

sensor saturation in software.

Copyright 2011, AHMCT Research Center, UC Davis

87



CHAPTER 6 - CONCLUSIONS AND FUTURE
WORK

This paper has developed algorithms for crack following using an industrial robot
and a relative proximity sensor. The algorithm is successful in following cracks of
similar geometry to those which will be addressed by the ACSM. Limitations on system
performance are largely a function of the capabilities of industrial controllers (in this
case, the Karel controller) and the limited field of view of the LSS. Also, since the LSS
cannot directly measure crack direction, it is very difficult to follow cracks which make

sharp changes in direction (> 45°).

6.1 - RECOMMENDATIONS
6.1.1 - CUSTOM HARDWARE

The GMF-A510 manipulator was selected for use on this project because it was
determined to be the best commercially available manipulator for the task. Time and cost
constraints eliminated the use of a custom manipulator for the ACSM. For a
commercialized version of the ACSM prototype, it would be desirable to have a
manipulator that had the ability to reach of full 12 feet of highway lane from an eight foot
truck bed. The manipulator should also have a high payload capacity to handle dynamic
loads caused by accelerating the mass of the process equipment. Since no commercially
available manipulator meets the above specifications, it will be probably be necessary to
build a custom manipulator. The custom manipulator should have full dexterity in the
plane of the road. The manipulator should be easily controllable in two-dimensions in
order to assure that on-line Cartesian path planning can be implemented.

There are several robotics companies in the United States who make custom
manipulators. Two of these include Schilling Development of Davis, California and
Odedics, Inc. of Anaheim California. Odedics has designed and built a SCARA robot for

military use. It has a payload of 300 lbs, a reach of 8 feet and a top speed of 50

Copyright 2011, AHMCT Research Center, UC Davis

88



inches/sec. The manipulator has a weight of 350 lbs. Estimated price as of 1991 is
$175,000.

Schilling Development produces a titanium, hydraulic-driven manipulator which
has a 6 foot reach. The manipulator has a 200 1b. payload and a maximum speed of 3
feet/sec. Due to the fact that this is a hydraulic manipulator, it cannot be servo-controlled
like many industrial manipulators. Estimated 1991 price for the manipulator is $105,000.

The controller for a custom manipulator can be a controller provided by the
manipulator manufacturer, a custom controller or an available industrial robot controller
that can be ported over to control a different type of manipulator. Adept Technology of
San Jose, California produces both manipulators and controllers. Adept will port their
controller to any manipulator that can be servo-controlled (.i.e.. is run by electric motors).
6.1.2 - LINEAR SLIDE INTEGRATION

It may be desirable to mount the manipulator on a linear slide or similar device to
increase the workspace. The addition of the linear slide will add a redundant degree-of-
freedom. On-line control of a manipulator with a redundant degree-of-freedom
represents a serious problem. The integration of the linear slide and the A-510
manipulator was done assuming the path of the cracks to be relatively simple (see
Appendix E). The control problem for a generalized path in two dimensions is much
more complicated. The complexity of the redundant degree-of-freedom integration
problem will depend largely on the types of crack paths to be addressed by the
commercialized ACSM. If the cracks are mostly transverse in direction the problem will
be relatively simply. If a meandering crack is to be followed the problem will be very
complex.
6.1.3 - HARDWARE CONFIGURATION

Presently, the A-510 manipulator is mounted on the linear slide such that the motion
of the linear slide is parallel to the 'x' axis of the manipulator. The workspace of the

system would be enhanced if the manipulator were rotated 90° with respect to the slide

Copyright 2011, AHMCT Research Center, UC Davis

89



such that the linear slide motion is parallel to the 'y' axis of the manipulator. This would
allow the linear slide motion to account for the joint stops in the rear of the manipulator
workspace.
6.1.4 - PROCESS EQUIPMENT DESIGN

The weight and geometry of process equipment for the crack sealing process affects
the motion capabilities of the manipulator. As the process equipment becomes larger and
heavier the speed at which the manipulator can move will become slower. Also, the more
inertia due to the process equipment the more difficult it will be to accurately control the
end-effector. Optimization of the crack sealing machine must take into account the fact
that the amount of process equipment present will greatly affect the efficiency of moving
that equipment with a manipulator.
6. 1.5 - TUNING FOR THE ACSM

Adjusting the gains for the hybrid control loop on the robot controller will be an
ongoing process throughout development and testing of the ACSM prototype. Other
parameters that will have to be adjusted that affect system dynamics are the specified
velocities accelerations for the manipulator and the linear slide. The filter order and cut-
off frequency on the LSS will also have to be adjusted according to crack geometry and
end-effector speed. The external factors that will affect the system dynamics are end-
effector loading and crack geometry. The addition of process equipment will add a large
inertial element to the system. The control gains must be adjusted to obtain good
performance with the payloads present. The speed at which the end-effector moves over
cracks and the nature of the cracks being sealed will determine the frequency content of
the output of the LSS. This frequency content should be analyzed to determine desirable

filter characteristics for the LSS low-pass filter.

6.2 - TUNING AND CONTROL ALGORITHMS

Determining the optimal control laws and gains for the hybrid control algorithm is a

difficult task. The difficulty is primarily due to the fact that most industrial controllers

Copyright 2011, AHMCT Research Center, UC Davis

90



perform point-to-point moves that cannot be updated once the move command has been
issued. If a system cannot be updated continuously or at least at known time intervals,
then most control theory does not apply.

Val II, a programming language used by Unimation, Inc. has the capability to
update end-effector trajectories while a move command is being executed. A command
'ALTER' can be used to change the present position of the end-effector as well as the
destination position. The ALTER command can take position changes in terms of
incremental changes in Cartesian coordinates in 28 ms cycles. ALTER is an extremely
useful tool for real time path control of a robot (Loughlin, 1983). Unfortunately, neither
GMF nor Adept has an equivalent of the ALTER command and Unimation no longer
makes robot controllers. However, if a controller with a command similar to ALTER can
be found, it could greatly improve the process of on-line control.

Even with the limitations of an industrial controller, it may be possible to determine
an optimal range of gains for the hybrid control algorithm by estimating the time step.
The average value of the time for each move will depend on the specified end-effector
velocity and acceleration, the tangential direction velocity gain and end-effector loading.
If the average value of each move time can be found (perhaps by measuring move-times
with a given set of parameters) and if the move time does not vary to far from the
average, it is possible to model the system as a discrete-time system with a sampler and
zero-order hold connected to the plant. The input from the sensor can also be treated as a
sampled signal. Difficulties will arise from determining an exact model for the robot-
controller system comprising the plant. It is possible to obtain an approximate model of
the plant by empirically measuring plant dynamics.. The control problem will be further
complicated by the fact that the local sensor sampling rate will be faster than the robot
cycle rate and a multi-rate system will result. In short, modeling the hybrid control
algorithm using discrete control theory would be a difficult and tedious process and the

quality of the results will be questionable.

Copyright 2011, AHMCT Research Center, UC Davis

91



6.2.1 - GEOMETRIC BASED ORIENTATION CONTROL

It is possible to control the orientation of the end effector by using the LSS and
incorporating geometric based (rather than dynamic based) control. For the dynamic
control scheme, the orientation of the crack is calculated by taking a secant line through
the previous two points. The difference between this estimated orientation and the actual
end-effector orientation is used to generate an error signal which is filtered through a
digital proportional plus integral (PI) compensator. A difficulty arises from selecting the
dynamics of the PI compensator because the time step is invariant and-unknown.

The position of the end-effector can be found at any time along with the local
sensor reading at any time. This data gives us fairly accurate information about the past
positions of the crack. The true orientation of the crack can be found by looking at past
points, creating a curve based on the past points and determining the calculated direction
of the curve at the last end-effector orientation. This method was implemented in section
4.7.3. by using a linear regression of the previous five crack points to find the crack
direction. This allows for orientation control without the need for a known time step.

It is possible to expand this methodology and to fit higher order functions to
previous crack points. Potential problems with the control algorithm may arise from
manipulator dynamics which are not taken into account. If the dynamics for the degree-
of-freedom being controlled has a small time constant compared to the external control
loops, it may be safe to ignore dynamics. It may also be possible to implement geometric
based control for position control of the manipulator, but position dynamics are likely to
have a much larger effect than orientation dynamics. One other factor affecting
geometric control is the fact that the LSS data may be older than its corresponding end-
effector position data. This would introduce a time lag effect into the geometric control
scheme.

The suggestions made in this chapter are intended to improve the performance of

controlling a manipulator for the ACSM. Many of the suggestions will hopefully be

Copyright 2011, AHMCT Research Center, UC Davis

92



useful in any application involving hybrid control with an industrial robot.

Copyright 2011, AHMCT Research Center, UC Davis

93



Copyright 2011, AHMCT Research Center, UC Davis

APPENDICES

94



APPENDIX A - CODE FOR SIMULATION OF
HYBRID CONTROL WITH MATLAB.

%this program will simulate hybrid control for crack-
Yofollowing.
%the robot must be given a starting location and orientation
%for the crack in global coordinates.
% take input for starting parameters:
x1(1,1)=input('starting global x');
x1(1,2)=input('starting global y");
% input for starting initial orientation (in radians)
f(1)=input('starting orientation, rads');
%an estimate of the robot-controller system is given in the
%form of a transfer function. The numerator coefficients are
%given in num and the denominator coefficients in den.
num=36864;
den=[1 105.6 36864];
%convert the transfer fucnction to state-space form.
[a,b,c,d]=tf2ss(num,den);
% specify the state-space output matrix c:
c=[0 1};
%specify the tangential velocity gain, v.
v=1000000;
%initialize variables to be used
e=0;
g=0;
k=1;
dp(1)=0;
dp(2)=0;
% specify the time step for the sampling rate, dt:
dt=.02;
g(1)=f(1);
%move in the specified orientation with velocity gain v
%for duration of time step dt.
% vel is a function that returns and x and y position, p(2x1)
% and an x and y velocity, dp(2X1) for a given starting
% position X (k) (2X1) and direction f(k) (rads)
% the state space matrices time step and initial velocities
% and positions are also required inputs.
[p.dpl=vel(a,b,c,d,dt,v,x1,f(k).k,dp);
k=k+1
x1(k,1)=p(1);
x1(k,2)=p(2);
%check distance between end effector and crack function
%given by err
I=lerr(x1,£,k);
e(2)=l;
e(1)=0;
obegin loop. end of crack will be signalled when err=128
while e(k)<128
%obtain gain for velocity in force direction by applying

Copyright 2011, AHMCT Research Center, UC Davis

95



%PID control law contained in gain(e,k,dt).
fg=10000*gain(e.k,dt);
%move with specified velocity in force direction for time
%ostep dt.
ofvel is same as vel except that the ee moves perpendicular
%to the crack with a direction and magnitude determined
%by the force-velocity gain fg.
[p,dpl=fvel(a,b,c,d,dt,fg,x1,fk,dp);
k=k+1;
x1(k,1)=p(1);
x1(k,2)=p(2);
%calculate orientation of end effector
f=ro(x1,k);
gk)=f;
Jomove in velocity direction
[p.dpl=vel(a,b,c,d,dt,v,x1,f.k,dp);
k=k+1;
x1(k,1)=p(1);
x1(k,2)=p(2);
%take sensor reading and go to beginning of loop.
e(k)=lerr(x1,£,k);
end
%x.,y locations at each time step are contained in matrix x.
%g contains the orientation for all odd values of k.
‘end’

function fe=err(x,k,dt)

%simulates sensor output

%returns magnitude based on present position x
%and desired position function xd
%Use this routine for FORCE sensing.
x1=x(k,1)

yl=x(k,2)

y2=xd(x1)

x3=ixd(yl)

a=yl-y2

b=x1-x2

c=(a"2 + bA"2)N.5

err=(a/b)*c

end

function fe=err(x,k)

%simulates sensor output

%returns magnitude based on present position x
%and desired position function xd

% returns end of crack flag for specified value of k.
if k==100

fe=128;

else

%calculates distance between end effector present
%location and crack, along normal to crack.
%Use this routine for FORCE sensing.

x1=x(k,1);

yl=x(k,2);

Copyright 2011, AHMCT Research Center, UC Davis

96



y2=xd(x1);
x3=ixd(y1);
a=yl-y2;
b=x3-x1;

c=(a"2 + bA2)7.5;
if b==0

fe=0;

else
fe=-a*sin(atan(b/a));
end

end

end

function I=lerr(x,f,k)
%simulates visual line scanner output
%gives position of crack function relative to sensor
%with position x(k) and orientation f.
% if £=0 then the line of the sensor is not an explicit
% function y=mx + b
x1=x(k,1);
if abs(f)<.005;

x2=x1;

y2=xd(x2);
end
% else express sensor line as y=mx + b
yl=x(k,2);
m=tan(1.5708+f);
b=yl-m*x1;
% (x1,y1) is location of center of sensor
% (x2,y2) is where sensor line intersects crack function
% solve for x2, y=f(x) must be known explicitly to solve
% and get the following equation.
x2=b/(1-m);
y2=xd(x2);
% sign convention: left side -, right side +
s=sign(xd(x1)-y1);
% distance formula
d=((y1-y2)A2+(x1-x2)"2)7.5;
l=s*d;
if k==100;
1=128;
end
end

function fo=force(x,xd,k,dt)
normal(1,1)=0
normal(1,2)=-1
normal(2,1)=1
normal(2,2)=0
dx=xd(k,1)-x(k,1)
dy=Xd(k92)'X(k’2)
d=(dx*dx+dy*dy)*.5

