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Abstract
Each year, the state of California alone spends approximately $10 million on the

sealing and filling of pavement cracks in order to retain structural integrity of roadways

and extend time between major rehabilitions. The associated costs are approximately

$1800 per lane mile with 66% attributed to labor, 22% to equipment and 12% to

materials.

Currently, research is underway at the University of California, Davis to design and

build a prototype Automated Crack Sealing Machine (ACSM). The subsystems of the

ACSM will detect cracks and guide process equipment over the cracks to rout, heat, clean

and seal. For transverse cracking, the process equipment will be manipulated with an

industrial robot arm mounted on the rear of the ACSM support vehicle.

The purpose of this thesis is to develop and test algorithms for crack-following with

a robot manipulator using the relative proximity sensor and to expand upon these

algorithms to incorporate data from the machine vision system as well. The result will be

a flexible and robust control algorithm that will incorporate all available data for control

and will be able to function with failures or errors in the machine vision system and

associated subsystems.

This thesis will briefly address the overall problem of crack sealing. The selection

of an industrial robot and the selection and operation of the relative proximity sensor will

also be addressed. The algorithm for control of the robot with the local proximity sensor

relies heavily on control algorithms developed for compliant motion with endpoint force

sensing.
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ABSTRACT

Each year in California, the State Department of Transportation (CalTrans) spends

over $100 million maintaining approximately 33,000 lane-miles of flexible pavement

(Asphalt Concrete - AC) and 13,000 lane-miles of rigid pavement (Portland Cement

Concrete - PCC). A portion of these maintenance activities involves the sealing and

filling of cracks (approximately $10 million per year) which, when properly performed,

can help retain the structural integrity of the roadway and considerably extend the mean

time between major rehabilitations. A typical operation to seal meandering cracks in AC

pavement involves a crew of about eight individuals which can seal between one and two

lane miles per day. The associated costs are approximately $1800 per mile with 66%

attributed to labor, 22% to equipment and 12% to materials.

Currently, research is underway at the University of California, Davis to design and

build a prototype Automated Crack Sealing Machine (ACSM). The purpose of the

ACSM will be to address both longitudinal and transverse cracks in the pavement. The

subsystems of the ACSM will detect cracks and guide process equipment over the cracks

to rout, heat, clean and seal. For transverse cracking, the process equipment will be

manipulated with an industrial robot arm mounted on the rear of the ACSM support

vehicle.

Cracks will be detected by a machine vision system located at the front of the

ACSM support vehicle. The presence of a crack will be verified by an optical relative

proximity sensor mounted on the robot end-effector. The relative proximity sensor will

also detect the exact positions of cracks more precisely than the machine vision system.

Control of the manipulator will utilize data from both the machine vision system and the

relative proximity sensor.

The purpose of this report is to develop and test algorithms for crack-following

using the relative proximity sensor and to expand upon these algorithms to incorporate
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data from both the machine vision system and the proximity sensor. The result will be a

flexible and robust control algorithm that will incorporate all available data for control

and will be able to function with failures or errors in the machine vision system and

associated subsystems.

This report will briefly address the overall problem of crack sealing. The selection

of an industrial robot and the selection and operation of the relative proximity sensor will

also be addressed. The algorithm for control of the robot with the local proximity sensor

relies heavily on control algorithms developed for control with endpoint force sensing.

Once algorithms have been developed for crack following using proximity sensing,

control structures will be introduced that use data from the machine vision system as

well. The result will be a complete control algorithm for the Robot Positioning System of

the ACSM.
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CHAPTER 1- INTRODUCTION
This chapter describes the motivation for and development of an automated crack

sealing machine. Much of this chapter has been extracted from (Velinsky, 1991) and

(Schulteiss and Velinsky, 1991). Details on the development of the automated crack

sealing machine can be found in these references.

1.1 - PROBLEM DESCRIPTION

Worldwide, a tremendous amount of resources are expended annually maintaining

highway pavement. In the state of California alone, the Department of Transportation

(Caltrans) spends approximately $100 million per year maintaining about 33,000 lane-

miles of Asphalt Concrete (AC) pavement and 13,000 lane-miles of Portland Cement

Concrete (PCC) pavement. Approximately $10 million of this maintenance budget is

used to seal and fill cracks in the pavement. When properly performed, crack sealing and

filling can help retain the structural integrity of the roadway and considerably extend the

mean time between major rehabilitation.

Sealing and filling of cracks is a labor-intensive and tedious operation. A typical

operation for sealing cracks in AC pavement involves a crew of eight persons. This crew

can seal approximately 2 lane-miles per day at a cost of about $1800 per lane-mile. 66%

of this cost is attributed to labor, 22% to equipment, and 12% to materials. Furthermore,

the procedure is not standardized and there is a large distribution in the quality of the

resultant seal. Additionally, the workers must be on the road surface adjacent to moving

traffic, thus exposing them to a great deal of physical danger.

1.2 - THE NEED FOR AN AUTOMATED CRACK

SEALING/FILLING MACHINE

The final goal of the SHRP H-107A project, of which this report project is a part, is

to develop a prototype automated crack sealing machine that will sense, prepare, and seal

(or fill) cracks and joints in AC and PCC pavement. The goal of this project is to
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investigate the development of such a machine considering only the topics of road surface

preparation, positioning system (system for positioning the cleaning, heating, routing, and

sealing/filling devices) configuration selection, and positioning system concept design

selection. The primary objectives of the project are to:

• Increase the cost-effectiveness of the crack sealing and filling operations,

• Increase the quality, consistency, and life of the resultant seals and fills,

• Increase the safety of work crews and highway users

• Increase the use of remote and automatic equipment operation and control to

attain the above.

A machine that can satisfy the objectives listed above will have the added benefits

of reducing lane and highway closures and thus, will play a significant role in the

reduction of traffic congestion, a considerable problem in major urban regions around the

world. The cost effectiveness of such a machine will be realized through a combination

of increased speed and reduced manpower, in addition to the higher quality seal which

will reduce the frequency of major highway rehabilitations.

1.3 - MACHINE SPECIFICATIONS

To have the greatest impact, such a machine should satisfactorily perform the

following tasks automatically:

• Sense the occurrence and location of cracks in pavement.

• Prepare the crack and pavement surface for sealing/filling. This task includes the

removal of vegetation, loose debris, dirt film, and moisture. In addition,

preheating of the road surface may be necessary to ensure maximum sealant

adhesion and refacing of reservoirs (routing) may be required.

• Prepare the sealantlfiller for application; i.e., heat and mix the material, etc.

• Dispense the sealantlfiller over the crack.

• Form the sealant/filler into the desired configuration

• Finish the sealer/filler.

Copyright 2011, AHMCT Research Center, UC Davis
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The equipment prototypes may be derived from modifying existing equipment or

from the development of new equipment (with preference given to suitable commercially

available equipment), and each equipment design may include one or more pieces of

equipment.

1.4 - MACHINE ARCHITECTURE

Two component systems will be utilized to address the spectrum of commonly

occurring cracks to be sealed. The longitudinal crack sealing machine will seal

construction joints at the edge of the roadway which run parallel to the roadway. The

second machine is the general crack sealing machine which will address the more

complex problem of sealing transverse and random cracks on the road surface.

The automated crack sealing machine (ACSM) architecture has the following major

subsystems:

• Vision Sensing System (VSS)

• Local Sensing System (LSS)

• Applicator Peripherals System (APS)

- Heating/Cleaning/Debris Removal Subsystem

- Router

- Sealant Applicator

• Robot Positioning System (RPS)

- General Machine Positioning System

- Longitudinal Machine Positioning System

• Vehicle Orientation and Control (VOC)

• Integration and Control Unit (ICU)

- Systems Integration

- Robot Path Planning (Off-Line)

The purpose of the VSS in conjunction with the LSS is to locate and describe

pavement cracks. The APS includes the Heating/Cleaning/Debris Removal Subsystem,
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the Router and the Sealant Applicator. The Heating/Cleaning/Debris Removal

Subsystem will include all hardware and software necessary to heat and clean the road

surface during crack preparation. The router will shape the crack to optimal sealing

geometry. The Sealant Applicator is responsible for sealant dispensing and seal

configuration. The Robot Positioning System is responsible for moving the applicator

assembly along the crack during sealing. On the general machine, the General Machine

Positioning System will consist of a robot manipulator and a controller. On the

longitudinal machine, the Longitudinal Positioning System will position the applicator

using a programmable controller and hydraulic actuators. The Vehicle Orientation and

Control System will monitor changes in vehicle position from when the crack is sensed to

when it is actually sealed. Finally, the Integration and Control Unit will oversee the

entire crack sealing procedure by monitoring all peripherals to ensure proper operation

and controlling communication between subsystems.

1.5 - MACHINE OPERATION

Machine operation will begin with detection of cracks by the VSS which will be

mounted on the front of the support vehicle. The VSS scans the road, detects cracks and

sends the crack positions to the ICU. The VOC transforms the crack locations to the

workspace of the RPS. The LSS will be used to verify and precisely locate the cracks.

The RPS will manipulate the equipment of the APS to heat clean and seal the cracks.

The purpose of this report is to develop control algorithms for the General Machine

component of the Robot Positioning System. For simplicity, we will refer to the General

Machine component of the Robot Positioning System as the RPS for the remainder of this

report.

1.6 - CONTROL OF THE RPS

One of the primary tasks for design of the RPS was to implement ways of tracking

cracks in the pavement using the sensor information available. Sensor information
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includes crack locations in the world coordinate system obtained from the VSS and crack

locations with respect to the end-effector of the manipulator using the LSS. The purpose

of the LSS is to verify and precisely locate cracks after initial detection by the VSS. Data

from the VSS is processed in order to detect pavement cracks by comparing gray shades.