Copyright 2011, AHMCT Research Center, UC Davis

97



delx(1)=dx/d

delx(2)=dy/d

xn=gain(x,xd k,t)*normal*error(x)*delx
fo=x+xn

end

function [p,dp]=fvel(a,b,c,d,dt,v,x,f.k,x0)

%returns position (2x1) and final condition (2x1)

%final condition =[dx dy]'

%for given velocity magnitude (v), direction (f)

%and starting position x(k) after time response dt.
%x0(2x1) contains the starting time derivatives for x and y.
%the new x location is given in p(1)

%new y locatin is given in p(2)

%new time derivatives of x and y are contained in vector dp (2x1)
%calculate gains in x and y for motion normal to the crack.
gx=-sin(f)*v;

gy=cos(f)*v;

t=0:dv/10:dt;

ic(2)=0;

ic(1)=x0(1);

% calculate points for move in x-direction
vx=lsim(a,b,c,d,gx*t,t',ic);

% specify initial conditions of states

ic(2)=0;

ic(1)=x0(2);

% calculate points for move in y-direction
vy=lsim(a,b,c,d,gy*t,t'ic");

%add old position to final values of vx and vy to calculate
%onew values for x and y

p(D=vx(11)+x(k,1);

p(2)=vy(11)+x(k,2);

%calculate time derivatives for x and y.
dp(1)=(vx(11)-vx(10))/(dv'10);

dP((12)=(VY(1 1)-vy(10))/(dv10);

en

function ga=gain(e,k,dt)
%calculates the velocity gain for the force directions by using a
%PID control law applied to the position error given by e(k).
%integral, derivative and proportional gains are given by
%Xki, kd and kp, respectively.
ki=10;
kd=.0;
kp=20;
%no error at time 0 when k=1 so g(k)=0
£i(1)=0;
e(1)=0;
if k==2
%integrate between previous and present time step.
Jemultiply by error and ki for case k=2.

gi(k)=(ki*dt*.5)*e(k);

Copyright 2011, AHMCT Research Center, UC Davis



gd=kd*e(k)/dt;

else

% if k>2, calculate gains:

e(k-1)=0;

gi(k-1)=0;

%calculate integral gain
gi(k)=(ki*dt*Q. 5)*(e(k) -e(k-2))+gi(k-2);
%calculated derivative gain
gd=kd*(e(k)-e(k-2))/dt;

end

%calculate proportional gain
gp=kp*e(k);

Pototal gains
ga=gi(k)+gd+gp;

end

function [p,dp]=vel(a,b,c,d,dt,v.x,f,k,x0)

%returns position (2x1) and final condition (2x1)
%final condition =[dx dy]'

%for given velocity magnitude (v), direction (f)

%and starting position x(k) after time response dt.
%x0(2x1) contains the starting time derivatives for x and y.
%the new x location is given in p(1)

%new y locatin is given in p(2)

%new time derivatives of x and y are contained in vector dp (2x1)
%calculate gains in x and y for motion parallel to crack.
gx=cos(f)*v;

gy=sin(f)*v;

t=0:dt/10:dt;

%set initial conditions for states:

ic(2)=0;

ic(1)=x0(1);

%calculates points for move in x-direction.
vx=Ilsim(a,b,c,d,gx*t,t'ic");

%set initial conditions for states:

ic(2)=0;

ic(1)=x0(2);

%calculate points for move in y-direction.
vy=lsim(a,b,c,d,gy*t,t'ic");

%add old positions to final values of vx and vy to calculate new
%values for x and y

p(D)=vx(11)+x(k,1);

p(2)=vy(11)+x(k,2);

%calculate time derivatives for x and y.
dp(1)=(vx(11)-vx(10))/(dt/10);

dp(2)—(VY( 11)-vy(10))/(dv/10);

end

function a=xd(x)

%crack function

%gives y as a function of x.

%the crack is a line of the form Y=X.
Poif x<=8

Copyright 2011, AHMCT Research Center, UC Davis



100

a=x;
%else
P%oa=4+.5%x;
%end

function a=ixd(x)

%inverse crack function

% (x as a function of y)

%the crack is a line of the form Y=X
Poif x<=8

a=x;

%else

Joa=2*(x-4);

%end

function f=ro(x,k)

%calculates the orientation of the end effector to be
%aligned with the direction of travel. Assumes no
%no dynamics for end effector orientations.
%dx=x(l(’1)'X(k'2’1);

PDody=x(k,2)-x(k-2,2);

Yof=atan(dy/dx);

f=.754;

end

Copyright 2011, AHMCT Research Center, UC Davis



101

APPENDIX B - FORCE CONTROL WITH THE
ADEPT-3 ROBOT

PROGRAM fs_main()

;Main program for compliant motion

;with force control

LOCAL point[], n, vg, dt, locf], locl, stat

i=1

n= 10000

vg=0

pbid =45

dt=0.2

magl=1

CALL fs.initialize(stat) I

Fstat < 0 GOTO 50

CALL init_guard()

outf0] =0

DEVICE (2, 0, status, fs.ena.guard, 1) out[]
; DEVICE (2, 0, status, fs.set.zero)

ACCEL 80, 80
SPEED 70 ALWAYS
erfi] = 0

phi[i] = phi0

CALL gen_point.sub(point[i], dt, vg)

; DECOMPOSE loc[1] = pointi]
; TYPE loc[1], loc[2], loc[3], loc[6]
MOVE point[i]
i=i+l
WHILEi<nDO
CALL read_fs()
CALL gen_point.sub(point[i], dt, vg)
MOVE point[i]
i=i+l
; TYPEi
END
50 IF stat < 0 THEN
TYPE "error ocurred while initializing force sensor”
END
END.

Copyright 2011, AHMCT Research Center, UC Davis



102

PROGRAM gen_point.sub(point, dt, vg)
LOCAL newx, newy, fg, x1, y1, z, loc.now, theta, x, tw, p
CALL for_law.sub(err[], i, dt, fg)
HERE loc.now
DECOMPOSE x[1] = loc.now
x1 =x[1]
yl=x[2]

z =x[3]
p=x[6]
tw = 180-p-phili]
newx = x1+vg*SIN(tw)+fg*COS(tw)
newy = yl1+(-1)*vg*COS(tw)+fg*SIN(tw)
SET point = TRANS(newx,newy,z,0,180,45)

RETURN

PROGRAM init_guard()
LOCAL mode, ft, dim[], low(], up(], vecl.], status
mode =1
ft=0
dim[0] =3
dim[1]1=0
dim{2]1=0
dim{3]1=0
low[0] =-15
up[0}=15
vec[0,0] =0
CALL fs.config(mode, ft, dim[], vecl,], low[], up[], status)
IF status < 0 THEN
TYPE "error configuring guarded move"
END
RETURN

PROGRAM read_fs()
LOCAL in[], status, mag DEVICE (2, 0, status,fs.get.force) , in[]

IF status < 0 GOTO 100

Copyright 2011, AHMCT Research Center, UC Davis



103

mag = SQRT{n[0]*in{0]+in[1}*in[1])
err{i] = mag-mag0
phili] = ATAN2(in[1},in[0])

100 IF status < 0 THEN

TYPE "force system error”
END
RETURN

END.

END.

PROGRAM set_fif(
LOCAL start.loc, ptf], i, status
HERE start.loc
DECOMPOSE pt[1] = start.loc
SET out.t = TRANS (pt[1],pt[2],pt[3],pt[4],pt[5],ptl6])
DEVICE (2, 0, status, fs.set.fif, 0, 1), , out.t
RETURN
END

PROGRAM for_law.sub(ert[], 1, dt, fg)
LOCAL ki, kp, kd, gd, gp, gill
ki=-0.1
kp=-3
kd=0
gi[11=0
err[1]1=0
IFi==1THEN

gi[i] = ki*dt*0.5
gd = kd*err[i}/dt
ELSE
gi[i] = (ki*dt*0.5)* (err[i}+err[i-1])+gi[i-1]
gd = kd*(err[i]-err[i-1])/dt

END

gp = kp*err[i]

fg = gi[il+gd+gp
RETURN
END

Copyright 2011, AHMCT Research Center, UC Davis



104

PROGRAM a.user_{s()
; Non-AIM user initialization and utility routines for Force Sensing Module.
;¥ Version V1.8

;* Copyright (c) 1989 by Adept Technology, Inc.

;************************************************************************
;* %

;* The information set forth in this document is the property *

;* of Adept Technology, Inc. and is to be held in trust and *

;* confidence. Publication, duplication, disclosure, or use *

;* for any purpose not expressly authorized by Adept Tech- *

;* nology in writing is prohibited. *

;* ¥

;* The information in this document is subject to change *

;* without notice and should not be construed as a commitment *

;¥ by Adept Technology. *

;* *

;¥ Adept Technology makes no warranty as to the suitability *

;* of this material for use by the recipient, and assumes no ¥

;¥ responsibility for any consequences resulting from such use. *

ok %
;************************************************************************

; DESCRIPTION:

; This file contains Force Sensing Module routines for use in

; non-AIM applications. It contains initialization code that

; should be used to define global variables ("fs.initialize"), a

; routine to convert force system error messages to string form
; ("fs.error"), and several routines as examples of use of the

; force system.

; SPECIAL INSTRUCTIONS:

; This package requires V+ version 8.2 or above, with the stop-

; on-force option.

; The user should not directly edit the routines within this

; package. 1t is recommended that an archive copy be kept, and

; that the user modify a special copy of his own. For example,

; to copy this to a hard disk and make a user-modifiable copy

; (named FSM.V2), the following monitor commands may be issued:

; FCOPY C:USER_FS.V2 = A:USER_FS.V2
;Assuming FSM disk in drive A

; FCOPY C:FSM.V2 = C:USER_FS.V2
;Make customizable copy

; GLOBAL ENTRY POINTS:

b4

; fs.auto.offset Clear force readings by offsetting current forces

Copyright 2011, AHMCT Research Center, UC Davis



; fs.buffer Enable/disable force signature buffer

; fs.config Configure guarded/monitor mode

; fs.error Determine detailed force error code and string
; fs.initialize Initialize global variables and force system
; fsread.buffer Read force buffer data

; AUTHOR: John A. Tenney (890601)

; CHANGES:

*

RETURN

; The CALLs below are never executed. They are used only to cacse the
; programs included with this header to be saved with the command;

STOREP/2 USER_FS8.V2 = a.user_fs
; Programs added to this package should be included in the list.
CALL  fs.auto.offset()
CALL  fs.buffer()
CALL  fs.config(
CALL fs.error()
CALL  fs.initialize()
CALL fs.read.buffer()

END.

PROGRAM fs.auto.offset(stat)

; ABSTRACT: Force system utility to offset current force level.
; This routine can be used before beginning a force-controlled

; operation to compensate for any force drift, weight of end-

; effector, or any other contribution to off-zero force readings.

; It zeros the current force readings by setting a force offset

; equal to the opposite of the current force readings. This

; offset can be removed after the end of the operation by

; resetting the offsets to zero.

; This routine performs a different function from that of opcode

; "fs.set.zero”. This routine creates a temporary "zero" level
; using one force reading, while "fs.set.zero" sets a more reliable

Copyright 2011, AHMCT Research Center, UC Davis

105



106

; and permanent "zero" level by averaging many force readings.

b

; The advantages to "auto-offset" are that it is fast and non-

; permanent. Its speed allows it to be performed without slowing

; down an operation, so as to cancel end-effector weight or sensor

; drift while in motion. Being non-permanent, one can use a force

; offset in one part of an operation and cancel it later.

; INPUT PARM: None

; OUTPUT PARM: stat = Status of operation. Standard V+ error code.
; SIDE EFFECTS: Changes force readings until offset is removed.

; MISC: Identical copies of this routine exist in the files
; LIB_FS.V2 and USER_FS.V2.

;¥ Copyright (c) 1989 by Adept Technology, Inc.
AUTO force[5], i, offset[5]
; Read current offset levels.

DEVICE (2, 0, stat, fs.get.offset) , offset(]
IF stat > 0 THEN

; Read current force levels.

DEVICE (2, 0, stat, fs.get.force) , force[]
IF stat > 0 THEN

; Subtract current offset from current force levels to obtain offset
; level that will cause current force reading to go to zero.

FORi=0TOS
offset[i] = offset[i]-force[i]
END
DEVICE (2, 0, stat, fs.set.offset, 6) offset[]
END
END
RETURN.
END

PROGRAM fs.buffer(enable, reset, rate, wrap, record, stat)
; ABSTRACT: Utility routine to enable/disable the force signature buffer.

; INPUT PARM: enable = Flag: indicates whether to enable or disable the
; force signature buffer

; reset = Flag: indicates whether to reset the buffer before

; enabling it (used only when "enable"” flag is set)

; rate = Real: buffer update rate in milliseconds

Copyright 2011, AHMCT Research Center, UC Davis



Ko

107

; (used only when "enable” flag is set)
; wrap = Flag: indicates whether to allow the buffer to wrap
; when full (an INPUT only when "enable” flag is set).

; OUTPUT PARM: wrap = Flag: indicates whether buffer wrapped (an OUTPUT
; only when "enable" flag is clear).

; record = Real: when enabling, this is the first record number

; in which data is being stored; when disabling, this

; is the number of the last record with valid data.

; stat = Status of operation. Standard V+ error code.

; (Other outputs are NOT defined if error occurs.)

; SIDE EFFECTS: None

; MISC: Identical copies of this routine exist in the files
; LIB_FS.V2 and USER_FS.V2.

;* Copyright (c) 1989 by Adept Technology, Inc.
AUTO in[3], out[1]

IF enable THEN
;Enable buffer

IF reset THEN
;Copy "reset” bit
outf0] =1

ELSE

out[0] =0 END
IF wrap THEN
;Copy "wrap" bit
out[0] = out[0]
END

out[1] = rate
;Copy sample rate

DEVICE (2, 0, stat, fs.ena.buffer, 2) out[], in{]
IF stat < 0 GOTO 100

record = in[0]
;Note start index

ELSE
;:Disable buffer

DEVICE (2, 0, stat, fs.dis.buffer) , in{}
IF stat < 0 GOTO 100

wrap = in[0]
;Note if wrap occurred

record = in[1] ;Note end index

Copyright 2011, AHMCT Research Center, UC Davis



108

100 RETURN
END.

PROGRAM fs.config(guarded, ft.flags, dim(], vec[,], lower[], upper[], stat)
; ABSTRACT: Force utility routine to configure Guarded or Monitor mode.

; This routine is typically executed before enabling Guarded or

; Monitor mode of operation. It packages trip-condition data that

; is sent (via the DEVICE instruction) to the force-sensing system.
; This routine does not, however, actually enable Guarded or

; Monitor mode.

; INPUT PARM: guarded = Flag indicating operating mode to configure:
; TRUE (=fs.guard) => configure Guarded Mode

; FALSE (=fs.monitor) => configure Monitor Mode

; ft.flags = Bit array of flags indicating the types of

; trip conditions to be used--torque (bit set)

; or force (bit clear). First bit corresponds

; to trip condition 0, second bit to condition

; 1, etc. For example, to set the first two

; conditions to be force, second two to torque,

; "ft.flags” should be set to ~B1100.

; vec[,] = Array of 3-element trip vectors. vec[0,0],

; vec[0,1], vec[0,2] contain the X, Y, and Z

; coordinates of the first vector, respectively.

; First array index goes from 0 to "fs.vec.num".

; dim[] = Real array of trip condition dimensions.

; dim[0] contains dimension of 1st condition, etc.

; If dim[i}==0, then condition "i" is ignored and

; vec[i,], upper(i], and lower[i] info is unused.

; upperf] = Real array of upper force or torque thresholds
; lower[] = Real array of lower force or torque thresholds

; OUTPUT PARM: stat = V+ error code. stat < 0 implies error occurred.
; SIDE EFFECTS: None

; MISC: Identical copies of this routine exist in the files
; LIB_FS.V2, TEST_FS.V2, and USER_FS.V2,

;¥ Copyright (c) 1989 by Adept Technology, Inc.
LOCAL num.args, out[]] AUTO v

; Ensure "out[]" array is defined, since some elements are not given
; values as a result of conditional statements below.

IF NOT DEFINED(out[0]) THEN
num.args = 2+6*fs.vec.num FOR v =0 TO num.args-1
out[vl]=0
END

Copyright 2011, AHMCT Research Center, UC Davis



END

L

; Load the input parameters into the array "out[]".
out[0] = guarded ;Load mode flag

out[1] = ft.flags ;Load trip-condition flags

FOR v=0TO fs.vec.num-1
;Load threshold data...
IF dim[v] THEN
out[v+18] = upper[v] out[v+22] = lower[v] IF dim[v] < 3 THEN
out[2+3*v] = vec[v,0] out[3+3*v] = vec[v,1] out[4+3*v] = vec[v,2]
END
END
out{v+14] = dim[v]
END

; Send the information to the force system.
DEVICE (2, 0, stat, fs.set.guard, num.args) out[]

RETURN
END

PROGRAM fs.error(stat, $error)

; ABSTRACT: Determines latest force system error code and string.

; Issues the "fs.get.status” DEVICE instruction to obtain system
; status, then returns an error string associated with that error
; using a lookup table.

; INPUT PARM: None

; OUTPUT PARM: stat = Real variable that receives the latest force
; system error. If no error occurred, "stat”

; is returned unchanged.

; $error = Error string associated with latest force

; System error. If no error occurred, the

; string is empty.

; SIDE EFFECTS: None

; MISC: Identical copies of this routine exist in the files LIB_FS.V2,
; TEST_FS.V2, and USER_FS.V2

;¥ Copyright (c). 1989 by Adept Technology, Inc.
AUTO in[12], st

"

Serror =

Copyright 2011, AHMCT Research Center, UC Davis

109



110

;Initialize to no error
; Get error information from the force system.

DEVICE (2, 0, st, fs.get.status) , in[] IF st < 0 THEN
;Status command failed

$error = $ERROR(st) stat = st GOTO 100
END

IF NOT in[3] GOTO 100
;Retumn if no error

; Return the appropriate error message string.

stat = in[3]
;Report any error

CASE in[3] OF
VALUE -6500:
$error = "*FPB/FIB ribbon cable disconnected*"
VALUE -6501:
$error = "*FIB internal error*"
VALUE -6502:
S$error = "¥FIB command error*" VALUE -6503:
S$error = "*FIB voltage supply failure*"
VALUE -6504:
$error = "*FIB NV memory error*" VALUE -6505:
$error = "*FIB reset occurred*" VALUE -6506:
$error = "*¥Force sensor data error*"
VALUE -6515:
$error = "*FIB data timeout*” VALUE -6516:
$error = "*FIB command timeout*" VALUE -6517:
$error = "¥FPB calibration load timeout*"
VALUE -6518:
$error = "*FPB calibration checksum error*"
VALUE -6519:
$error = "¥FPB/FIB handshake error*" VALUE -6520:
$error = "*FPB internal error*"

VALUE -6521:

$error = "*Invalid data passed to force system*"
VALUE -6522:

$error = "*Illegal force operation while enabled*"
VALUE -6523:

$error = "*Invalid force mode configuration*"
ANY

S$error = "*Unknown force system error”
$error = $error+" ("+$ENCODE(/10,in[3])+")*"
END

100 RETURN

Copyright 2011, AHMCT Research Center, UC Davis



111

PROGRAM fs.initialize(stat)
; ABSTRACT: Force utility routine for initializing the force system.

y

; This routine is used to set force system global variables and
; to initialize the force sensing system.

; NOTE: THE GLOBAL VARIABLES SHOULD NOT BE CHANGED BY THE USER,
; SINCE THEY ARE REFERENCED BY A VARIETY OF PROGRAMS.

; INPUT PARM: None

; OUTPUT PARM: stat = Status of operation. Standard V+ error code.
; If <0, more info may be obtained from

; "fs.get.status” DEVICE instruction.

; SIDE EFFECTS: None

; MISC: Identical copies of this routine exist in the files
; INIT_FS.V2 and USER_FS.V2

;¥ Copyright (c) 1989 by Adept Technology, Inc.

; Command table for FSM SETDEVICE instructions.

fs.setd.init=0 ;Initialize force sensing system
fs.setd.reset = 1 ;Clear force system errors, reset
fs.setd.sig=4 ;Define signal set for Guarded/Monitor trips

; Command table for FSM DEVICE instructions.

fs.get.stams = 1 ;Read system status

fs.set.parm = 2 ;Initialize sensor specific parameters
fs.set.fif =3 ;Set FRF

fs.getfif=4 ;Read FRF

fs.setoffset =5 ;Set force offset

fs.get.offset=6 ;Read force offset

fs.set.zero=7

;Zero force sensor

fs.get.force = 8 ;Read forces (in FRF)

Copyright 2011, AHMCT Research Center, UC Davis



112

fs.get.gauge =9 ;Read strain gauges

fs.setlatch = 10 ;Reset data latches

fs.getlatch = 11 ;Read data latches
fs.set.guard = 12 ;Configure guarded move or monitor
fs.ena.guard = 13 ;Enable guarded move or monitor
fs.dis.guard = 14 ;Disable guarded move or monitor
fs.ena.buffer = 15 ;Enable force signature buffer
fs.dis.buffer = 16 ;Disable force signature buffer
fs.get.buffer = 17 ;Read force signature buffer

fs.ena.protect = 18 ;Enable protect mode

fs.dis.protect = 19 ;Disable protect mode

; Mnemonics for guarded-mode and monitor-mode configuration, enabling,
; and disabling.

fs.guard = 1 fs.monitor = 0

; Bit masks for system status flags.

fs.st.guard = "H8 ;Guarded Mode active
fs.stmonitor = ~H10 ;Monitor Mode active
fs.st.protect = *H20 ;Protect Mode active
fs.st.buffer = ~H40 ;Force buffer active

; Number of trip vectors available to users.

fs.vec.num = 4
;Number of trip vectors

; Initialize the force system.
IF NOT SWITCH(FORCE) THEN
;If FORCE switch is not enabled...

ENABLE FORCE
END

Copyright 2011, AHMCT Research Center, UC Davis



SETDEVICE (2, 0, stat, fs.setd.init)
;Initialize the sensor

RETURN.
END.

PROGRAM fs.read.buffer($f.t.pos, first, num, data[}, stat)
; ABSTRACT: Data acquisition utility for force signature.

; Acquires force and position data from the FPB. Will acquire
; with repeated read-buffer commands until the entire amount of
; requested data is returned.

; INPUT PARM: $f.t.pos = String indicating the force, torque or
; position component to return. If this is

; not one of the accepted component names

; (see below), "num" is returned as zero.

; first = Record number of first record to be returned

; (#0 is oldest record in buffer)

; num = Number of records to be returned.

; (This is also an output parameter, so it

; MUST be specified as a variable.)

; OUTPUT PARM: num = Actual number of records returned. (Zero if

; "$f.tpos" was invalid.)

; data[] = Real array of data returned.

; ("data[0]" contains first data element, ...,

; "data[num-1]" contains the last element.)

; stat = Status of operation. Standard V+ error code.

; SIDE EFFECTS: Temporarily changes setting of the UPPER system switch.

; MISC: Identical copies of this routine exist in the files
; LIB_FS.V2 and USER_FS.V2

;¥ Copyright (c) 1989 by Adept Technology, Inc.
AUTO angs[6], bit, err, i, num.bits, out[2], pos
AUTO received, upper
LOCAL in[]

received =0
;Number of records successfully received

upper = SWITCH(UPPER) ;Save setting of upper switch

ENABLE UPPER ;Disable case-sensitivity

; Define data-handling information per request in "$f.t.pos".

Copyright 2011, AHMCT Research Center, UC Davis

113



num.bits = 1
;Assume 1 bit of data per access
CASE TRUE OF
VALUE $f.t.pos = "FX":
bit = AH1
;Bit 0: FX VALUE $f.t.pos == "FY":
bit = 2H2
;Bit 1: FY VALUE $f.t.pos == "FZ":
bit = ~H4
;Bit 2: FZ VALUE $f.t.pos = "FR™:
bit =~ H7

;Bits 0, 1, 2: resultant force num.bits = 3
VALUE $f.t.pos = "TX":
bit = AH8
;Bit 3: TX VALUE $f.t.pos == "TY":
bit=*H10
;Bit4: TY VALUE $f.t.pos == "TZ":
bit = ~*H20
;Bit 5: TZ VALUE $f.t.pos == "TR"™
bit = "H38
;Bits 3, 4, 5: resultant torque num.bits = 3
VALUE $f.t.pos == "PX":
bit = AHFCO
;Bits 6-11: Position in X num.bits= 6 pos =1
VALUE $f.t.pos = "PY":
bit = "HFCO
;Bits 6-11: Position in Y num.bits = 6 pos =2
VALUE $f.t.pos == "PZ":
bit = “HFC0
;Bits 6-11: Position in Z num.bits = 6 pos =3
VALUE $f.t.pos == "J1":
bit = ~H40
;Bit 6: Joint 1 angle
VALUE $f.t.pos == "J2"
bit = AH80
;Bit 7: Joint 2 angle
VALUE $f.t.pos == "J3":
bit = *H100
;Bit 8: Joint 3 angle
VALUE $f.t.pos == "J4":
bit = ~H200
;Bit 9: Joint 4 angle
VALUE $f.t.pos == "J5":
bit = AH400
;Bit 10: Joint 5 angle
VALUE $f.t.pos == "J6":
bit = ~H800
;Bit 11: Joint 6 angle
ANY
GOTO 100
;Undefined request
END

Copyright 2011, AHMCT Research Center, UC Davis

114



out[0] = bit
;Set bits for requested data

; Loop until full amount of requested data is received or error occurs.