Once the data has been collected, a path is planned along a crack and transformed into the

reference frame of the robot (Lasky and Ravani, 1993). The manipulator will then follow

the crack by moving to points defined along the pre-planned crack. Vision data

processing and path planning for crack data from the VSS is primarily a problem of off-

line path planning and will not be addressed in this thesis.

The LSS is extremely accurate and is capable of measuring cracks in three

dimensions. For this reason, the LSS can be used to verify the presence of pavement

cracks and provide data to the robot in order to implement closed-loop control for crack

following. Closed loop control with the RPS and the LSS can be used to account for

inaccuracies in the VSS or as an override in case of failure of the VSS, the ICU or the

VOC. The main limitation of the LSS is that it can only detect cracks along a single line

of laser light; therefore, three-dimensional information can only be obtained by moving

the LSS along a crack. Closed-loop control of the RPS for crack following using data

from the LSS will be the primary focus of this thesis.

1.6.1 - PREVIOUS WORK

A thorough search was conducted in the literature for methods of on-line control for

industrial robots. The search included on-line control of robots using vision and force

sensing and techniques used in automated welding.

Important considerations in the literature search concerned not only the nature of

the task being performed but the type of hardware being used as well. For the ACSM, it

is necessary to implement the control algorithms using an industrial controller. The

primary sensor to be used is the LSS. The operation and capabilities of the LSS is

described in Chapter 2. It can be assumed that a-priori information on the task may not
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always be available except the starting location on orientation of a crack.

Much work has been done involving on-line control of robots using visual sensing.

Most of this work involves 2-D cameras using image processing techniques to identify

features or objects in the environment. The work involving vision sensing has little

relevance to the crack following problem since the LSS will be mounted on the end

effector and is a relative proximity sensor. The LSS is not capable of identifying features

with respect to a fixed reference frame.

Considerable work has also been done in the area of force sensing for on-line

control. Endpoint force sensing is a well developed technology and has been applied to a

wide range of tasks. Some tasks such as contour following with force sensors are

conceptually very similar to the problem of crack following. While force sensing cannot

be used for the task of crack following, many of the algorithms used for control with

force sensing can be used for control with the LSS. On-line control using force sensing

for an industrial robot is discussed in (De Schutter 1988) and (De Schutter 1990).

Furthermore, a generalized approach for control using an arbitrary type of sensor is given

in (Espiau 1990). This topic will be further developed in Chapter 4.

The problem of following cracks in the pavement is similar to seam tracking which

is often used in automated welding. (Bamba 1984) describes an algorithm for seam

tracking for arc welding using a sensor similar to the one used with the LSS. The main

difference between tracking seams in automated welding and tracking cracks for

automated crack sealing is that the welding process is done at a much slower speed than

the crack sealing process.

Copyright 2011, AHMCT Research Center, UC Davis



CHAPTER 2- ROBOTIC CRACK SEALING
This chapter will discuss the application of robotics to the ACSM. The job of the

robot positioning system (RPS) is to guide all of the sealing equipment over cracks in the

pavement. The RPS is a vital system since performance of the RPS is a limiting factor in

overall performance of the ACSM. Additionally, the use of a robot manipulator on a

vehicle on the highway represents an unusual application of robotics. Most robotics

applications take place in factories which have relatively controlled and structured

environments. The use of robotics in more revolutionary applications outside of the

factory has often involved custom made manipulators and controllers. For the ACSM,

off-the-shelf technologies will be used if possible. Therefore, development of the RPS

represents an unusual and previously untested application of an industrial robot. The first

section of this chapter wifi outline the requirements of the robot positioning system (RPS)

for the ACSM. Section 2 will outline machine concepts for the RPS and describe how an

appropriate manipulator was selected.

2.1 - REQUIREMENTS OF THE RPS

The requirements of the RPS general machine were set forth in SHRP proposal H-

107 (Velinsky 1990). The purpose of the RPS is to physically connect the various

components of the crack sealing machine. The RPS must move applicator assemblies

and sensors along cracks in the pavement. The original specifications for the RPS sought

a system that would be capable of sealing cracks along a full lane width (approximately

13 feet) at an average vehicle speed of 2 MPH. The specifications also called for a

system capable of accommodating crack preparation methods including routing, heating

and cleaning. Additionally, the machine was to be capable of maintaining the position of

applicator assemblies in the presence of physical disturbances. The time required for

converting the machine from “road travel” configuration to “crack sealing” configuration

was also to be minimized. This is an important factor since the machine must reach a full
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13 feet of lane-width while not adding to the overall maximum truck width of 8 feet.

Finally, the specifications called for a machine composed of as many commercially

available elements as possible.

2.2 - SELECTION OF A MANIPULATOR

Two different types of manipulators were strongly considered for the positioning

system. The first type of system considered was a Cartesian coordinate based system also

commonly referred to as a gantry robot. This type of system has several strong

advantages including no singularities in the workspace, high payload capacity, high speed

and dynamics that are independent of end-effector position. The main disadvantage of

this type of system is the fact that it must be extend beyond a lane width while

conducting the sealing operation. The positioning system must also be stowed to allow

for down-the-road travel of the crack sealing truck.

The other type of system considered was a robotic arm system. The advantages of

this system include the fact that the arm is self-supporting and can extend beyond the

reach of the support vehicle. With a robotic arm system, the internal components of the

applicators and peripherals will be more accessible due to the lack of an outer frame that

would be present with a gantry system. It is also possible to operate two manipulators

simultaneously in the same workspace with this type of system.

A robotic arm system was selected for the positioning system. It was decided to use

this configuration as opposed to a gantry system in order to allow for simultaneous

operations on the same crack and to avoid the difficulties involved with stowing a gantry

system (Schulteiss and Velinsky, 1991). The design concept for the positioning system is

shown in figure 2.1. It will use a pair of manipulators mounted on a linear slide. The

slide will increase the workspace of the manipulator and will eliminate singularities near

the edge of the workspace. Process carts will be used to support the weight of the

applicator assemblies. The process carts will also give the applicator assemblies vertical

compliance with the roadway. This simplifies the problem of controlling the manipulator
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Figure 2.1 Conceptual design for a robot arm positioning system (Velinsky, 1991)

by reducing it to a two-dimensional problem. For the prototype ACSM, only one

manipulator will be used.

The robot arm must be capable of controffing position and orientation in a plane

parallel to the road. The arm must also have good dynamic load carrying capacity and a

large workspace. Of all available robot configurations, SCARA configurations showed

the greatest promise for the RPS.

2.2.1 - SELECTION OF A SCARA ROBOT AND LINEAR SLIDE

A large number of commercially available robots were considered for the RPS.

Custom manipulators and controllers were eliminated due to time and cost constraints.

Among the commercially available manipulators the most important criteria for selection

VERTICAL DEGREE
OF FREEDOM

CRACK SEALING
MODULE

CRACK ROUTING
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were: workspace, payload, controllability and cost. It was determined that a SCARA

configuration that could be used in an inverted configuration would be preferred because

a larger workspace would be available. SCARA configuration robots are especially well

suited to two-dimensional problems. SCARA manipulators have fewer singularities in a

two-dimensional problems than many manipulators that possess more degrees-of-

freedom. Singularities pose a major problem for on-line control systems. The inverted

configuration will allow the manipulator to reach underneath the slide which effectively

doubles the size of the workspace. An analysis of the workspace of the selected

manipulator is given in Appendix E.

A linear slide also had to be integrated with the manipulator. The linear slide

increases the workspace of the robot and eliminates singularities near the edge of the

workspace. It was desirable to find a linear slide system that could be integrated with the

robot controller in order to simplify the problem of controlling a manipulator with a

redundant degree-of-freedom.

A GMF-A510 manipulator mounted in an inverted configuration on a linear slide

was selected for use by the RPS. The controller is a GMF A-510 RH series KAREL

controller. The KAREL controller is capable of incorporating the slide position into

Cartesian locations for forward kinematics calculations. Additional software was written

to account for the redundant degree-of-freedom in the inverse kinematics. The algorithm

for integrating the linear slide with the manipulator and the associated code written in

KAREL are given in Appendix F. Specifications for the GMF A-510 manipulator, the

KAREL RH series controller and the linear slide are given in Appendix H.

Preliminary tests of control algorithms for the RPS were done using an Adept-3

manipulator with an Adept A-series controller. The Adept-3 is a SCARA configuration

manipulator with kinematics that are very similar to the A-510. The Adept controller and

the GMF KAREL controller are also very similar in function.
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Figure 2.2 GMF-A510 manipulator and linear slide.

2.3 - CONCLUSIONS AND SUMMARY

This chapter has described the design concept for the RPS and how an appropriate

manipulator and controller were selected. The manipulator to be used is a SCARA

configuration manipulator which has been inverted and mounted on a linear slide. This

configuration was chosen from a selection of commercially available manipulators for

ease of control, payload and workspace. The manipulator has a redundant degree-of

freedom to eliminate some singularities and to increase the workspace. Additional code

Copyright 2011, AHMCT Research Center, UC Davis



had to be written by the user to account for the redundant degree-of-freedom in the

inverse kinematics of the robot.
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Sensors commonly used on robot end-effectors include force, vision, proximity and

tactile. For this work we are primarily interested in proximity sensors. Proximity sensors

return the distance from the sensor to an object in the environment. Proximity sensors

can be either absolute or relative. An absolute proximity sensor returns the distance to an

object at its nearest point. Ideally, an absolute proximity sensor will return the radius of a

sphere centered at the sensor in which the sensed object must lie. A relative proximity

sensor returns the distance to an object relative to the orientation of the sensor. The

reading returned from a relative proximity sensor may not be the shortest distance to the

sensed object. When using a relative proximity sensor it is often desirable to keep the

sensor oriented such that it is normal to the object and hence will return the shortest

distance to the object.

Proximity sensing is similar to force sensing for many tasks. Force sensors usually

return contact forces and torques between the manipulator and the environment. If there

is some compliance between the end-effector tooling and the object being manipulated,

the relative distance between the end-effector and the object can be estimated. This can

be done by dividing the force magnitude by the estimated stiffness between the

manipulator and the object. In this way, a force sensor can be used to return proximity to

an object. Therefore, some algorithms for control using force sensing can also be

accomplished using proximity sensing.

A generalized approach for obtaining task defmitions using endpoint sensors is

given in (Espiau, 1992). The approach is valid for any type of sensor. The task

definition consists of a primary sensor controlled task function and a secondary task

function on the subspace of motions that will not affect the sensor readings. Once the

task definition is obtained, it provides the error signal that the controller will try to bring

to zero during the time of the task.

In addition to closed-loop control, proximity sensors can also be used in error

recovery routines. Error recovery is usually implemented if the end-effector loses contact
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with the object being manipulated before the task is complete. Error recovery may

involve relocating the object in order to complete the task. Proximity sensors are often

very useful in error recovery routines. Objects can be located by conducting a ‘search’

algorithm while monitoring the output of the sensor.

3.2 - OPERATION AND SPECIFICATIONS OF THE LSS

The Local Sensing System is a relative proximity sensor for sensing pavement

cracks. The sensor projects structured laser light onto a surface and determines distances

to points on the surface using a CCD camera and the principal of triangulation. The

location of a crack is extracted from the crack profile. The sensor was selected for use on

the ACSM and is manufactured by MVS Modular Vision Systems Inc., De Miniac,

LASER

Figure 3.1 Stuctured Light (Krulewich and Velinslcy 1992).

Copyright 2011, AHMCT Research Center, UC Davis



Montreal, Canada, Model # MVS-30. The sensor was specifically designed for use in

robotics application and can operate in harsh environmental conditions. The sensor data

is processed with an IBM-486 PC. For increased performance, image profile data is

processed via a coprocessor board which plugs into a standard ISA-Bus slot.Each reading

of depths along a scan line produces a surface profile (figure 3.2). A program running on

the IBM 486-33 PC analyzes each profile to determine if there is a crack on the surface.

Crack.s are detected by observing gradients between consecutive pixels along the surface

profile. If the height difference between two consecutive points is determined to be

greater than the average surface roughness along the profile, the sensor program

determines that the edge of a crack has been found. Once both edges of a crack have

been found, the location of the center of the crack is determined (Krulewich and Velinsky

1992). This location will always be relative to the center of the sensor. The relative

distance to the center of the crack is the error signal that is returned to the RPS.

The LSS has a an effective field of view of approximately 75 mm. The crack

location program is capable of updating the RPS at 33 Hz. The resolution of the image

data with a 75 mm field of view is less than 0.4 mm. (Krulewich and Velinsky 1992).

FILTERED CRACK PROFILE

6
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Figure 3.2 Filtered crack profile. Krulewich and Velinsky (1992)
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Figure 3.3 The Local Sensor mounted on a test stand. The cables connect to the laser
source, the power supply and the PC.

3.3 - INTERFACING WITH THE LSS

Once the LSS has calculated the offset distance to the center of the crack, or has

determined that there is no crack in its field of view, it must send this information to the

robot controller. Since this data transfer is done in a closed control ioop, it must be

accomplished in a quick and efficient manner. Also, the error data generated by the LSS

can be filtered and modified to improve the performance of the closed-loop system with

the RPS.
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Figure 3.4 Flowchart for Crack Locating Program (Krulewich and Velinsky, 1992).
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3.3.1 - DATA TRANSMISSION PROTOCOL

Since most robot controllers and the IBM 486-33 Pc are equipped with RS-232

serial ports, a serial line was used to transfer data. In order to simplify communications,

each error is scaled to be transmitted as a single byte. For example, the largest negative

error the sensor can detect (-2.0 in) would be sent as -126 and the largest positive error

(2.0 in) would be sent as 126. The baud rate of the serial communications is set at 4800

baud. The RPS will send a single byte to the LSS PC each time it is ready to receive a

piece of data. For each piece of data sent from the LSS to the RPS, two bytes must be

sent and received. The time to send 2 bytes at 4800 baud is less than 4 milliseconds.

Therefore, the actual transmission of data over the serial line does not cause any

significant delays in the system.

3.3.2 - LOW PASS FiLTERING OF ERROR DATA

A flowchart of the LSS program is shown in figure 3.4. The sensor calculates the

offset from each crack profile. Once the error has been calculated, its value is filtered via

a second order low-pass Chebyshev filter. The purpose of filtering the error data from the

LSS will be described in the following chapter. If the RPS has sent a bit requesting data

during the previous cycle, the LSS will send the error to the serial port. Otherwise,

another profile will be analyzed and a new offset error calculated.

3.3.3 - SIMULATING SENSOR SATURATION

If the sensor does not find a crack in its field of view, a ‘no crack found’ condition

will be generated. In order to make the control scheme more robust, the LSS code was

modified to simulate the condition of sensor saturation. When the sensor is moved such

that the crack passes out of its field of view, the LSS program will set the error to be the

maximum value that the sensor can return on the side on which the crack was last

detected. This value will be run through the low-pass filter along with the other

calculated errors. This process is designed to simulate saturation in an analog sensor and

sends the robot controller more information than a simple ‘no crack found’ signal. The
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addition of the saturation condition makes the control loop for crack following more

robust and less sensitive to cases where the sensor may for some reason not detect a

crack.

3.4 - SUMMARY AND CONCLUSIONS

This chapter has described the Local Sensing System (LSS) which will be used to

detect cracks in the pavement and close a control loop around a robot controller. The

LSS will help account for errors that occur when locating cracks using the VSS .The

requirements of the LSS were presented. These requirements were determined by the

nature of the crack sealing operation as well as environmental conditions. Many

commercially available sensing technologies were examined and a laser scanning sensor

using structured light was selected for the LSS. The sensor uses diffusely reflected light

from a laser to determine distances along a scan line based on the principle of

triangulation. Cracks are detected from analysis of surface profile data from the LSS.

The offset distance between the center of the sensor and the center of a crack is sent to the

RPS via a serial line. Sensor data is filtered via a low-pass filter and code to simulate

sensor saturation has been added in order to improve performance for closed-loop control

with the RPS.
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CHAPTER 4- MOTION CONTROL ALGORITHM
The purpose of this chapter is to describe the development of an algorithm for on

line position control of an industrial robot based on endpoint proximity sensing. This

algorithm will be used to follow cracks in the pavement with a robot using input from the

Local Sensing System (LSS). Section 2 of this chapter will discuss work that has already

been done in similar areas and its relevance to the problem at hand. Section 3 will

develop an algorithm for hybrid control using relative proximity sensing similar to

algorithms for hybrid control using force sensing. Section 4 will describe a computer

simulation of the control algorithm that is developed in section 3. Section 5 will describe

how to implement the algorithm with an industrial controller. Implementation of a

compliant motion algorithm using force control will be covered in section 6. Section 7

will describe the compliant motion algorithm using the LSS as a relative proximity

sensor. Finally, section 8 will describe a control and communications architecture that

will allow the compliant motion algorithm to flexibly interface with other control systems

in order to provide a robust manipulator control system for the automated crack sealing

machine.

4.1 PROBLEM STATEMENT

This chapter will address the problem of crack following using two separate

algorithms. The first algorithm will assume that there is no a-priori information available

about the path to be followed. This algorithm will use feedback from the LSS to control

both the position and orientation of the end-effector. This algorithm will only require the

approximate starting location and direction of the crack to be followed in order to begin

closed-loop control.

4.1.1 PROBLEM STATEMENT FOR FEEDBACK CONTROL FOR POSITION

AND ORIENTATION

The problem to be addressed is to follow a planar path using the LSS mounted on a
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manipulator end-effector. No a-priori information is given about the path except its

starting position and orientation. The control problem can be broken down into three

parts:

1) Keeping the end-effector centered over the sensed path.

2) Maintaining a specified end-effector velocity tangential to the path.

3) Maintaining end-effector alignment in a direction tangential to the sensed path

4.1.2 PROBLEM STATEMENT FOR USING CLOSED-LOOP CONTROL FOR

POSITION AND OPEN-LOOP CONTROL FOR ORiENTATION

If crack direction information is available from the VSS, the problem to be

addressed will be to use the LSS to keep the end-effector centered over the crack and

move the end-effector tangential to the crack. The crack direction will be determined by

data from the VSS. The problem statement will then consist of the first two parts of the

problem statement given in section 4.1.1.

Design requirements for the ACSM dictate that the above algorithm be

implemented in real-time using an industrial controller and the LSS as off-the-shelf

components. Time and cost limitations on the ACSM project eliminate the building of

custom manipulators and controllers. Additionally, an algorithm that can be implemented

on an industrial controller is much more useful because it can be easily ported to many

other robots presently in production. An algorithm that would work on an industrial

controller will simplify commercialization of the ACSM.

4.2 - PREVIOUS WORK

Much work has been done in the area of compliant motion using force sensing.

Such control schemes are often referred to as “hybrid control”, “stiffness control”

“compliance control” or “force impedance control”. The objective of these control

schemes is to regulate the contact forces between a manipulator and the external

environment. They combine force sensor and position information to control a

manipulator’s motion. Although compliant motion is usually done using force feedback,
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for specifying compliant motion tasks. The formalism is based on the hybrid control

functional specification described by Mason (1981). The second part of the paper

develops an algorithm for compliant motion using external control loops closed around a

robot positioning system. The algorithm developed is similar to the work of Salisbury

except that the use of external control loops makes implementation possible with most

industrial controller. This paper refers to compliant motion with force sensing and does

not directly address compliant motion with other types of sensing such as proximity

sensing. The work of this paper is a primary foundation of work done in this report.