WHILE received < num DO
out[1] = first+received out[2] = num-received

DEVICE (2, 0, stat, fs.get.buffer, 3) out[], in[] IF stat < 0 GOTO 100
;Quit if error

IF in[0] == 0 GOTO 100

;orno data

FOR i =1 TO num.bits*in[0] STEP num.bits
CASE num.bits OF

VALUE 1:

;Pass back data directly (1 bit)

datafreceived] = in[i]

VALUE 3:

;Resultant requested (3 bits)

datafreceived] = SQRT(SQRn[i})+SQR>An{i+1])+SQR(in[i+2]))

VALUE 6:

;Position requested (6 bits)
SOLVE.TRANS trans, err = in[i] DECOMPOSE angs[1] = trans
data[received] = angs[pos]

END
received = received+1
;Increment number received
END
END
100 num = received ;Pass back number received

SWITCH UPPER = upper
;Restore former case-sensitivity

MCS "DELETER @ in[]"
;Delete input array

Copyright 2011, AHMCT Research Center, UC Davis

115



116

APPENDIX C - COMPLIANT MOTION USING
PROXIMITY SENSING WTH THE ADEPT-3 ROBOT

.PROGRAM vs_main()

; VISION SENSOR VERSION

;this program is used for compliant motion using the vision sensor
;FUNCTION: following cracks using the vision sensor

;by continuously generating points based on sensor readings

;and its present location.

;VARIABLES

; point[]-location generated at each step

; 1 - integer, number of times the loop will execute

;vg - real, velocity gain, defines tangential velocity

; along surface

;dt - real, estimated time step used for taking derivatives

; in PID control law

;status - integer, status of operations addressing sensor via serial port
;i - integer, index used for each point generated

;phi0 - real, the specified initial orientation of the end effector
serr[] -real,array, the magnitude of the offset error between the

; crack and the center of the sensor

;phi[] -real,orientation of end effector at any step i.

;dump -Variable used to "clean out” serial port buffer before

; starting communications with LSS.

;srot -Initial orientation given from mouse-interface startup program
;tif] -Array containing values of system timer during each cycle

; used for off-line user analysis of program cycle time

;INITITALIZATION:
; declare variables which are local to main program only
LOCAL point[], n, vg, status, dump ATTACH (10)
;attaches serial port user] to this task
;Clear the buffer on the serial port by reading the port in "no wait"
;mode until an esror is encounter that indicates no more data is left
dump=1
WHILE dump >= 0DO
dump = GETC(10,1)
IF dump < 0 THEN
WAIT
dump = GETC(10,1)
END
;buffer is cleared ;
WRITE (10) $CHR(26)
;send character to LSS to indicate that
;program is ready to receive data

i=1

;set the index to 1

; set the max number for i

n = 10000

; set gain corresponding to tangential velocity along surface

Copyright 2011, AHMCT Research Center, UC Davis



117

vg=8

; set the end effector orientation

phiO =60

; set the time step for taking derivatives in force control law
dt=0.3
ACCEL 80, 80

;set default acceleration, deceleration for the manipulator

; set arm speed

SPEED 12 ALWAYS

; don't null out small position errors with each move

NONULL ALWAYS

; set accuracy of positioning to coarse

COARSE ALWAYS

; initialize the first error = 0

err[i]=0

; set initial orientation

phili] = phi0

; call subroutine to generate new location
; based on error and present location
CALL gen_point.sub(point[], vg)

; Move to new point

MOVE point[i]

; increment index i by 1

i=i+l
TIMER 1=0
;set timer to zero

;timer is used for user analysis of performance

;START LOOP: DO UNTIL i=n OR PROGRAM IS ABORTED

WHILEi<nDO

; call subroutine to generate new location based on error and

; present location

; offset error is generated in 'process_err' as global value
CALL sens_com() ;read error from sensor
CALL gen_point.sub(point(], vg)

;generate new point
: move to new point
MOVE point{i]
ti[i] = TIMER(1)
;record the present time i = i+1
END
;END OF LOOP
END

PROGRAM sens_com()

;This subroutine handles communications with the LSS.
;It reads the error information and stores it in err[i] for
;use by other programs.

,

;All errors are offset and scaled to be transimitted and received as values

Copyright 2011, AHMCT Research Center, UC Davis



118

; between 0 and 254. ;such that 0= -2 inches, 128=0 inches and 254=2 inches etc.
serror scaling allows transmission of each error as a single byte,

;Handshaking: ASCII Character 26 must be sent to the LSS before an error is
;sent to the controller. This prevents the serial port buffer from filling

;up. If the LSS encounters a "No crack found” condition, 255 will be sent.

;VARIABLES: ;lun - logical unit for the serial port
;bite - actual value read from serial port
;smode - read mode of serial port, default=0.
;scale - Scale factor between byte receivced and measured error
;offset- Offset between byte received and measured error
;err[] - Global array containing error for each step 'f'.
LOCAL lun, mode, bite, scale, offset
sdefine local variables
lun =10
mode=1
scale = 4%25.4/256
offset = 128
bite = GETC(10)
WRITE (10) $CHR(26) IF bite == 255 THEN
err[i] = err[i-1] ;use last error if "No crack found"
ELSE
err[i] = scale*(bite-offset)
;calculate error from 'bite’
END
RETURN
END

.PROGRAM gen_point.sub(point[], vg)

;This subroutine generates the next for the manipulator to move to.

;The new point is based and the gain from the sensor reading 'fg’,

;the tangential velocity gain, 'vg' and the present location 'loc.now[i]’
;the new location genrated is stored in 'point{i]’ for use by the "vs_main"

;VARIABLES:

;vg -- Global, tangential velocity gain defined in "vs_main"

;fg -- Global, gain from offset error, calculated is "for_law.sub"
;point[] -- Array of generated points given to the manipulator

; ateach step i\

;loc.now([]- Array of actual locations measured at each step 'i'.

;a[] - Array containing Cartesian coordinates for loc.nowf[i-11'

;b[] - Same as above for loc.nowl[i-2]" ;x[] - Ditto for 'loc.now[i]'.
;phi[] - Global, end effector orientation for each step 'f'.

;phi0 - Global, given initial crack orientation

;rerr{] - Global, orientation error between estimated crack direction
; and actual end-effector orientation

;rg - Global, gain taken from applying control law to 'rerr[]'.

;dx - Delta x between last two estimated crack locations

;dy - Delta y between last two estimated crack locations

; dx and dy are used with the ATAN2 function to estimate crack direction.
;x1p - These four variables

;¥1p - are used in intermediate steps

;X2p - for calculating ;y2p - 'dx' and 'dy’

Copyright 2011, AHMCT Research Center, UC Davis



:newx - Cartesian x for new location 'point[i]'.
;newy - Cartesian y for new location point[i]".
;x1 - These 3 variables

;¥1 - store the first three elements

;z - of array 'x[]' respectively.

; Declare local variables ;

LOCAL newx, newy, fg, dx, dy, x1, y1, x1p, ylp, x2p, y2p, z, loc.now[], a, b, x

CALL for_law.sub(err[], fg) ; call subroutine to calculate offset
; gain 'fg' from errors 'err[]".

HERE loc.nowfi]

;store present location as 'loc.nowli]
DECOMPOSE x[1] = loc.nowl[i]
;store the cartesian coordinates

;of 'loc.now in array 'x[]'.

IFi<=2 THEN
phi[i] = phi0
ELSE
5 store the cartesian coordinates from the previous 2 actual
3 manipulator locations into the arrays 'a’ and b’ respectively.

DECOMPOSE a[1] = loc.now([i-1]
DECOMPOSE b[1] = loc.now[i-2]
;calculate the actual cartesian location of the crack from the
;previous 2 steps by using the recorded manipulator location,
;orientation and sensor error.
;This allows estimation of actual crack direction

x1p = b[1]-err[i-2]*SIN(phili-2])
y1p = b[2]+err[i-2]*COS(phili-2])
x2p = a[1}-err[i-1]*SIN(phi[i-2])
y2p = a[2]+err[i-1]1*COS (phili-2])

;dx and dy are the differences between the x and y coordinates
;of the crack from the previous two steps

dx = x2p-x1p dy = y2p-ylp
: keep the ATAN2 function from becoming infinite if dx=0
IF ABS(dx) < 0.01
THEN
dx = 0.01*SIGN(dx)
END

;Calculate the error between the end effector orientation
; and the estimated actual crack direction

rerr{i] = -phi[i-1]+ ATAN2(dy,dx)

; call subroutine for control law for orientation error

CALL r_law(rerr{], rg)

; calculate new desired end effector orientation
phili] = phi[i-1]+1g

Copyright 2011, AHMCT Research Center, UC Davis

119



120

END
; Calculate new location from 'fg’, 'vg', "phili]' & 'point{i-1}'
x1 =x[1]
yl =x[2]
z=X[3]
newx = x1+vg*COS(phili])+fg*SIN(philil)
newy = y1+vg*SIN(phifi])-fg*COS (phi{i])
SET point[i] = TRANS(newx,newy,z,0,180,(-1)*phifil)
RETURN

END

PROGRAM for_law.sub(err[], fg) ;

;This subroutine applies a PID control law to the position error
;The position errors are stored in the array "err[]"

;one position error is taken from the sensor for each time

the main program loops. The result of the error with the control
;law applied is returned as "fg". ;VARIABLES

; ki -- The coefficient for integral gain

; kp -- The coefficient for proportional gain

; kd -- The coefficient for derivative gain ; gi[] - The total value of the integral of the error
; calculated at each step

; gp -- Contribution from proportional gain at each step

; gd -- Contribution from derivative gain at each step

; 1 -- The number of the present step

; dt -- Global variable, the estimated time step used for

; differentiation and integration

LOCAL ki, kp, kd, gd, gp, gill
;declare local variables
; Set gains for control law
ki=0
kp=0.1kd=0
; Initialize integral and derivative gains for first two time steps.

gi[1]=0
errf1] =0
IFi==1THEN
gi[i] = ki*dt*0.5
gd = kd*err[i)/dt
ELSE
; Calculate integral and derivative of the error
gifi] = (ki*dt*0.5)*(err[i]+err[i-1])+gi[i-1]
gd = kd*(err[i}-err[i-1])/dt
END
gp = kp*err(i]
fg = gilil+gd+gp
RETURN

PROGRAM r_law(rerr[], rg)

Copyright 2011, AHMCT Research Center, UC Davis



121

;THIS PROGRAM APPLIES A PID CONTROL LAW TO THE ORIENTATION ERROR BETWEEN
;THE ESTIMATED CRACK DIRECTION AND ACTUAL END EFFECTOR ORIENTATION.
;THE HISTORY OF ORIENTATION ERRORS ARE STORED IN ARRAY 'rerr[]'.

;VARIABLES:

;ki, kp, kd -- integral, proporitional and derivative gains, respectively. ;
gili] -- value of error integral at each step .

;&d, gp - contributions from derivative and proportional gain, respectively.
;I8 -- total calculated gain ;

i -- index for present step

; Declare local variables
LOCAL ki, kp, kd, gd, gp, gill
; set gains
ki=0
kp =0.05
kd=0
; initialize as appropriate and calculate gain
gill]=0
gif2]=0
rerr[1]1=0
rerrf2] =0
IFi<=2THEN
gili] = ki*dt*0.5
gd = kd*rerr[i]/dt
ELSE
gili] = (ki*dt*0.5)*(rerr[il+rerr[i-11)+gi[i-1]
gd = kd*(rerr[i]-rerr[i-1])/dt
END
gp = kp*rerr[i]
rg = gifil+gd+gp
RETURN

Copyright 2011, AHMCT Research Center, UC Davis



122

APPENDIX D - COMPLIANT MOTION WITH THE
GMF-A510 ROBOT

program Issint

--this program uses the Iss to follow cracks.

--It requires the position at the start of the crack, 'spoint’
--to be taught beforehand.

--VARIABLES:

-- i, integer; counter for the number of times the main prog. loops.
--stat, integer; status for display of karelpage' screen.

--err, array; error from sensor for each step i.

--phi, array; calculated orientation for each step i.

--IeIT, array; error between actual rotation and estimated

-- crack direction for each step i.

--x, array of world 'x' coordinates of positions.

--y, array of world 'y' coordinates of positions.

--gi, array; necessary to integrate rotation error for control law

-- for rotation, has to be declared in main to keep array

-- from being initialized each time control law routine is

-- called.

--axi, array;movement of linear slide for each step, calculated and used
-- in 'int2d' declared here to keep array from being

-- initialized each time 'int2d' is called.

--phi0; starting oriention of crack for position 'spoint' +/-180 degrees.
--dt; estimated time step for derivative and integral terms in control laws
--vg; gain for motion paralell to crack

--z; world z coordinate of a position

--wh; yaw of end effector (constant)

--ph; pitch of end-effector

--points; path consisting of all consecutive points generated by

-- looping through main routine.

--point; position generated in present step.