Bamba et. al. (1984) “A Visual Seam Tracking System for Arc-Welding Robots”

This paper addresses the problem of tracking a seam for arc welding using an

optical laser sensor mounted on the end-effector of a robot. The sensor uses a laser diode

and a PIN diode linear sensor chip to detect seams based on the principal of triangulation.

The sensor returns the position of the seam in terms of a radius and an angle in its circular

scan of the laser. The measurement is made relative to the sensor and hence the end

effeetor frame of the robot. The circular scan area of the sensor makes it possible for the

sensor to observe the seam ahead of the end-effector. Also the end-effector speed for arc

welding is relatively slow.

The problem addressed in this paper is similar to the crack following problem with

the exceptions that the LSS uses a linear scan and cannot detect the crack ahead of the

end-effector and the end-effector speed for crack following is significantly higher.

Espiau, Merlet and Samson (1990) “Force Feedback Control and Non-Contact Sensing:

A Unified Approach”

This paper proposes a global approach to the problem of proximity and force-based

control applications in robotics. The concept of and interaction screw is introduced

which models how a sensor interacts with the environment. The concept of the
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for specifying compliant motion tasks. The formalism is based on the hybrid control

functional specification described by Mason (1981). The second part of the paper

develops an algorithm for compliant motion using external control loops closed around a

robot positioning system. The algorithm developed is similar to the work of Salisbury

except that the use of external control loops makes implementation possible with most

industrial controller. This paper refers to compliant motion with force sensing and does

not directly address compliant motion with other types of sensing such as proximity

sensing. The work of this paper is a primary foundation of work done in this thesis.

Bamba et. al. (1984) “A Visual Seam Tracking System for Arc-Welding Robots”

This paper addresses the problem of tracking a seam for arc welding using an

optical laser sensor mounted on the end-effector of a robot. The sensor uses a laser diode

and a PIN diode linear sensor chip to detect seams based on the principal of triangulation.

The sensor returns the position of the seam in terms of a radius and an angle in its circular

scan of the laser. The measurement is made relative to the sensor and hence the end

effector frame of the robot. The circular scan area of the sensor makes it possible for the

sensor to observe the seam ahead of the end-effector. Also the end-effector speed for arc

welding is relatively slow.

The problem addressed in this paper is similar to the crack following problem with

the exceptions that the LSS uses a linear scan and cannot detect the crack ahead of the

end-effector and the end-effector speed for crack following is significantly higher.

Espiau, Merlet and Samson (1990) “Force Feedback Control and Non-Contact Sensing:

A Unified Approach”

This paper proposes a global approach to the problem of proximity and force-based

control applications in robotics. The concept of and interaction screw is introduced

which models how a sensor interacts with the environment. The concept of the
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interaction screw allows force and proximity sensing problems to be treated in the same

manner. The paper goes on to discuss the development of control laws for compliant

motion using the algorithms and models that have been introduced.

4.2.2 - DESCRIPTION OF HYBRID CONTROL

One of the most common applications for a stiffness control algorithm is a

manipulator trying to fit a peg into a close fitting hole. Without force control, the

position of the hole must be known exactly for the insertion. If there is an error in the

insertion angle, the peg may start to bind. Without force feedback, the manipulator will

try to force the peg into the hole resulting in a jammed or broken peg. Using force

feedback, the manipulator can adjust the position of the peg to reduce the binding force.

Another application of stiffness control involves following a contoured surface with

an end-effector while maintaining a constant contact force by using feedback from an

endpoint force sensor. Figure 4.1 shows a task configuration for the two-dimensional

contour tracking problem. The surface is a unknown and arbitrary but it is continuous.

The object frame is defined at the contact point. One axis is tangential to the surface at

the contact point and the other axis is orthogonal to the contact surface. The task frame

defines which directions are used for force control and which directions are used for

position or velocity control. The contour tracking problem is similar to the crack-

following in many ways. Further development of this problem and its similarity to crack

following with the LSS will be covered in subsequent sections.

For the problem at hand, there is no actual contact between the manipulator and the

environment. However, by reading the output of the LSS, the controller can determine

the offset between a crack in a surface and the end-effector. This reading or offset error

is similar to the force reading returned by an endpoint force sensor. Therefore, even

though there is no actual contact with the environment, stiffness control algorithms with

some modifications can be used to control a manipulator using feedback from the LSS

mounted on the end-effector.

Copyright 2011, AHMCT Research Center, UC Davis



28

y r

Figure 4.1 Coordinate Frames for Compliant Motion.

4.2.3 - NESTED CONTROL LOOPS USING AN INDUSTRIAL CONTROLLER

One problem of implementing a force control scheme with a manipulator is that it

the complex and non-linear dynamics of the manipulator have to be taken into account.

However, an industrial controller can handle the complex manipulator dynamics and

implement position control. It is possible to close a control loop around the position

controller and implement force or hybrid control. In this case, the problem is broken

down into two more manageable sub problems. The industrial position controller handles

the manipulator dynamics while the secondary control loop closed around the controller

handles interaction with the environment. (DeSchutter 1990). Figure 4.2 shows a block

diagram of the system using an external control ioop closed around a position controller

x=x
0 t 0

x
r

list of subscripts
0: object frame
t: task frame
ee: end-effector frame X ee
r: world frame
b: robot base frame
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to implement force control. This representation assumes that sensor dynamics are

negligible and that the contact forces present are not large enough to effect the dynamics

of the position controller. The contact force is measured and is multiplied by the stiffness

gain K0 before being fed back to the position controller. K0 is the estimated contact

stiffness between the end-effector and the environment at the contact point. An external

control loop using the LSS does not need to use the stiffness gain K0 since the LSS

measures the actual displacement distance and not contact force. Therefore, the use of K0

to convert a measured contact force to an estimated distance is one difference between

using a force sensor and the LSS when using the control scheme shown in figure 4.2.

In order to use the task frame described above with external control ioops, we have

to make one important assumption. We have to assume that the dynamics of the

manipulator and position controller system which form the inner control ioop are

independent of the position of the end-effector and the direction of motion. This

assumption is true for most industrial robots with decentralized controllers as long as the

bandwidths and damping ratio of all independent joint control systems are nearly

identical. (DeSchutter 1990).

Fd(s)

Figure 4.2 Force con frol loop closed around a position controller.

4.2.4 DEFINING THE TASK FRAME FOR FORCE CONTROL

In order to implement hybrid control, we must define a task frame which will

determine how the force and position control laws are applied. By properly defining the

task frame, we can use separate, decoupled control ioops to handle force control and

position control. By using separate, decoupled control loops, we can avoid the

X0 (s)
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complexities of control. DeSchutter(1988) defmes a task frame for hybrid control which

defines orthogonal force and position control directions for the task frame. Figure 4.3

shows the task frame for the case of the contour tracking problem using force control. By

using the task frame shown in figure 4.3, we can use the one-dimensional force control

scheme in section 4.2.3 to control the contact forces in the force control direction and a

separate control loop to control position or velocity in the position control direction.

Y.pYo

Figure 4.3 The object frame is represented by X0 and Yo and coincides with the task

frame X~ and Y1. Y~ will be referred to as the normal position control direction and X~

represents the tangential position direction. Ax represents a normal position error. This

error can be detected by a proximity sensor using distance or a force sensor with a

flexible tool attached. The orientation error is represented by a~

4.2.5 ESTIMATING THE TASK FRAME FOR FORCE SENSING

The task frame shown in figure 4.3 changes as the end-effector moves along the

contour. Therefore, the task frame is constantly changing with respect to the world

~ee~
Xee

/
XT, X0/

path to be followed
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coordinate system. In order to implement on-line hybrid control, it is necessary to

repeatedly calculate the position and orientation of the task frame as the end-effector

moves along the contour. This task is relatively easy to accomplish if a six degree-of-

freedom force sensor is used. If we assume negligible friction between the end-effector

and the object, we can take the arc tangent of the forces measured along the axes of the

world coordinate system and determine a normal to the surface. This normal vector can

then be used to determine the orientation of the task frame or the tracking direction.

It is now possible to control the orientation of the end-effector with respect to the

task frame at any time. This can be done by estimating the tracking direction and

calculating the error between the tracking direction and the actual end-effector

orientation. By applying a control law to this error and feeding it back to the position

controller, we can create another control loop that will control the orientation of the end

effector with respect to the task frame. Therefore, it is possible to control contact forces,

velocity and orientation of an end-effector following a contoured surface by using three

separate and decoupled control loops closed around a position controller using a force

sensor.

4.3 CONTROL WITH RELATIVE PROXIMITY SENSING

Now that we have reviewed previous work in control with force sensing and

proximity sensing, we will develop an algorithm for compliant motion using relative

proximity sensing. This section will develop two separate control algorithms. The first

control algorithm (sections 4.3.1-4.3.3) wifi control both the position and orientation of

the end-effector using feedback from the LSS. The second control algorithm (sections

4.3.4-4.3.6) will use open-loop control for orientation of the end-effector using data from

the VSS and feedback control from the LSS to control position of the end-effector.

4.3.1 DEFINING THE TASK FRAME FOR RELATIVE PROXIMITY SENSING

USiNG FRENET SERRET VECTORS

Estimating the object frame for contour following with endpoint force sensing is not
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a difficult process. The vector normal to the surface (the force control direction) can be

measured directly by taking the inverse tangents of the forces measured along the axes of

the world coordinate system. The velocity-controlled direction can then be set normal to

the force-controlled direction in the desired direction of travel. With relative proximity

sensing, the direction of the surface normal cannot be measured directly. Therefore, it is

necessary to estimate the object frame when using relative proximity sensing. In order to

estimate the object frame for proximity sensing, we must first formally define the frame.

We will use the principles of local curve theory to help define the task frame for

relative proximity sensing. Consider a parametric curve in 3-D space. The curve can be

expressed either as a function of time ct(t) or as a function of arc length ct(s). At each

point along ct(s) there exists a tangent vector T(s) which is defined as T(s)=dalds=ct’.

Hence if ct lies in a plane, we can express ct(s) in the form ct(s)=(x(s),y(s),O) and the

tangent vector field can be expressed as T(s)=(x’(s).y’(s),O). We can also define the

principal normal vector field N(s) such that N(s)=T’(s)/ic(s) where ic(s)=IT’(s)I. Finally,

we can define the binomial vector field to ct(s) as B(s)=T(s)XN(s). These definitions for

the tangent vector field, the principal normal vector field and the binomial vector field

are from the Frenet Serret apparatus for a spatial curve.

The vector fields of the Frenet Serret apparatus can be used as a basis for the

definition of the object frame for hybrid control using relative proximity sensing. For our

purposes, it is necessary to redefine the principal normal and binomial vector fields. The

principal normal vector field is always defined such that it always points towards the

center of curvature of cx. For the object frame in hybrid control it is desirable to define

the normal vector such that its direction is constant relative to the direction of travel of

the end-effector. Therefore, we will define the path to be followed as cc and the

tangential vector field as T cc’ as in the Frenet Serret apparatus. The path will be

assumed to lie in a plane such that cc = x I + y j where and are the unit vectors of the axes
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Figure 4.4 A spatial curve a(s) with the normal vectors N(s) and tangent vectors T(s)

shown.

of the world coordinate system. We will now defme the binormal vector to be constant

such that B’ = k and the principal normal vector will be defined as N’ = B’XT. With

these definitions, the direction of the normal vector will be only dependent on the

direction of the tangent vector. The task frame will now be defined as follows. Let the

path to be followed lie on a plane and be defined as cx. Let ~t and ii be the unit vectors of

T and N’ respectively. The task frame will then consist of the axes defined by t and ñ

where ~ denotes the tangential direction and ñ denotes the normal direction

Figure 4.5 Normal and tangential unit vectors for defining the task frame for hybrid

control with relative proximity sensing.

4.3.2 ESTIMATING THE TASK FRAME FOR RELATIVE PROXIMITY

SENSING

N(s)

T(s)

a(s)

T(s)

-~ t

t
t
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So far, this paper has discussed hybrid control using a force sensor and the LSS in

the same manner. However, there are important differences between these different types

of sensing. Force sensing provides both a force magnitude and the direction of the force.

Figure 4.4 illustrates sensing using the LSS. The displacement error (&) measured by the

sensor is dependent upon cx, which is the error between the end-effector orientation and

the tracking direction. Therefore, the LSS only returns accurate information when the

end-effector is aligned with the tracking direction. Since the LSS is not capable of

detecting the direction of the path as a force sensor is, the path direction must be

estimated by looking at previous end-effector locations and the associated LSS readings.

Since it is impossible to estimate the tracking direction with complete accuracy and the

accuracy of the displacement reading is dependent on aligning the end-effector with the

tracking direction, a coupling effect exists between the orientation control ioop and the

normal direction control ioop. The cause of the coupling affect is shown in Figure 4.6.

Error in estimating the task frame causes motion in the tangential direction which affects

offset in the normal direction. This error can cause overshoot and oscillations in end

effector motion which in turn make it more difficult to estimate crack direction. This

coupling effect is due to the nature of the sensing. Both the normal direction ioop and the

orientation control loop must be heavily damped when using the LSS, since instability in

one loop will tend to propagate to the other ioop.

In order to use the task frames described above with external control loops, we have

to make one important assumption. We have to assume that the dynamics of the

manipulator and position controller system which form the inner control loop are

independent of the position of the end-effector and the direction of motion. This

assumption is true for most industrial robots with decentralized controllers as long as the

bandwidths and damping ratio of all independent joint control systems are nearly

identical. (DeSchutter 1990).
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distance
measured
by sensor

Figure 4.6 Distance error caused by an orientation error with a relative proximity

sensor.

path of cracl< _____

cx = orientation error

Figure 4.7 Offset error caused by motion in the tangential direction when an orientation

error is present.

4.3.3 OBTAINING CRACK DIRECTION USING GLOBAL VISION DATA

This section will discuss how data path planning is done for the RPS based on data

from the VSS. The subsystems involved include the Vision Sensing System (VSS), the

Vehicle Orientation an Control System (VOC) and the Path Planning module. Processing

of vision data and the development of the path planning module is not a part of the work

~—.....jine of sensor scan

distance to path

cc = sensor orientation error

vg

offset error
vg(sin(O))
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Vehicle Orientation an Control System (VOC) and the Path Planning module. Processing

of vision data and the development of the path planning module is not a part of the work

of this report and is included for completeness. Details on processing of vision data can

be found in Kirschke and Velinsky (1992) and the path planning module is discussed in

Lasky and Ravani (1993).

The VSS acquires images of the road using a line scan camera. Scans are taken as

the vehicle moves forward. Each scan is 1/16 inch deep and 12 feet wide. The data from

the scans are buffered up to build an image consisting of 2”X2” tiles, each of which

consists of a 32X32 grid of 1/16~ pixels. The VSS software then builds a histogram of

gray shades within each tile and computes a statistical moment for each histogram. The

tiles are then compared within independent 5X5 tile areas. The comparison algorithm

looks for tiles which have a greater amount of contrast relative to neighboring tiles. An

example of a comparison grid is shown in Figure 4.7. In this case the algorithm is

checking for a crack running in the Northeast direction. A crack will be said to exist if all

of the moments of the tiles labeled ‘D’ and the center tile are greater than the moments of

all of the tiles labeled ‘C’. Thus, the algorithm will determine if each tile contains a crack.

If the tile is determined to contain a crack it will also have an associated direction number

from the 5X5 comparison grid. The direction numbers will be in increments of 22.5°.

CCC D

CC D
C 0 C

D CC
D CCC

Figure 4.8 VSS Comparison (C) and Direction (D) tiles for a Northeast running crack.

The job of the path planning module is to convert the output of the vision software

into useful paths for the robot manipulator. The raw vision data is insufficient, as it is

just an array of potential crack locations, without any sense of relationship between tiles.

The path planning algorithm will process this data by filtering out noise, filling in blank

Copyright 2011, AHMCT Research Center, UC Davis



37

The path planning algorithm operates with a set of points P corresponding to the

centers of tiles where a crack exists. Each point ~k also has an associated direction

number. The algorithm begins filtering the data by removing isolated image points. The

algorithm then looks for connections between isolated segments of points. It does this by

finding the endpoints of each section and then ‘growing’ the endpoints to connect

segments that are close together. The ‘grown’ data is then thinned to unit tile thickness

using a simple heuristic algorithm (Lasky and Ravani, 1993).

The algorithm then defines a set of ‘visited’ points based on the workspace of the

manipulator. The set of ‘visited’ points will consist of consecutive points defining a

single path from one end of the manipulator workspace to the other.

Once the set of visited points has been established, a continuous path is created by

splining the discrete points together with third order Bézier curves. At each path point,

an approximate tangent is known based on the direction number set by the vision system

or created during the grow/thin process. This information, along with the order in which

the points arranged, can be used to compute the unit tangent vector tk at each point.

With this information, the Bézier control points gk = [gk0gk,~k2~k3 I for each path

segment k can be computed as follows:

gk0 =P~ (4-la)

g~1=P~+i~ (4-ib)

= — tk+1 (4-ic)

~k3 ‘>k+l (4-id)

Now that Bézier curves have been defmed between consecutive points, the entire

path can be defined as a collection of intervals which constitute a Bézier spline curve. In

order to obtain crack direction information for the robot manipulator, it is necessary to

fmd tangents to the spline curves as a function of the world coordinate ‘x’. For the crack

sealing operation, we can assume that the curve is monotonic in ‘x’ and therefore can be

expressed as a function of ‘x’.
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Let the spline curve be denoted as cz(u) where u is the parameter for the entire

curve. We will now define the local parameter t for each interval as follows:

t = U - =_- (4-2)
Uk.l Uk AUk

Note that t =(0,l) for each interval (ujc,uk+J).

The derivative at any point in the interval is as follows:

dx = 1 thk(t) (43)
du AUk dt

thk(t)The derivative dt can be calculated from the control points and the Bernstein

polynomial for each segment as follows:

~gn(t) = n~Ag~BJ~1(t) (4-4)

where:

= gk1+, — gk, (4-5)

and g~, denotes the ~th control point in the interval k. The polynomial B~ (t) is defined

explicitly by:

B7(t) = (jtI(l - (4-6)

This derivative will be in terms of t rather than ‘x’. We can solve for t at a desired

x and use the result to obtain a derivative in terms of ‘x’; however, this process is

somewhat tedious. In this case, finding t wifi involve solving a cubic equation and then

taking the solution that lies within the interval (0,1).

The above method wifi return the exact tangent vector to the spline curve at any

given point; however, for our purposes an approximate tangent vector as a function of ‘x’

wifi be sufficient. Therefore, a simpler method can be devised to extract the approximate

tangent vector without the need to solve a cubic equation for t.