--spoint; taught starting position of crack

var

counter,i,stat:integer

err,X,y,phi,rerr,gi,axi:array[ 1000] of real
phiQ,dt,vg,xh,yh,z,wh,ph,rh:real

configstring:string[12]

points:path

point,spoint:position

--Declared the rountine for integrated slide motion ('int2’)

--from external program 'int2d'.

routine int2(positions:path;axi:array of real;i:integer)

from int2_arc

--normal direction control law

--This routine calculates the position gain perpendicular to the
--crack from the measured error. This is a function routine whose
--value is the total calculated gain.

Copyright 2011, AHMCT Research Center, UC Davis



123

--INPUTS:

--err; array of measured errors from sensor

--i; number of present step

routine for_law(err:array of real;i:integer):real
--VARIABLES:

--kp; proportional gain coefficient for control law.
--kd; derivative gain coefficient for control law.
--gd; calculated derivative gain.

--gp; calculated proportional gain.

--dt; estimated time step from main program
--fgl; total gain returned to main program.

var
kp.kd,gd.dtl fgl,gp:real
beri

gin
kp=.12

--set proportional gain

kd=0.035

--set derivative gain

err[1]=0

--set starting error to 0.

--take derivatives and calculated derivative gain.
if i=1 then

gd=kd*err[i]/dt else

gd=kd*(err[i]-err[i-1])/dt

endif

gp=err[i]*kp

--calculate proportional gain

fgl=(gp+gd)

--calculate total gain

return(fgl)

--return total gain to main program

end for_law

--calculate rotation gain

routine r_law(rerr:array of real;i:integer):real
--function routine to calculate rotation gain from estimated error.
--VARIABLES:

--kp; proportional gain coefficient

--gp; calculated proportional gain

--kd; derivative gain coefficient

--gd; calculated derivative gain

--rert; array of estimated rotation error.

--gi; array used in calculating integral gain.

--ki; integral gain coefficient

--1; current step from main routine

--dt; estimated time step from main routine

--rg; total calculated gain returned to main routine
var kp,kd ki,gd,gp,rg:real

begin

kp=.04

--set gains .....

kd=0

ki=0.007

gi[1]=0

Copyright 2011, AHMCT Research Center, UC Davis



124

gi[2]=0
rerr[1]=0
rerr[2]=0
if i<=2 then
gi[i]=ki*dt*.5
gd=kd*rerr[i]/dt
else
gi[i]=(ki*dt*.5)*(rerr[i]+rerrfi-1])+gi[i-1]
--integral gain
gd=kd*(rerr[i]-rerr[i-1])/dt
--derivative gain
endif
gp=kp*rerrfi]
--proportional gain
rg=gi[i]l+gd+gp
--total gain returned to main
return(rg)
end r_law

--generate points

routine gen_point(err:array of real;i:integer):position

--This routine generates the a point for the next manipulator move
--The new point is based on the gain from the sensor reading, 'fg'

--the tangential velocity gain 'vg' and the present location as
--determined by the karel built-in routine 'curpos’. This is a function
--routine that returns a position.

--VARIABLES:

--vg; tangential velocity gain defined in 'Issint’'

--fg; gain from calculated from sensor error, calculated in routine ‘for_law'.
--dx; Delta x between last two estimated crack locations

--dy; Delta y between last two estimated crack locations

--(Crack direction is estimated using dx and dy with ATAN2 function)
--rg; Change in manipulator orientation, calculated from 'rlaw’

--x[]; Array, cartesian x for each step, i.

--y[1; Array, cartesian y for each step, i.

--w,p,z; Cartesian components of manipulator position that are constant
--newx; Cartesian x for new location.

--newy; Cartesian y for new location.

--x1p,y1p,x2p,y2p; These four variables are used in intermediate steps
-- in calculating 'dx' and 'dy".

--phi[]; Array, end effector orientation for each step, i.

--phi0; starting orientation of crack

var

config:string[10]

dx,dy.fg,rg,x1p,x2p,ylp,y2p,newx,newy,w,p,z:real

begin

err[1]=0

w=180

p=0

fg=for_law(err,i)

--find normal direction gain from sensor data.

Copyright 2011, AHMCT Research Center, UC Davis



-- find cartesian components of current location

unpos(curpos,x[il],y[i],z,w,p,phi[i],config)

-- Estimate crack direction

if i<=2 then

phi[i]=phi0 else
x1p=x[i-2]-err[i-2]*sin(phi[i-2])
ylp=yli-2]+err[i-2]*cos(phi[i-2])
x2p=x[i-1]-err[i-1]*sin(phi[i-1])
y2p=yli-1]+err[i-1]*cos(phi[i-1])

dx=x2p-x1p

dy=y2p-ylp

if abs(dx)<0.01 then

dx=0.01

endif

rerr[i]=atan2(dx,dy)-phi[i-1]

-- Make sure direction is defined +/- 180 degrees.

if rerr[i]>360 then

rerr[i]=rerr[i]-360

endif

if rerr[i]<-360 then

rerr[i]=rerr[i]+360

endif

if rerr[i]>180 then

rerr[i]=rerr[i]-360

endif

if rerr{i}<-180 then

rerr[i]=rerr[i]+360

endif

rg=r_law(rerr,i)

--run difference between estimated crack direction

--through control law

phi[i]=phi[i-1]+rg

--new end effector orientation
if phi[i]>180 then
--define angle +/- 180.
phi[i]=phi[i]-360
endif

if phi[i]<-180 then
phi[i]=phi[i]+360
endif

endif

--Calculate new cartesian location
newx=x[i]+vg*cos(phi[i])+fg*sin(phi[i])
newy=y[i]+vg*sin(phi[i])-fg*cos(phi[i])
return(pos(newx,newy,z,w,p,phi[i],config))
end gen_point

---- routine sens_com(err:array of real;izinteger)

--This routine handles serial communication with the local sensor.

--It sends ASCII character 26 each time to receive the present
--error which is scaled as a single byte signed integer (+/-127)

-:VARIABLES :

Copyright 2011, AHMCT Research Center, UC Davis

125



126

--ibyte; error value read from sensor
--ireply; integer value sent to sensor to request data
--scale; converts scale value to offset in millimeters var ibyte,ireply:integer
scale:real
begin
ireply=26
scale=(4*25.4/256)
write f2(ireply)
read f2(ibyte::1)
write f2(ireply)
if ibyte=127 then
if i=0 then
err[i]=0
endif err[i]=err[i-1]
endif
if ibyte<>127 then
err[i]=scale*(ibyte)
endif
end sens_com

begin

unpos(spoint,xh,yh,z,wh,ph,rh,configstring)

--Intitialize ....

phiO=rh

--set starting crack direction to current manipulator orientation
dt=.05

vg=10

i=1

err[i]=0

--Clear values of 'points' before starting program.
for i=1 to pathlen(points) do

delpathnode(points, 1)

endfor

$termtype=nodecel

i=1

$speed=400

$use_config=false

--open serial port

open file f2('rw,field,readahead=10,uf,baud=4800,parity=o0dd,passall’,'c3:")
displaypg('karelpag',stat)

--move manipulator and slide to starting point, 'spoint’.
apndpathnode(points)

pospath(spoint,points,i)

int2(points,axi,i)

delay 1000

--begin first move

i=2

err[i]=0

point=gen_point(err,i) o
apndpathnode(points)

Copyright 2011, AHMCT Research Center, UC Davis



127

pospath(point,points,i)

int2(points,axi,i)

--begin reading sensor and generating points
for i=3 to 10000 do

sens_com(err,i)

--read sensor

point=gen_point(err,i)

--generate next point

--append position 'point' to path 'points’ and call routine 'int2’
--to perform integrated move.
anndpathnode(points)
pospath(point,points,i)

int2(points,axi,i)

endfor

--end of loop

close file 2

--close serial port

end Issint

Copyright 2011, AHMCT Research Center, UC Davis



128

APPENDIX E - WORKSPACE OF THE GMF-A510
MANIPULATOR

291

Figure E.1 Workspace of the A-510 manipulator (dimensions in inches). The two link

lengths 16.0 in. and 13.1 in. are shown.

Copyright 2011, AHMCT Research Center, UC Davis



129

44 0
~4O\r

l
Figure E.2 Total workspace of the GMF-A510 manipulator with the linear slide. The

slide has 46 in. of travel.
E!>
172 ‘ T

B a
—_—7
Figure E.3 Usable workspace of the GMF A-510 manipulator with the linear slide. The

usable workspace is defined as the workspace with the links extended to 75% of their
maximum reach. The regions labeled 'A' and 'B' are restricted due to limitations of the
linear slide motion. No path may have points inside region 'A' and no path may pass
through two opposite boundaries of region 'B'. There are no singularities in the usable
workspace.

46 0O
“wOo.U

I
8.04

Copyright 2011, AHMCT Research Center, UC Davis



APPENDIX F - INTEGRATION OF THE GMF-A510
MANIPULATOR WITH THE LINEAR SLIDE

As mentioned in Chapter 2, the GMF A-510 manipulator is integrated with a linear
slide which acts as a redundant degree-of-freedom. Code was written to integrate the
linear slide into the inverse kinematics of the manipulator to allow for full Cartesian level
programming. This is necessary because all of the sensing from the VSS is done with
respect to a fixed Cartesian reference frame and so any positional data from the ICU will
be sent to the RPS with respect to a fixed reference frame. Also, the hybrid control
algorithm requires motion specified with respect to a fixed reference frame.

The A-510 manipulator has 4 independent joints and, therefore, 4 degrees of
freedom. One of the joints is the ball screw in the column which moves paralell to the
world 'z' axis. This leaves 3 degrees-of-freedom for motion in the x-y plane. Since we
wish to control x and y positions as well as orientation in the x-y plane, we will utilize all
3 degrees-of-freedom. Therefore, the manipulator can move to any position and the end-
effector can have an arbitrary orientation in the x-y plane.

The only redundant solutions that arise are due to configuration of the arm (whether
the arm is a left-hand or right-hand configuration). The arm configuration must be
specified for each position in addition to the usual Cartesian location and orientation.
However, it is a simple matter to write code to determine the best arm configuration for
various areas of the workspace. The KAREL controller calculates inverse solutions for
all points within the manipulator workspace. Therefore, it is possible to input only
Cartesian data, determine the configuration via a pre-determined algorithm and move to
points within the workspace. This allows for full Cartesian level programming for
application programs.

The linear slide moves the manipulator parallell to the x-axis in the x-y plane. If the
linear slide is used as an additional degree-of-freedom, there are now an infinite number

of inverse kinematic solutions for points that are within the workspace covered by the

Copyright 2011, AHMCT Research Center, UC Davis

130



131

manipulator and the slide.

The KAREL controller is capable of incorporating the position of the linear slide
into the forward kinematics of the manipulator. This means, for example, that if all four
robot axes are not moved and the linear slide is moved, the controller knows the change
in the x position of the end-effector due to the motion of the slide. The controller is also
capable of calculating inverse solutions for the end-effector within the manipulator
workspace with respect to a fixed reference frame. If the controller is told to move the
manipulator to a point defined in the world coordinate system, it will take the position of
the linear slide into account and move the 4 joints to reach that point provided it is in the
workspace of the manipulator.

The Karel controller does not use the linear slide in inverse kinematic solutions.
This means if the controller is given a point which is out of the workspace of the 4 robot
axes but could be reached if the slide were moved, it will return a "point out of range"
error. This problem must be resolved in order to allow for full Cartesian programming in
the workspace covered by the manipulator and the linear slide.

The problem of choosing inverse kinematic solutions for a manipulator with a
redundant degree-of-freedom is very complicated in the general case. However, due to
the nature of the crack sealing operation, constraints can be imposed on the desired
motion of the end-effector which will simplify the problem of choosing an inverse
solution. The two assumptions are:

(1) The manipulator will only be allowed to extend to 75% of its maximum
reachable workspace (22.1 in. from center)

(2) Points will be given to the controller in series corresponding to following a
single crack from one side of a lane to the other. All points in a series must be monotonic
with respect to the previous point in the x direction. This means that any path must be
constantly increasing or constantly decreasing in x. This constraint fits the types of

cracks that are to be addressed by the ACSM.

Copyright 2011, AHMCT Research Center, UC Davis



132

Given the above constraints, the following approach can be used. Define a curve
within the workspace of the manipulator such that when the curve is slid paralell to the
motion of the slide, it will produce a desirable shape for the workspace. The workspace
of the manipulator at each extreme of the slide can be added to the shape produced by
sliding the curve to obtain the total workspace of the manipulator and the slide. One
important constraint exists for the curve: the curve must be a single-value function of an

axis fixed to the base of the manipulator paralell to the world 'y' axis. Using this

LINEAR SLIDE TRAVEL

Figure F.1 The dashed line represents the path on which the manipulator will move
relative to its base for an integrated move with the linear slide.

Copyright 2011, AHMCT Research Center, UC Davis



133

approach, unique inverse-kinematic solutions can be specified for all points within the
workspace. For a move between any two points, the manipulator will maintain a
trajectory along the curve relative to its base frame while the remainder of the motion is
handled by the linear slide. As long as the curve is a function of 'y', there will be no
redundant solutions (except configurations as discussed earlier) since the slide moves
paralell to the x-axis.

This algorithm has two strong advantages. The first advantage is that it is simple to
implement on the Karel controller. The controller can calculate inverse kinematics for
the manipulator joints and calculating the necessary motion for the slide can be made
quite simple by the proper choice of the pre-defined curve. Also, the workspace of the
robot-slide system using the algorithm can be easily determined.

There are several disadvantages to the algorithm. First, it reduces the reachable
workspace of the manipulator-slide system. This is not a real problem since it is desirable
to stay away from the boundaries of the reachable workspace due to mechanical
limitations. The second disadvantage is that any defined path must be monotonic in x.
This constraint already exists for the crack sealing machine and therefore is not
significant. The final constraint is that all points on a path must be defined relatively
close together to avoid point out-of-range errors. This error will occur because the Karel
controller must calculate the inverse solution for the manipulator beffore the linear slide
moves. Therefore, if a point is given that is out of range of the robot joints with the
current slide position, a position out-of-range error will result. This constraint requires
the curve defined within the manipulator workspace to be a safe distance from the edge of
the workspace.

The workspace of the A-510 manipulator is shown in figure E.1. The direction of
motion of the slide is also shown. The curve in the workspace will be defined such that
the manipulator will always be at 75% of maximum extension. Therefore, the curve will

be a semi-circular arc with a radius of 22.1 in. This is shown if figue F.1. If the curve is

Copyright 2011, AHMCT Research Center, UC Davis



slid along the axis of the linear slide, and the workspace of the manipulator at the slide
limits is added in, a workspace of the shape shown in figure E.2 will result. If we reduce
the usable workspace of the manipulator at the slide limits to 75% of the reachable
workspace, the shape shown in figure E.3 will result. Note that no provision has been
made for the manipulator to reach directly underneath itself when at the right-hand side
slide limit. For singularities and path constraints in this workspace see Appendix E.

A flowchart of the algorithm used to integrate the linear slide and the manipulator
with the method that has been developed is shown in Figure F.2.
Points must be given to the integration routine as a path. A path is simply an array of
positions. Using a path variable allows the integration routine to look at previous
positions as well as the current position. The routine first checks to see if a new path is
being started. If the path is new, the 'start_slide' routine is called which initializes motion
for the linear slide. Otherwise, the program calculates where the given position lies on
the arc that has been defined for the manipulator workspace. Once this is done, the
program calculates where the arc intersects the x-axis. By taking the difference between
the arc intersection of the current position and the last position, the program calculates
how much the slide must be moved. Once this is done, the manipulator checks the
current slide position relative to the slide limits. If the current point can be reached by the
manipulator with the slide at its lower limit, the new slide position will be set at the lower
limit. If the new calculated slide position exceedss the upper limit, then it will be set
equal to the upper limit. Now that the slide move has beencalculated, the slide and the
manipulator will move. The next path node will be read and the cycle will continue until

the task is complete.

Copyright 2011, AHMCT Research Center, UC Davis

134



read next path node

is
this the first

node?

calculate arc for current path node

Y

- Call start_slide routine

caclulate where arc intersects x-axis (axi[i])

Y

calculate A x for slide move = axi[i]-axi[i-1]

Is

current node
in manipulator workspace

at slide lower

slide position = lower limit

limit?

Is

calculated
slide position

> upper limit

slide position = upper limit

move slide and manipulator

Figure F.2 Flowchart for slide integration progam.

Copyright 2011, AHMCT Research Center, UC Davis

135



Begin start_slide

Is
current node
in manipulator workspace
at slide lower
limit?

Calculate arc and
appropriate slide position

Is
calculated
slide position
> upper limit

!

slide position = lower limit

—®~1 slide position = upper limit

A
move slide and manipulator

e

End start_slide

manipulator with the linear slide.

Copyright 2011, AHMCT Research Center, UC Davis

Figure F.3 Flowchart subroutine 'start_slide' of program for integrating the A-510

136



137

F-2 - CODE FOR LINEAR SLIDE INTEGRATION

program int2_arc

-- This program integrates the linear slide and robot axes for motions.
-- The manipulator moves along an arc described in its workspace and
-- remaining motion in the 'x' direction is performed by the slide.

-- All motion is performed by the robot axes at the slide limit at the rear
-- of the workspace.

-- INPUT PARAMETERS:

-- points: path, where points[i] is the current desired position

-- and the other nodes are previous desired positions.

-- axi: array of positions of the aux axis, this variable has

-- to be declared in the main program so the array won't be

-- initialized everytime 'int2'is called. All values in axi

-- are calulated in 'int2'.

-- 1: index of how many times the program has been called

-- '1' is necessary to convert the separate points into a path.

-- OUTPUTS

-- The program ouputs a move command to the manipulator along with
-- an auxmove command to the linear slide.

-- VARIABLES

-- point:position input

-- i:zinteger, index of number of times routine has been called.

-- axi:array of real, calculated slide position at each point.

-- configl: string, configuration of present position

-- config2: string, configuration of desired position

-- confign: string, used to change configuration if point is out of range
-- ROUTINES

-- startslide: performs initial movement of slide and manipulator for
-- the first point given

-- int2: performs slide and arm movement for all other points.

var

configl,config2,confign:string[12]

point:position

auxmove,auxvar:auxpos

routine startslide(startpos:position)

var

-- VARIABLES:

-- startpos: position to move to

-- X,¥,Z,W,p,I: cartesian components of startpos

-- auxdes: calculated desired aux axis position

-- auxhere: current location of slide

-- config: configuration of startpos

auxdes,auxhere:auxpos

X,¥,Z,W,p,I,x1,yl:real

config:string[12]

Copyright 2011, AHMCT Research Center, UC Davis



138

begin
$termtype=nodecel
unpos(startpos,x,y,z,w,p,r,config)
auxhere=curapos
-- find current aux axis position
-- determine which side of the slide the starting position is on and
-- calculate 'auxdes' such that the the arm will be 75% extended to reach
-- startpos.
if x>=-53 then
if Y>561 then
y=561
endif
if Y<-561 then
y=-561 ‘
endif
x1=sqrt(561*561-y*y)
auxdes[1]=x-x1
else
auxdes[1]=-615
endif
-- move the aux axis and the manipulator to starting position.
move aux to auxdes
move tcp to startpos
end startslide
--- routine int2(points:path;axi:array of real;i:integer)
var
-- VARIABLES:
-- x1,y1,rl: Cartesian components of the last input position.
-- x2,y2,r2: Cartesian components of the current input position.
-- z,w,p,I: Cartesian components that are constant for all positions.
-- dx: Difference in x between last and current position.
-- configl,config2: configs of last and current positions, respectively.
-- confign: string, used to change config if point out of range.
-- points: path consisiting of all points sent to 'int2d'.
-- axi: array of the aux calculated aux axis position for each position.
-- point: position variable used to pull of a single position from
-- the path 'points’.
-- auxlim: value of limit of travel for aux axis.
auxlim,x1,y1,x2,y2,z,w,p,r,dx,r1,r2:real
configl,config2:string[12]
point:position
auxmove:auxpos
begin
-- set speed, termination type and aux axis limit.
$termtype=nodecel
$auxspeed=75
auxlim=-615
-- if this is the first call to routine, initialize with 'startslide’
if i=1 then
point=pathpos(points,i)
startslide(point)
else
-- find the aux position 'axi[1]' in order to calculate axi[2].

Copyright 2011, AHMCT Research Center, UC Davis



139

if i=2 then
auxmove=curapos
axi[1]=auxmove[1]
endif
-- Decompose the current point and the previous point to obtain their
-- Cartesian components.
point=pathpos(points,i)
unpos(point,x2,y2,z,w,p,r2,config2)
point=pathpos(points,i-1)
unpos(point,x1,y1,z,w,p,rl,configl)
-- Calulate the difference in x between previous and current point.
if y2>561 then
y2=561
endif
if y2<-561 then
y2=-561
endif
if y1>561 then
y1=561
endif
if y1<-560 then
yl=-561
endif
dx=x2-x1+sqrt(561*561-y1*y1)-sqrt(561*561Y2*y2)
axi[i]=axi[i-1]+dx
if axi[i]<-615 then
axi[i]=-615
endif
if axi[i]>(-auxlim) then
axi[i]=axi[i-1]
endif
auxmove[1]=axi[i]
-- assign the most recent path node to the position variable 'point' point=pathpos(points,i)
point=pos(x2,y2,z,w,p,r2,config2)
-- move robot and auxiliary axis.
move aux to auxmove tcp to point nowait
endif
end int2
-- int2d is a dummy program to hold procedures 'int2' and 'startslide’'
begin
end int2_arc

Copyright 2011, AHMCT Research Center, UC Davis



140

APPENDIX G - PROGRAM FOR INTEGRATED
CONTROL OF CRACK SEALING WITH THE A-510

program acsm_main

--This program controls communication with the LSS and the ICU
--to follow cracks. Data from the ICU will be used and verified
--by the LSS. If the crack disappears from the field of view of
--the LSS, a search will be conducted using the LSS.

--The ICU will constantly be updated on what task the robot is
--executing as well as the Cartesian location of the end-effector.
--VARIABLES

--eIT,X,y,phi: see module for 'Iss_search’

-- axi : see slide integration routine 'int2' in 'int2_arc'

-- points: path use for searching with LSS

-- crack_path : points sent from ICU

-- nocrackfnd,update,beg-srch,beg_ctr,no_crack,end_crack - integer
-- values to signal icu of robot task

var

err,axi,x,y,phi:array[10000] of real

points,crack_path:path
nocrackfnd,counter,max_offset,update,beg_srch,beg_ctr,no_crack:integer
end_crack:integer

routine sens_com(err:array of real;counter:integer)

from Issint

--reads offset from LSS routine

int2(crack_path:path;axi:array of real;counter:integer)

from int2_arc

--performs integrated move with linear slide

routine icu_points

from icu_com

--reads in path of points from ICU routine search

-- searches for crack with LSS

routine center

from 1ss_search

-- centers on crack with LSS.

from lIss_search

routine handl_err

from err_handl

-- sends Karel error number to ICU if error occurs.

routine send_point(dat_type:integer)

from point_send

--sends status and location to icu (status is dat_type)

routine main

begin

-- initialize serial port

open file {4 ('rw,field,readahead=100,uf,passall’,'c0:")

Copyright 2011, AHMCT Research Center, UC Davis



141

-- initialize signal values
nocrackfnd=127
max_offset=127
update=1

beg_srch=2

beg_ctr=4

no_crack=8
end_crack=32

-- signal icu if error occurs through 'handl_err'
condition[1]:
when error[*] do unpause
handl_err
endcondition
enable condition[1]
icu_points
--read in points
counter=1
int2(crack_path,axi,counter)
-- move to first point
sens_com(err,counter)
--check LSS
if abs(err[counter])=nocrackfnd then
send_point(beg_srch)
search
endif
if abs(err[counter])>max_offset then
send_point(beg_ctr)
center
endif
for counter=2 to pathlen(crack_path) do
int2(crack_path,axi,counter)
--move to remaining points
sens_com(err,counter)
--continue to check sensor
if abs(err[counter])=nocrackfnd then
send_point(beg_srch)
--signal icu and search if no crack found
search
endif
send_point(update)
--update ICU as each point on path is reached
endfor
send_point(end_crack)
--signal ICU when end of crack reached
close file f4
--main is a dummy program to hold routines
end main
begin
end
acsm_main

Copyright 2011, AHMCT Research Center, UC Davis



142

PROGRAM icu_com

--This program reads in the planned path from the icu.
--Variables:

--x,y,phi:Components of cartesian location for each point
--inumpoints - number of points in path

--crack_path: path formed by points

VAR

bite, CHECK ,startflag:string[1]
X,Y,PHI:STRINGJ[10]
NUMPOINTS:STRING([3]
counter,show_result, INUMPOINTS,count:INTEGER
crack_path:PATH
routine icu_points
BEGIN
$TERMTYPE=NODECEL
BITE=D'
STARTFLAG=BITE
CHECK="0'
OPEN FILE F3(RW,FIELD,READAHEAD=1000','C3:"
-- initialize serial port
DISPLAYPG('KARELPAG',show_result)
--display karelpage for crt output
READ F3(STARTFLAG::1::0)
--wait for signal to start
WRITE OUTPUT(STARTFLAG)
WRITE F3(BITE)
READ F3(NUMPOINTS::3::2)
--read in number of points
CONVSTR2INT(NUMPOINTS, INUMPOINTS)
--convert number of points to integer
FOR COUNT=1 TO INUMPOINTS DO
--start loop to read in points
READ F3(X::5::2)
--read x
READ F3(Y::5::2)
--teady
READ F3(PHI::4::2)
-- read orientation
WRITE OUTPUT(CR)
WRITE OUTPUT(X)
WRITE OUTPUT(CR,Y)
WRITE OUTPUT(CR,PHI)
build_path(x,y,phi,count)
-- add point to path
endfor
write F3(bite)
-- signal icu that points have been received
CLOSE FILE F3
CLOSE FILE F4
END icu_points

Copyright 2011, AHMCT Research Center, UC Davis



143

ROUTINE build_path(x,y,phi:STRING;count:INTEGER)
-- adds each point to ‘crack_path' as they are read in.
VAR

assign_pos:POSITION

RX,RY,RPHI,Z,W P:REAL

¢:STRING[3]

BEGIN

C=||

z=100

W=180

P=0

CONVSTR2REAL(X,RX)

--convert all strings to real numbers
CONVSTR2REAL(Y,RY)
CONVSTR2REAL(PHILRPHI)
APNDPATHNODE(crack_path)

-- add a node to the path
assign_pos=POS(RX,RY,Z,W,P,RPHI c)

-- create position from x,y and phi.
POSPATH(assign_pos,crack_path, COUNT)

-- add position to path

RETURN

END build_path

begin

-- 'icu_com' is a dummy program to hold routines
end icu_com

program 1ss_search

--Contains routines to search for crack with LSS.