Consider a single interval on the spline curve. We have already defined the local
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parameter t that varies for 0 to 1 as u varies from Uk to Uk+1. We will now define local

parameters for arc length and chord length. The local arc length s will be defined as the

length of the curve between Pk and ct(t):

s=1[~[dt (4-7)

The total arc length between points Pk and P~1 will be defined as Sk where:

Sk=J[~-~dt (4-8)

Finally, we will define c as the local chord length along the interval which will be

the distance along a chord drawn between ~k and ~k÷1 The total chord length will be

denoted as ck where ck is the magnitude of a vector between ~k andPk+l or:

= I~+1 (4-9)

g

Figure 4.9 Beziér curve between points Pk and Pk+1. The chord for the interval is

denoted by ~

We will now make an approximation and map the arc length along the interval into

the chord length along the interval such that:
s—c

g
k2~ P

K+ 1
ki
.

ce(s) C

~~1L
x

K÷1 XK

Sk Ck
(4-10)
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For the crack sealing operation, we will assume that the curve ce(s) can be expressed

as a function of the Cartesian variable ‘x’. and, since the endpoints of each interval are

known, it is easy to calculate c for a given value of ‘xt. on any interval. Now we have a

function that will map the Cartesian variable ‘x’. to the local arc length s.

The next step is to reparametrize the curve from c(t) to c4(s). We can now express

the derivatives of the curve as:

(4-11)
dt dtds

ds.
we will assume that the speed along the curve is constant.

Therefore, the derivatives of the curve with respect to t and s are proportional:

(4-12)
dt ds

If we recall the definition of arc length, this relationship implies that we can map t

at each interval into arc length as follows:

(4-13)
Sk

We now use the mapping approximation between c and s:

~ (4-14)
Sk Ck

c is mapped to the Cartesian value x. as follows:
C X~Xk (4-15)

Ck Xk÷l — Xk

This yields an approximation for t along each interval as:
X—X,~ (4-16)

Xk+l — Xk

We can now fmd the derivative in any interval by using the approximation for t and

calculating the derivative with equation (4-4). The direction of the derivative vector will

be the tangent to the path at that point. This will allow us to calculates tangent to the

curve as a function of x.

The path planning module will identify a crack in the workspace of the manipulator

and send the starting location and direction of the crack along with an array containing
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values of x. in the Cartesian frame along with the associated crack direction values. The

controller will then use the crack direction values to define the task frame and orient the

end-effector. The position of the end-effector will be controlled by trying to zero the

offset error from the LSS while moving tangential to the crack directions received from

path planning.

This control algorithm will be useful if the VSS can accurately determine the shape of a

crack, but the exact location of the crack is not known due to errors in the VSS or the

VOC. Knowing the crack direction a-priori eliminates the difficulties of trying to

estimate crack direction from previous crack locations from the LSS.

4.3.4 CONTROL ALGORITHM

Recall the block diagram for a force control loop closed around an industrial

position controller shown in Figure 4.2. A similar diagram for closing a control loop

using the LSS is given in Figure 4.10. The controller manipulator system is shown with

its separate parts consisting of the inverse kinematics module, the joint controller and the

manipulator. Together they take a desired Cartesian input ~r> and the end-effector moves

to the desired position producing the output of the actual end-effector position ~ The

end-effector position and the local sensor output can be combined to produce the crack

location with respect to the task frame. The end-effector frame is used as the task frame

since the object frame is not exactly known. The crack location in the task frame is

multiplied by the gain vector to generate a new location in task space. The new location

is then converted to a location with respect to the world coordinate system and sent to the

position controller. The position controller calculates the desired joint angles and servos

the joint motors to obtain the next end-effector location.

The block diagram of Figure 4.10 describes the control algorithm using feedback

control for both position and orientation. The feedback error is a three element vector of

the Cartesian location and an orientation. This same block diagram can be used for the

algorithm with open-loop control for orientation if ~T becomes a two element vector of
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Cartesian position only and the orientation from the VSS is fed directly to the position

controller to become part of the desired Cartesian location Xii

4.4 COMPUTER SIMULATION OF HYBRID CONTROL

Pending delivery of a robot for use for the ACSM, it was decided to run a computer

simulation of the hybrid control algorithm. The purpose of the simulation was twofold:

(1) verify the validity of the algorithm for proximity sensing since no documentation had

been found on the implementation of hybrid control using proximity sensing and (2) to

gain insight into tuning the control laws of the external control loops in a safe simulation

environment before implementation with hardware.

4.4.1 MODELING

In order to implement a numerical simulation, it is necessary to model the plant, the

sensor and the control laws being used. In this case the plant will be the position

controller around which the external control loops will be closed. The simulation will

assume a simple plant model and use a robust control law to account for uncertainties in

the model. The plant model used was a second order system which was approximated

from the dynamics of a single joint controller for the Stanford-JPL arm. Approximating

plant dynamics from the dynamics of a single joint was suggested by (DeSchutter 1990).

In this case, we used the joint with the largest natural frequency. Like most industrial

controllers, this system is heavily damped to minimize overshoot. We will assume that

the plant model for a position input wifi be independent of the position of the end-effector

or the direction of the motion. For the simulation, sensor dynamics will be neglected

although the type of sensing used will be discussed in following sections. Specifics of

the modeling for the plant in the simulation can be found in Appendix A.

4.4.2 SENSING

The simulation was designed to simulate hybrid control using three different types

of sensing as described below:

FORCE SENSING
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This will simulate the a sensor that can accurately determine the distance between

the sensor and the desired path and the direction of the desired path at any time.

PROXIMITY SENSING

The simulation will be run with a sensor that can detect the shortest distance

between the end-effector and the desired path but not the direction of the path.

RELATIVE PROXIMITY SENSING

The simulation will be run with a sensor that emulates the LSS. The sensor will

return the distance between the end-effector and the desired path relative to the current

orientation of the end-effector. The sensor cannot directly measure path direction.

4.4.3 HYBRID CONTROL ALGORITHM

PROBLEM STATEMENT

The problem to be addressed by the simulation is the same as in the problem

statement of section 4.1 which is to follow a path on a two-dimensional surface using one

of the types of endpoint sensing described. No a-priori information is given about the

path except its starting position and orientation. Based on the task frames defined in the

previous section, the control problem ôan be broken down into three separate parts:

1) Keeping the end-effector centered over the sensed path.

2) Maintaining a specified end-effector velocity tangential to the path

3) Maintaining end-effector alignment parallel to the tracking direction.

Part 1 of the problem will involve using a control loop in the normal position

direction of the task frame using feedback from the sensor. Part 3 will measure the path

direction and adjust the end-effector orientation appropriately. Part 2 will not use a

feedback loop because the desired velocity is known and can be specified through the

position controller.

A flowchart of the hybrid control algorithm is given in figure 4.11. The control

algorithm will use velocity vector inputs to the position controller that will be calculated

from sensor readings and the desired tangential velocity. Initially, the controller will be

Copyright 2011, AHMCT Research Center, UC Davis



45

given approximate information on the starting location and orientation of the path. The

manipulator will then move tangential to the path and take a sensor reading to obtain its

displacement from the center of the path. The sensor input will be run through a digital

PD) control law to obtain a gain for the velocity to be specified in the normal direction.

The manipulator will then move the end-effector normal to the path with the specified

velocity. The end-effector will then be rotated so that it is aligned with the tracking

direction. A velocity tangential to the path will be specified, the end-effector will move

and a new sensor reading will be taken. The ioop will continue until the controller

receives a signal that the task is complete.

4.4.4 PROGRAMMING THE SIMULATION

The hybrid control simulation was done using MATLAB. MATLAB can be used to

obtain time responses of dynamic system models and can be structured into programs

similar to many higher-order programming languages. The simulation was constructed to

model the manipulator and position controller as described in section 4.4.1. Additionally,

the simulation allows the user to specify any one of the three types of sensing discussed

in section 4.4.2. The desired path for the manipulator to follow as well as the given

starting position and orientation of the end-effector can also be specified. The rate at

which the plant controller receives sensor data (the update rate) can also be set.

The transfer function modeling the plant was used to determine the position and

velocity of the end-effector in response to a velocity input after set amount of time equal

to the sensor update period. This position and velocity are then used as initial conditions

for the plant when responding to the next velocity input signal. A separate function

calculates velocity gains for the normal position direction using a digitally implemented

PD control law. The gains for the P11) control law were determined by applying ioop

shaping to obtain a robust controller for a continuous-time model of the plant. The value

of the output of the plant at the end of each time step are stored so that the position of the
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Figure 4.11 Algorithmfor simulated hybrid control.
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Figure 4.12(a) Simulated trajectory of the end-effector using relative proximity sensing
for hybrid control. The path used uses the function y—x. The end-effector was started at
the location (0,1). The dashed line represents the sensed path and the solid line
represents the end-effector trajectory.

Figure 4.12b) Simulation results same as above except using
and y=0.5*(x~4)for x>4for the sensedpath..

the function y=x for x<=4

time. Documented code for the simulation is given in Appendix A. Results of a
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simulation are shown in Figure 4.12.
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4.4.5 CONTROL WITH RELATIVE PROXIMITY SENSING

Compliant motion control using relative proximity sensing has problems additional

to those encountered for compliant motion control using force sensing. Since orientation

errors of the end-effector cause errors in proximity measurement, special measures must

be taken to control end-effector orientation. Small errors in orientation will cause

proximity errors that can be accounted for in the design of a robust controller. Large

errors in orientation, however, can cause proximity measurement errors large enough to

make the system unstable. The largest errors occur when:

1) The end-effector oscillates to resume tracking following a disturbance.

2) The end-effector orientation is programmed to follow the tracking direction

without accurately knowing the tracking direction.

This problem can be resolved taking the dynamics of the end-effector into account

and designing a compensator which will act as a low-pass filter to keep the orientation

from responding to oscillations in the end-effector position such as those caused by

disturbances. The necessary factors in compensator design are:

1) Dynamics of end-effector orientation plant.

2) Oscillation frequencies of end-effector position.

3) Response time to changes in path orientation.

Any compensator design will involve compromises in disturbance and error

rejection, response time and stability.

4.5 HYBRID CONTROL WITH AN INDUSTRIAL ROBOT

There are many problems associated with implementing any closed-loop control

scheme on an off-the-shelf industrial robot controller. However, the availability of

industrial controllers and the effort and costs associated with developing a custom

controller make industrial controllers appealing for most applications. Also, most

industrial controllers and robot programming languages are similar so that it is often an

easy task to port a control scheme that works on one controller to most other controllers
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on the market. For this reason, a control scheme using any industrial controller is likely

to be usable on most robots presently in use.

4.5.1 CAPABILITIES AND LIMITATIONS OF INDUSTRIAL CONTROLLERS

Two separate controllers were used to implement the hybrid control algorithm

developed in this thesis. These controllers are the Adept A-series controller

manufactured by Adept Technology in San Jose, California and the GM-Fanuc RH

controller manufactured by GM-Fanuc Robotics of Auburn Hills, Michigan. These

controllers and other similar controllers represent nearly half of all operational robot

controllers in the United States. The Adept and GMF controllers are very similar in

capabilities and programming structure.

The primary task that an industrial controller can accomplish is moving its

manipulator between two points in Cartesian space. Most controllers can perform this

task with a variety of motion profiles and using almost any defined reference frame.

Most controllers also have the ability to move along a series of defined points that form a

path. While moving along a path, the manipulator can cause the joint decelerations for

moving to one point to be smoothly joined to the joint accelerations for moving to the

next point. This creates a smooth continuous movement through a series of points. The

manipulator may not necessarily pass through each point exactly when following a path.

The primary limitation of industrial point-to-point controllers is the inability to

change the destination of the end-effector once a move command has been given. Due to

this fact, it is impossible to continuously update the position of the end-effector. If the

position can’t be updated continuously or at least at known time intervals, then most

control theory will not apply to external control loops around the position controller. For

this reason, there are limitations to the performance of a system with external control

loops closed around an industrial controller that are greater than would be predicted by

the dynamics of the controller-manipulator system by itself.

4.6 COMPLIANT MOTION USING FORCE SENSING WITH THE
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ADEPT-3 ROBOT

The hybrid control algorithm was implemented on the Adept-3 robot using force

sensing. This was done prior to integration with the LSS to test the hybrid control

algorithm. A 6-axis force sensor was integrated with the Adept controller. This sensor

allowed the control algorithm to be implemented and tested with a minimal amount of

time devoted to the task of sensor integration.

A flowchart of the hybrid control algorithm is given in figure 4.13. For each move

of the manipulator, the force sensor is read and the force magnitude and direction is

calculated from the force reading. The force magnitude is run through a PD control law

and multiplied by the estimated stiffness of the end-effector and the environment at the

contact point. At the same time, the force direction is compared to the end-effector

orientation. The difference between the end-effector orientation and the force direction is

also run through a P1]) control law to obtain an updated orientation. The new point and

orientation is used in a move command, the sensor is read and the cycle repeats until the

task is complete.

The results of the tests with force control ioops control ioops closed around the

Adept-3 manipulator confirmed the validity of the hybrid control algorithm. No attempt

was made to optimize the control loops for the force control loop since a higher priority

was set on implementing hybrid control with the LSS for use with the ACSM. Code for

implementation of the force control routine and results are in Appendix B.

4.7 COMPLIANT MOTION USING THE LSS

This section will discuss the implementation of hybrid control using feedback from

the LSS with two separate industrial SCARA configuration manipulators. The hybrid

control algorithm was first tested on the Adept-3 robot. The algorithm was modified

slightly and ported to the GMF A-5l0 robot. Section 4.7.1 will discuss the control

algorithm used and any differences between the algorithm used for the simulation or
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Figure 4.13 Algorithmfor hybrid control using force sensing.
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Figure 4.14 Adept Technologies 6-axis integrated force sensor with probe attached for

contourfollowing.
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Figure 4.15 The Adept-3 manipulator with endpoint force sensor attached.
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/
Figure 4.16 Crackfollowing with the Adept-3 and the LSS.
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Figure 4.17 The GMF-A51O manipulator, inverted, mounted on the linear slide with the

LSS attached.
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Figure 4.18 Crackfollowing with the cMF-A51O ~iid7he LSS.

force sensing. Interfacing the robots with the LSS and the control architecture will be

discussed in section 4.7.2. Section 4.7.3 wifi discuss tuning the controller and section

4.7.4 will discuss filtering of the LSS output to obtain improved performance.

4.7.1 - CONTROL ALGORITHM

A flowchart of the algorithm used to implement hybrid control with the LSS is

given in figure 4.19. After all variables have been initialized the end-effector must be

moved to the start of the crack and aligned with the direction of the crack at that point. A
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sensor reading is then taken and the sensor error is run through a PD) control law. At the

same time the direction of the crack is estimated by looking at previous end-effector

positions and the associated sensor readings. This provides estimated positions of the

crack at the previous two points. The estimated orientation is calculated by taking a

secant between these two points. The difference between the actual end-effector

orientation and the estimated crack direction is also run through a PID control law to

obtain a gain that is added to the current end-effector orientation to obtain the new

orientation input. A new offset point is calculated relative to the current position using

the normal direction gain, the new orientation and the tangential velocity gain (which is

set as constant). The offset point is then added to the current position to transform it to

the world coordinate system. The new point is then used as a motion input, a sensor

reading is taken and the loop continues until the controller receives a signal that the task

is complete.

Both the Adept and GMF controllers will process commands while a move

command is taking place. Therefore, it would seem that using the above algorithm, the

controller will generate points at the same rate at which the controller could cycle through

the ioop. However, the motion constraints of the controller will only allow the controller

to have at most two move commands whose destination points have not yet been reached.

If it receives a move command for a third point, it will halt program execution until one

of the previous points has been reached. Once the controller is executing the loop, the

cyclic rate will be the same as the time necessary for the end-effector to move between

two consecutive generated points. This time varied between 50 ms and 500 ms during

tests with the algorithm using the Adept-3 manipulator. Figure 4.20 illustrates the

differences between the update rate of the controller and the update rate of the LSS.

4.7.2 CONTROL ARCHITECTURE AND COMMUNICATION

Interfacing the Adept or GMF controller with the LSS is essential to closing the

normal direction control loop for hybrid control. The error data from the LSS is
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Figure 4.19 - Flowchart for hybrid control using the LSS
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Figure 4.20 Comparison ofLSS and controller update times.

processed from raw sensor data using an IBM PC (see chapter 3). The error information

is passed from the PC to the controller via an RS-232 serial line at a transmission rate of

4800 baud. For ease of transmission each error reading was scaled to be transmitted as a

single byte. Since the LSS generates error data faster than it can be used by the

controller, a ‘software handshalcing’ protocol was implemented so that excess error data

will not accumulate on the serial port buffer of the controller. When the controller is

ready to receive a piece of data, it sends a signal byte to the IBM PC being used by the

LSS. Each time the LSS determines a new error signal, it checks to see if the controller

has requested information. If the controller has requested information, the error signal is

sent. If the controller is not ready for new information, the LSS loops through another

scan until it determines a new error signal and again checks the serial line for a data

CONTROLLER CYCLES

I I I I II IT~
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request from the RPS. Due to the time it takes for the LSS program to ioop and the time

required to both receive and send data bytes, time delays due to communications can be

as long as 40 milliseconds. This delay could be substantially reduced by implementing a

service interrupt routine for serial communication on the PC processing the LSS data

(Krulewich and Velinsky, 1992). Details on operation of the LSS are given in Chapter 3.

4.7.3 TUNING THE CONTROL LOOPS

The hybrid control algorithm uses two separate control ioops. One loop is the

normal direction control loop that is closed around the LSS and the other ioop is the

orientation control loop which is closed by estimating the crack direction. These control

loops are dynamically coupled due to the relative nature of the proximity sensing as

described in section 4.2.3. In order to deal with the coupling effects, both control loops

should be tuned to have a high damping ratio to insure high stability. If both loops are

very stable, oscillations in one loop will not propagate to the other loop and cause the

system to become unstable.

It is not possible to rigorously apply control theory to the control loops in the hybrid

control algorithm. This is primarily due to the fact that point inputs to the controller can’t

be updated once the motion has begun as described in section 4.4.1. Also, the cycling

time of the control program varies between 50 and 500 milliseconds. If the cycling time

of the control program were constant it would be possible to model the system as a digital

system with a sampler and zero-order hold. The LSS data could be treated as a sampled

input and move commands to the motion controller could be treated as discrete output

followed by a zero-order hold. The dynamics of the plant could be roughly modeled by

empirically measuring motion of the manipulator and fitting the data to a second-order

system model. However, since the sensor updates at approximately 33 Hz and the

controller cycles at anywhere between 20 Hz and .5 Hz, the resulting system is a multi

rate discrete system where the time of the hold for the output varies with each cycle. No

existing control theory can reasonably handle such a system in a rigorous manner.
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Therefore, the control loops of the hybrid control algorithm had to be tuned using trial-

and-error and applying general principles of control theory rather than specific laws.

The parameters for tuning the normal position control loop are dictated in a large

part by the nature of the crack sealing operation. First, extreme accuracy is not required.

Errors of up to an inch are perfectly acceptable for the task. Secondly, the type of cracks

to be addressed by the ACSM wifi not make sharp changes in direction (greater than 25

degrees). The path of the end-effector should also be smooth, therefore the system should

not respond to small oscillations in crack direction (which will appear as high frequency

signals to the LSS). Finally, the system should be tuned to be as stable as possible due to

inherent instabilities induced by position-orientation coupling and a variable cyclic rate.