-- Variables

--X,y,phi: cartesian components of end-effector position during search.
var

x,y,phi,err:array[ 10000] of real

update_point:position

j.stat:integer vg:real

routine for_law(err:array of real;counter:integer):real

from Issint

--control law for sensor data

routine sens_com(err:array of real;counter:integer)

from Issint -- reads data from local sensor.

routine icu_points  --reads new path from icu.

from icu_com

routine send_point(dat_type:integer) --send status and location to icu.
from point_send

routine gpts_srch(err:array of real;i:integer):position

--generate points for move based on error data & current location.
var

newx,newy,w,p,z,fg:real

config:string[12]

Copyright 2011, AHMCT Research Center, UC Davis



144

begin
err[l]—O
fg=for_law(err,i)
--calculate gain from control law & sensor error
unpos(curpos,x[i],y[i},z,w,p,phi[i],config)
--take cartesian components
--of current location.
newx=x[i]+fg*sin(phi[i])
-- calculate new location
newy=y[i]-fg*cos(phi[i])
return(pos(newx,newy,z,w,p,phi[i],config))
--return new location
end gpts_srch
routine center
--centers end effector on crack
var
jrinteger point:position
begin
vg=5
for j=2 to 100 do
sens_com(err,j)
--read sensor
write output(err[j],cr)
if abs(err[j])<20 then
--check to see if error is small enough
ret_posn
--return position to icu
endif
point=gpts_srch(err,j)
--generate new point
move to point
-- move to new point
endfor
end center
begin
-- initialize serial port
open file f2('rw,field,readahead=10,uf,baud=4800,parity=0dd,passall’,'c3:")
displaypg(’karelpag',stat)
--set page for crt display of output
$termtype=nodecel
--set motion type for path
err[1]=0
ret_posn
-- send crack location to icu
close file f2
end Iss_search
routine ret posn
var
crack_pos:integer
begin crack_pos=16
send_point(crack_pos)

Copyright 2011, AHMCT Research Center, UC Davis



145

icu_points
end ret_posn
routine search
--routine to search for crack
var
X,¥,Z,W,p,r:real
--Cartesian components of location
i,no_crack:integer err:array[10000] of real
config:string[12]
point,point1:position
begin
no_crack=8
pointl=curpos
unpos(curpos,x,y,z,w,p,r,config)
fori=2to 11 do
x=x+10*cos(r)
--move at right angle to current location
y=y-10*cos(r)
point=pos(x,y,z,w,p,r,config)
move to point
sens_com(err,i)
--check sensor
if abs(err[i])<>127 then
--check to see if sensor detects crack
center
-- if crack found, then center on crack
endif
endfor
move to pointl
unpos(curpos,x,y,z,w,p,r,config)
fori=2to 11 do
--move back to starting location and search in
--other direction.
x=x-10*cos(r)
-- (same as search above)
y=y+10*cos(r)
point=pos(x,y,z,w,p,r,config)
move to point
sens_com(err,i)
if abs(err[i])<>127 then
center
endif
endfor
send_point(no_crack)
--if no crack found by now, signal icu.
end search

program err_handl

--routine to handle errors from the robot
--will send the karel error code to the icu.
var

err_code,sys_code:integer

Copyright 2011, AHMCT Research Center, UC Davis



146

msg_str:string[12]

routine main

from acsm_main

routine send_point(err_code:integer) --send error code to icu
from point_send

routine handl_err

var

L:integer

begin

geterrorcode(err_code,sys_code)

-- (sys_code can be used to get a string describing the error from Karel
-- see Karel Refernce Manual)

send_point(err_code)

--send error code & current location to icu main

--send control back to main program

end handl_err

begin

--err_handl is a dummy program to hold routine handl_err

end err_handl

program point_send

-- Holds routine to send status and location to icu.
var

izinteger

routine send_point(data_type:integer)

-- 'dat_type' is signal bytes for icu eg. ‘nocrackfnd’
var x,y,z,w,p,r:real

Xi,yi,ri,start_bite:integer
config,xstring,ystring,rstring:string[12]

begin

start_bite=32767
unpos(curpos,x,y,z,w,p,r,config)
--take cartesian components of
--current location.
convreal2str(x,5,0,xstring)
--convert all cartesian components
convreal2str(y,5,0,ystring)

-- to strings and then to integers.
convreal2str(r,4,0,rstring)
convstr2int(xstring,xi)
convstr2int(ystring,yi)
convstr2int(rstring,ri)

write f4(start_bite::2)

-- send start bytes (all 1's)

write f4(data_type::2)

-- send robot status

write f4(xi::2)

-- send location data

write f4(yi::2)

Copyright 2011, AHMCT Research Center, UC Davis



-

write f4(ri::2)

write output(xi,cr,yi,cr,ri)

return

end send_point

begin

-- point_send is a dummy program to hold routines & variables.
end point_send

Copyright 2011, AHMCT Research Center, UC Davis

147



148

APPENDIX H - MANUFACTURER'S
SPECIFICATIONS FOR THE GMF-A510
MANIPULATOR AND KAREL CONTROLLER

Copyright 2011, AHMCT Research Center, UC Davis



149

F [Robotics

Basic Description

The GMFanuc A-510 is a four-axis horizon-
tally articulated SCARA type robot featuring
maximum versatility for electrical/electronic
assembly, mechanical assembly, material
handling, palletizing, and dispensing. In
fact, it is also the highest performance
robot of its kind. The ultra-reliable KAREL®
controlier utilizes the latest proven
technologies in the industry. Flexibility is
further enhanced by the powerful KAREL
programming language and available
INSIGHT™ vision system.

A-510

GMFIChics

Features and Benefits

= All-electric AC servo drive eliminates
brush maintenance.

a Easy to install and program for quick
pay-back.

® Rugged construction for long
service life.

® Can operate in environments from
the harshest to Class 10 clean room.

7 17.2 ft2 (0.487 m?3) work envelope* for
real-world applications.

® Hollow design encloses all cable
routing to eliminate snagging.

® 99 |b. (45 kg) vertical force for
pressing parts™™.

® Integral fail-safe brakes for safety.

® Absolute position detection system
provides automatic calibration.

= Hefty 44Ib. (20kg) payload** for
realistic EOAT design and part
weight.

a Base-located Z-axis improves
clearance for restrictive installations.

u Proximity switches for overtravel
protection.

* Floor Mount configuration only.
““Floor and Inverted Mount configurations.

Inverted Mount Configuration Features and Benefits

a Robot can now ‘double-back” on itself for increased 8 Placement directly over conveyors for maximum
access space. part manipulation.

Extended Reach Option Features and Benefits

® Maximum reach increased by 284% for an even- B Available in standard and inverted mount
larger work envelope. configurations.

Clean Room Option Features and Benefits

Class 10 configuration provides = Centrifugal blower and hosing for & [nternal cable routing reduces
additional customer benefits: particulate evacuation. contamination and laminar air-flow
® Meets IES-RP-CC-006--84T and B Z-axis in base reduces motion over agitation.

ASTM 50-83 clean room the work area.

standards.

©1990 GMFanuc Robotics Corporation. All rights reserved.



150

Dimensions

520mm
- (20.5") >« (17.0")~]

Extended Reach
Option Shown

' 410mm |[330mm

430mm

1 block = 100mm (3.9")

usr ey | 128mm = M 950R
~ ﬁ________ﬁ | i (5.0") . (37.4")
e 150° A =N
ﬁ ! - 4 N
s I iy N
i 4601nm‘\ '\ | #
: (18.1") ﬂzg C DD
[ { |
'5““)’ } ‘ \ /Iﬁ_ /Mtl;mm
T ;
410mm [I \1 o N A Sl
(16.1") 150 SH Ep
t l 1 — 740R
|._550mm__| (28.1%)
(21.6") [
Grid Scale:

Specifications
Configuration/ Floor Mount Floor Mount- Ext. Reach Inverted Mount”
Option Available Standard and Clean Rm. Standard and Clean Rm. Standard
Payload 44lb (20kg) 22Ib (10kg) 44lb (20kg)
Moment (Axis 4) 70 kg x cm 50 kg x cm 70 kg x cm
Repeatability +0002" (+005mm) +0003" (+£0065mm) +0002" (£005mm})
Work Envelope
Maximum Reach 291" (740mm) 374" (950mm) 291" (740mm)
Axis 1 (Base) Rotation 300° 300° 300°
Speed 300°%sec 270%/sec 300%sec
Axis 2 (“2") Stroke 118" (300mm) 11.8" (300mm) 11.8" (300mm)
Speed 276"Isec (700mm/sec) 236" /sec (600mmisec) 276" /sec (700mmi/sec)
Axis 3 (Elbow) Rotation 300° 300° 300°
Speed 300°%sec 270%sec 300%sec
Axis 4 (Wrist) Rotation 540° 540° 540°
Speed 540°/sec 540°/sec 540°/sec

Weight-Mechanical Unit

330 Ib (150kg)

340 Ib (154kg)

330 Ib (150kg)

Specifications subject to change without notice.

“Extended Reach Option available.

it [Robotics

GMFanuc Robotics Corporation

2000 S. Adams Road

rhurn Hills, Ml 48057-2090

ight 2011, AHMCT R h
Copyright 2011, CT Research Center, UC :érsauture Request 1-800-634-0189 Canada

5M2-90F & RLITHOINU.S.A.

Main Office (313) 377-7000

GMFanuc Robotics Canada, Lid.

6395 Kestrel Road

Mississauga, Ont. L5T 154

Main Office (416) 670-5755

Heinrich-Hertz-Str. 4
4006 Erkrath-Unterfeldhaus
West Germany

GMFanuc Robotics Europe (GmbH)

Main Office 011-49-211-250040



GNiranuc Robotics

151

BASIC DESCRIPTION

The GMF KAREL® Controller is a self-
diagnostic robot control system with full
program development and edit
capabilities. It is available in two enclosure
sizes, both of which feature teach pen-
dant, multiple Motorola 68000
microprocessors, two optional /O inter-
face styles, built-in operator panel, and
optional integral or remote keyboard/CRT.
This state-of-the-art controller is designed
for compatibility with all GMF robot
mechanical units. The controller hardware
has been developed from proven perfor-
mance in over 300000 NC controller and
10,000 robot controller installations.

KAREL features include:
a Powerful KAREL programming

language featuring all new, easy to use

operator interface.

& Menu driven operator functions

& Advanced Technology Digital Servos
& Up to nine axis simultaneous control
& Optional Integral MAP interface

m INSIGHT™ (Integral vision system

option)
& Remote robot operation
a Remote keyboard/CRT option

e Up to 128 discrete digital 1/0 points with
optional madular or fixed /O interface

& Analog /O

& Two enclosure sizes, both featuring

single door access.
m Auxiliary axis control

KAREL

Controller

KAREL OPERATOR PANEL

The KAREL operator’s panel
contains system status LED's
along with the control switches
needed for day-to-day opera-
tion of the robot.

The Operator Panel

Features Include:

& Long-Life LED system status
indicators

& Remote/Local Operation
Keyswitch

e Overtravel Release
Pushbutton

& Fault Indication LED and

Reset Pushbutton

e Programmable "Cycle Start”
Pushbutton

= Full Size Emergency Stop

& 2 User Programmable Push-
buttons and LED's

& Calibration Status LED and

Calibrate Pushbutton

= Serial Port connections for
Optional CRT unit {portable
unit only) and disk drive unit
or user device (printer, host
computer, etc.)

KAREL /O (INPUTS/OUTPUTS)

The KAREL controller suports
either a Modular (rack) style /O
system or a Fixed (card) /O
system. The modular system is
designed for applications re-
quiring a wide variety or larger
quantity of 1/O points. The fixed
1/0 card is designed for ap-
plications with more limited /O
requirements.

Modular /O System: Supports
both analog and digital /O
modules which plug into a rack

mounted within the controller
enclosure. Modules are
available in either 8 or 16 point
configurations.

Discrete Inputs
24 VDC, 120 VAC 50/60 HZ

Discrete Outputs :
24 VDC sink or source 120 and
240 VAC 50/60 HZ

Analog Inputs :

4 channels per module,
voltage or current input, 12 bit
resolution

Analog Outputs :

2 channels per module,
voltage or current input, 12 bit
resolution '

Fixed I/0 System:
Single system board which
supports the following /0 on a

simple quick disconnect
connector:

24 point 24 VDC outputs
32 point 24 VDC inputs

Additional Modular I/O

features include:

w Quick disconnect terminal
strips

& Individual LED indicators on
each /O point

& Fused 120 VAC and 240 VAC
output modules with blown
fuse indicators.

£1981 GMFanuc Robotics Corporation. All rights reserved



KAREL TEACH PENDANT

The all new “T” style hand held
teach pendant is used for jog-
ging the robot and teaching
positions. A large 8 line by 40
character display provides axis
coordinates, robot program
data, descriptive user

messages and diagnostic

information.

Additional features include:

s Ergonomically designed
lightweight plastic case

a Integrated "Deadman’” safety
switch for programmer

protection

m Sealed full travel keypad

= Hard-wired Emergency Stop
switch

a Backlit LCD Display

& Menu driven function

displays

KAREL KEYBOARDICRT

The optional GMF KAREL
Keyboard/CRT is used for pro-
gramming and systemn setup of
the KAREL controlier. It can
also be used to display
operator messages from a
KAREL applications program,
as well as diagnostics and

status information about a run-

ning robot system.

It has the following key

features:

& Designed for Industrial Use,
Fully Sealed

& Full Action Sealed ASCI
Keyboard

m High Resolution 9-inch
CRT (built-in), 12-inch CRT
(remote)

& 80 Column x 24 Line
Display to display opera-
tional and robot status
information

& Available as a built-in unit

(large cabinetonly) or as a
portable unit that sits conve-
niently on top of the small
enclosure, or on a worktable.

a VT-100 and VT-220 com-
patibility, terminal emulation
for IBM PC, optionally
available.

KAREL CONTROLLER CPU ({Central Processing Units)

The KAREL controller is based
on Motorola 68000
microprocessors, and TMS
32C25digital signal processors
for digital servo control.
Hardware features include:
m Digital servo control is used
for all servo axes which
eliminates temperature drift-
ing and the need for analog
adjustments.

a Up to 9 axes of simultaneous
control for auxiliary axes. (3
auxilliary axes in addition to
the base robot axes)

& Noise immune fiber optic
links connect the modular /O
system to the main controller
electronics.

m The KAREL controller makes
extensive use of VLS|
technology. This lowers the

chip-count, and improves
system reliability.
a Rugged industrial design

Bubble Memory has been in-

corporated to store Controlier
and User Programs. This
permits fast field updating of
controller software.

e Up to 4 Mbytes of bubble
memory (2.0 Mbytes
standard)

& Up to 2 Mbytes of RAM me-
mory(1.5 Mbytes standard)

& Optional Powerfail Recovery
support

m Optional integrated grayscale
Vision System INSIGHT™ im-
plemented as a backplane
plug-in

m Optional MAP interface im-
plemented as a backplane

plug-in

KAREL LANGUAGE
The KAREL controller incor-
porates the KAREL program-
ming language: a general
purpose robot and automation
programming language which
greatly simplifies robot applica-
tion programming.
Programming features
include:

m English-like programming
statements.

& Basic and advanced
arithmetic functions including
trigonometric and log-
arithmic functions.

m Complete set of program

control structures including
branching and looping.

& Realtime I/O monitoring and
user interrupts.

m Relative motion statements
which reduce the number of
taught positions.

m Coordinate transforms for
position shift, offset, and
rotation.

= Continuous path motion.

s English names for positions,
variables, and 1/0 points.

a Operator messages
displayed at either the CRT
or Teach Pendant.

& User comments for
documenting developed
programs.

Positional data features

include:

a Storage of data in cartesian
coordinates.

& Separation of program logic
and position point data.

This permits:

a Referencing a position multi-
ple imes without using add-
tional memory

a Sharing data between muilt-
ple programs

B Insert, change, or delete data

without altering program
logic.

m Use of the same program
logic with different sets of
positions. This is useful for
different parts with a com-
mMon process.

& Dynamic changing of pro-
gram and positional data
from the keyboard, teach
pendant, sensors, or host
computers.

SPECIFICATIONS

Ambient Temperature : 0-50 deg C, (32-122 deg F)

Power Requirements : 200 to 575 VAC, 50/60 HZ, 1.7 KWatis
(including robot)

Weight:

Large (‘C” size) Enclosure 400 Kg. (880 Ibs))

Side Cabinet 140 Kg. (308 Ibs.)

Small ("B” size) Enclosure 250 Kg. { )

550 Ibs

GMFanuc Robotics Corporation

¥
ra 2000 South Adams Road
Auburn Hills, M| 48326-2800

Copyright 201 [¢Si¥EfjRegearch Litetatuté(RBquisst 1-800-47-ROBOT

Phone (313) 377-7000 Fax (313) 377-7366

Specifications subject 1o change without notice
~

DOOCOD ITLIN NG T

CONTROLLER CABINET DIMENSIONS

GMFanuc Robotics Canada, Lid.

6395 Kestrel Road
Mississauga, Ontario
Canada L5T 125

Main Office {416) 670-5755

[t \» .

8 Size enciosure {200mm({8")
ireght 1300mm (5273

GMFanuc Robotics Europe GmbH
Heinrich-Herz-Strasse 16

P.O. Box 3345

D-4006 Erkrath 1, West Germany
Main Office 211-20060



153

REFERENCES

Allen, Peter K. et al (1991) "Real Time Visual Servoing", Proceedings of the IEEE
International Conference on Robots and Automation p. 851-856.

Atiya, Sami and Greg Hager (1991) "Real-Time Vision-Based Robot Localization",
Proceedings of the IEEE International Conference on Robots and Automation, p. 639-

Bamba, T. et. al. (1984), "A Visual Seam Tracking System for Arc-Welding Robots",
Proceedings of the 14th Annual Symposium on Industrial Robots, p. 365-74.

Chaumette, Francois et al (1991), "Positioning of a Robot with Respect to an Object,
Tracking it and Estimating its Velocity by Visual Servoing", Proceedings of the IEEE
International Conference on Robots and Automation, p. 2248-2253.

Craig, John J. (1989) Introduction to Robotics, 2nd Ed. Addison-Wesley Publishing
Company, Inc. New York, NY.

Craig, Kevin (1991).. "Class Notes from Dynamics and Control of Multibody Systems",
Rensselaer Polytechnic Institute, Spring, 1991.

De Schutter, J. (1990) "A Force Controlled Robot" in "Lecture Notes of the 1990
Integrated European Course in Mechatronics" "Computer Controlled Motion and
Robotics" Katholieke Universiteit Leuven, Department of Mechanical Engineering.
Heverlee Belgium. p. 213-230.

De Schutter, J. (1990) "An Introduction to PID Control and Its Application to Motion
Control" Katholieke Universiteit Leuven, Department of Mechanical Engineering.
Heverlee Belgium. p. 71-103.

De Schutter J. and H. Van Brussel (1988), "Compliant Robot Motion", The International
Journal of Robotics Research, vol. 7, no. 4, p. 3-32.

Desa, S. and B. Roth (1985) "Synthesis of Control Systems for Manipulators Using
Multivariable Robust Servomechanism Theory", The International Journal of Robotics
Research, Vol. 4., No. 3, p 18-34.

Espiau, B., J.-P. Merlet and C. Samson (1990) "Force-Feedback Control and Non-Contact
Sensing: A Unified Approach", RoManSy 8, Proceedings of the Eighth CISM-
IFToMM Symposium on Theory and Practice of Robots and Manipulators, p. 176-185.

Farin, Gerald (1988) Curves and Surfaces for Computer Aided Geometric Design,
Academic Press, Inc., San Diego, Ca.

Fihey, J-L. et. al. (1987) "A Prototype Track Based Compact Robotic System for In Situ
Weld Repair of Hydraulic Turbine Runners", Automated and Robotic Welding,
November, 1987, Paper 25, p. 233-245.

Jang, Won and Zeungnam Bien (1991), "Feature-based Visual Servoing of an Eye-in-

hand Robot with Improved Tracking Performance", Proceedings of the IEEE
International Conference on Robots and Automation, p. 2254-2260.

Copyright 2011, AHMCT Research Center, UC Davis



154

Jouaneh, M. and D. Dornfeld (1988) "A Kinematic Approach for Coordinated Motion of
a Robot and Positioning Table", Journal of Manufacturing System, Vol. 7, No. 4 p.
307-314.

Kirschke, K. R. and S. A. Velinsky (1992) "Histogram-based approach for automated
pavement-crack sensing", ASCE Journal of Transportation Engineering, vol. 118, p.
700-710, Oct. 1992.

Karezooni, H., Sheridan, T.B. and Houpt, P.K. 1986. "Robust Compliant Motion for
Manipulation. Part I: The Fundamental Concepts of Compliant Motion", IEEE
Journal of Robotics and Automation RA-2(2):83-92

Krulewich, D. A. and Velinsky, S. A. (1992) "Development of a High Resolution System
for Automated Crack Sealing Machinery", Interim Report SHRP H-107A, Department
of Mechanical, Aeronautical and Materials Engineering, University of California,
Davis.

Lasky, T. and B. Ravani (1993) "Path Planning for Robotic Applications in Roadway
Crack Sealing" Submitted to Proceedings of the 1993 IEEE International Conference
on Robotics and Automation.

Lozano-Perez, Tomas (1982) "Robot Programming" Proceedings of the IEEE, Vol. 71,
No. 7, p. 821-840.

Luh, J. Y. S. (1985) "Design of Control Systems for Industrial Robots" Chp. 11 of
Handbook of Industrial Robotics, John Wiley & Sons, Inc. Englewood Cliffs, NJ. p.
169-202.

Maciejowski, J. M. (1989) Multivariable Feedback Design, Addison-Wesley, NY. 1989.
pp- 1-36. o

Mason, M. T. and J. K. Salisbury, Jr. (1985) Robot Hands and the Mechanics of
Manipulation, MIT Press, Cambridge, Mass.

Mason, M.T. (1981) "Compliance and Force Control for Computer Controlled
Manipulators" IEEE Transactions on Systems, Man and Cybernetics SMC-11(6):418-
432,

Millman, Richard S. and George D. Parker (1977) Elements of Differential Geometry,
Prentice-Hall Inc., Englewood Cliffs, NJ.

NBS (National Bureau of Standards) (1988) "Vision System in the AMRF (Automated
Manufacturing Research Facility)", in Journal of Research of the National Bureau of
Standards, vol. 93, p. 539-544.

Ogata, Katsuhiko. (1987) Discrete-time Control Systems, Prentice-Hall, Englewood
Cliffs, NJ.

Ogata, Katsuhiko (1990) Modern Control Engineering, 2nd. Ed., Prentice Hall,
Englewood Cliffs, NJ.

Panakolopoulos, N. et al (1991) "Vision and Control Techniques for Robotic Visual

Tracking" Proceedings of the IEEE International Conference on Robots and
Automation, p. 857-864.

Copyright 2011, AHMCT Research Center, UC Davis



155

Raibert, M.H., and Craig, J.J. (1981) "Hybrid Position/Force Control of Manipulators"
ASME Journal of Dynamic Systems, Meaurement and Control 103(2):126-133.

Salisbury, J.K. (1980), (Albequerque, N.M.) "Active Stiffness Control of a Manipulator
in Cartesian Coordinates” IEEE Conference on Decision and Control.

Schulteiss, E. D. and Velinsky, S. A. (1991) "On the Development of a Design Concept
For Automated Pavement Crack Sealing Machinery” Interim Report of SHRP H-
107A, Department of Mechanical Aeronautical and Materials Engineering, University
of California, Davis, 1991.

Taylor, Russell, Ralph L. Hollis and Mark A. Lavin (1985) "Precise Manipulation with
Endpoint Sensing" IBM Journal of Research and Development, Vol. 29 No. 4, p. 363-
37s.

Velinsky, S. A. and Kirschke, K. R.(1991), "Design Considerations for Automated
Pavement Crack Sealing Machinery", Proceedings of the Second ASCE International
Conference on Applications of Advanced Technologies in Transportation
Engineering", pp. 76-80.

Velinsky, S. A. (1991) "Fabrication and Testing of Maintenance Equipment Used For
Pavement Surface Repairs" Final Report of SHRP-107A, Phase I, University of
California, Davis.

Velinsky, S. A. (1990) "Fabrication and Tesing of Maintenance Used for Pavement
Surface Repairs”, Proposal for SHRP H-107, University of California, Davis, June,
1990.\

Weiss, Lee E., Arthur C. Sanderson and Charles P. Neuman (1987) "Dynamic Sensor-
Based Control of Robots with Visual Feedback", IEEE Journal of Robotics and
Automation, Vol. RA-3, No. 5, p. 404-416.

Westmore, David B. and William J. Wilson (1991) "Direct Dynamic Control of a Robot
Using and End-Point Mounted Camera and Kalman Filter Position Estimation",
Proceedings of the IEEE International Conference on Robots and Automation, p.
2376-2384.

Wong, Phillip W. (1991) "Force Compliance Control of the UCI Finger System",

Department of Mechanical and Aerospace Engineering, University of California,
Irvine.

Copyright 2011, AHMCT Research Center, UC Davis



	DOC007.PDF.pdf
	DOC008.PDF.pdf
	DOC009.PDF.pdf