Therefore, the compensator for the normal position direction should emphasize stability

and noise rejection at the expense of response time and steady state error.

The control law for the orientation error of the end-effector should act as low-pass

filter. A sample of the orientation error is given in figure 4.21. Since the crack direction

is estimated by using what essentially is a numerical differentiation algorithm, the

Estimated End Effector Rotation Error

:1
80 90 1000 10 20 30 40 50 60 70

Number of Samples

Figure 4.21 End-effector orientation error during hybrid control.
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estimated crack direction tends to be a very noisy signal. Once again, stability and

disturbance rejection in the control loop should be emphasized over response time and

accuracy.

4.7.4 FILTERING OUTPUT OF THE LOCAL SENSING SYSTEM

It was determined that system performance using hybrid control could be improved

by applying a low pass filter to the output of the LSS. All of the data read by the LSS is

filtered with a second-order filter. The most recent filtered error is sent to the RPS each

time data is requested. There are several reasons why the filter will improve system

performance.

Figure 4.22 Magnitude-frequency plot of a type-i second order Chebyshev filter. The

cutofffrequency for this filter was set at 4 Hz assuming a sampling rate of 33 Hz. The

normalizedfrequency is such that
(On

~normaIized — —

(Os

L

Normalized frequency

where 0s is the sampling frequency.

Copyright 2011, AHMCT Research Center, UC Davis



63

Without the filter, the controller uses the most recent output for each cycle in the

algorithm. The sensor can update many times faster than the controller can accept data.

Therefore, much of the data from the LSS is lost if a filter is not used.

0
1~
0
4-
0
£

£

I
0
I
I

w

Raw Data

Filtered Data

Figure 4.23 Comparison offiltered and unfiltered sensor data from a test of the hybrid

control algorithm.. The test was run using a crack routed in plywood.

A smooth path of the end-effector is desirable for the crack sealing operation.

Pavement cracks are often rough and have many small deviations. In order to achieve a

smooth end-effector motion these small deviations must be filtered out as if they were

high frequency noise.

An integral gain was originally used in the normal position control loop for the

Comparison of raw and filtered LSS data
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hybrid control algorithm. However, due to the dynamic coupling with orientation and the

multi-rate effects, the system often became unstable with even small integral gains. It

was therefore decided to eliminate the integral gain for the normal control direction at the

controller and achieve disturbance rejection characteristics and a high damping ratio by

filtering input from the LSS.

For testing purposes on cracks routed in plywood, the filter cut-off frequency was

set at 4 Hz. For operation on pavement, the optimal filter cut-off frequency can be

determined from frequency analysis of LSS data while operating in a crack following

operation. The cut-off frequency is a function of end-effector speed as well as crack

geometry. Frequency analysis of test on pavement cracks may also reveal the need to use

a higher order filter.

4.7.5 ESTIMATING CRACK DIRECTION GEOMETRICALLY

An alternate method of calculating the end-effector orientation through geometric

means was also tested. Problems arise with the control algorithm for end-effector

orientation due to the fact that noise is tends to be amplified and the time step for the

control law is unknown and varies with each step. The geometric method looks at

previous points and fmds the tangent through a interpolation or curve fit in Cartesian

space. This method has been tested by using a least squares linear regression on the five

most recent points along the crack to calculate a tangent angle.

4.8 CRACK SEALING USING HYBRID CONTROL

The following section will describe how the compliant motion algorithm with the

local sensor is used on the ACSM. A control architecture is developed that combines all

available information from the Vision Sensing System, the Path Planning system as well

as the Local Sensing System. The object of the architecture is to implement crack

following as quickly and efficiently as possible while making allowances for failures or

errors in individual subsystems.

4.8.1 FEEDBACK VERSUS OPEN-LOOP CONTROL
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Two types of control are available for the controller. The first type is open-loop

control using the data from the VSS. Open-loop control assumes that the information

from the VSS is available and correct. The data from the VSS will be processed to

produce Cartesian locations in the workspace of the manipulator. The location data will

consist of points along a crack as well as the crack direction at each point. Open-loop

control has no way of the accuracy of the data.

The second type of control is closed-loop or feedback control. This is the type of

control that is done using the output of the LSS. Feedback data can only reveal past

locations and has no a-priori knowledge of the crack. Feedback control can correct errors

in the manipulator position by feeding an error signal back to the controller. The LSS is

only capable of returning the offset position of the crack in its field of view with respect

to the end-effector frame of the manipulator. The crack direction in feedback control can

be estimated by looking at previous points along the crack.

Controlling the manipulator can involve open-loop control, feedback control or a

combination of both. There will be 3 distinct modes of control based on the type of

control. Mode 1 will use open-loop data and verify it with the LSS data. Mode 2 will use

feedback data from the LSS to control both position and orientation and Mode 3 will use

feedback control to control position and open-loop control to control orientation.

4.8.2 - SOURCES OF ERROR

Two likely sources of errors for sensing cracks are the Vision Sensing System

(VSS) and the Vehicle Orientation and Control System (VOC). The purpose of the VSS

is to detect cracks in front of the support vehicle by using an area scan camera. The

algorithm used by the VSS divides the scanning area into 2x2 inch pixels. The VSS

compares gray shades to determine if a crack exists in each pixel. Errors of greater than

an inch are possible simply due to the resolution of the pixels. These errors are added on

to hardware errors such as camera resolution and vibration of the camera mount.

The purpose of the VOC is to kinematically transform the cracks detected by the
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VSS in front of the vehicle to the workspace of the robot which is behind the vehicle as

the vehicle moves forward. There will be more than a 40 foot separation between the

front and rear of the vehicle. The VOC will determine vehicle motion by monitoring

encoder wheels attached to the vehicle frame. Sources of error for the VOC include

slippage of the encoder wheels on the pavement and the resolution of the encoder wheels.

Errors from the VOC will be added to the errors already present from the VSS.

After a crack is detected, the vehicle moves forward until the crack is in the

workspace of the robot. Due to the errors described above position errors of several

inches are possible. It is also possible that no crack actually exists since the VSS can

only detect gray shades and therefore can be fooled by grease stains, shadows and already

sealed cracks. The field of view of the LSS is only 3 inches, so it is highly probable that

once the manipulator moves to the start of the crack, the error will be great enough that

the crack will not even be in the field of view of the LSS. It is also possible that the

detected crack does not even exist.

4.8.3 - USE OF CLOSED-LOOP CONTROL

Many of the problems associated with errors from the VSS and the VOC can be

eliminated by incorporating a compliant motion algorithm with the LSS. However, crack

following using the compliant motion algorithm with LSS limits the manipulator speed.

The speed limitations are due to the fact that the algorithm must define many points to

constantly control the manipulator motion. The use of a higher point density causes more

joint accelerations and decelerations and hence tends to slow the speed of the end

effector.

4.8.4 MODE 1-OPEN-LOOP CONTROL

The concept for the control architecture is to use a pre-planned path generated from

VSS data as much as possible. The compliant motion algorithm will be used to search

for the crack if the errors in the pre-planned path become larger than the field of view of

the LSS. Once the crack is located by the compliant motion algorithm, the actual crack
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location can be sent back to the ICU. The error in the crack location can then be used to

help correct errors in the pre-planned path.

4.8.5 MODE 2-FEEDBACK CONTROL FOR POSITION AND ORIENTATION

The compliant motion algorithm can also completely override use of a pre-planned

path in the event of a system failure of the VSS, the VOC or the ICU. In this case, the

end~effector can be moved to the beginning of the crack and aligned with the starting

direction of travel using the teach pendant. The compliant motion algorithm will then be

executed for the crack following operation. The end-effector speed using the compliant

motion algorithm will be slower than if pre-planned path data were available.

4.8.6 MODE 3-FEEDBACK CONTROL FOR POSITION AND OPEN-LOOP

CONTROL FOR ORIENTATION

A scheme that uses the LSS to control the position of the end-effector and data from

the VSS to control the orientation of the end-effector can also be used. This scheme will

work well if there are errors in the location of the crack from the VSS, but its shape is

generally known. The direction of the crack will be sent to the RPS according to its

location along the ‘x’ axis of the world coordinate system. The control algorithm will use

the LSS to follow the crack, but the direction information from the VSS will replace the

orientation control ioop of the algorithm. This scheme will require the approximate

Cartesian location of the starting of the crack.

4.8.7 ERROR HANDLING

An error handling routine will be called any time the crack is lost from the field of

view of the local sensor. The same error handling routine will be used regardless of

whether the motion was being controlled by data from the VSS or the LSS. The search

algorithm will search at right angles for the crack according to the most recent crack

direction. The searching algorithm is essentially the same as the compliant motion

algorithm except that the tangential velocity is set to zero. If the crack is not in the field

of view of the sensor, an extreme error value must be given to indicate which direction to
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start the search. If the crack is stifi not found, a search will be conducted in the opposite

direction as well. Limits are set on the distance to be searched.

4.8.8 - CONTROL ARCHITECTURE

The control architecture will be defined by the following algorithm:

(1) The location of crack will be determined by the VSS, VOC etc. and a path

consisting of Cartesian points within the workspace of the robot will be calculated and

sent to the RPS.

(2) The manipulator will move to the beginning of the crack using the path

generated by the ICU and path planning.

(3) The local sensor will be checked to determine if a crack is present. If no

crack is found, the RPS will signal the ICU and begin searching for the crack at right

angles using the LSS. The result of the search--either ‘no crack found’ or the location of

the crack will be sent to the ICU. The RPS will then wait for an updated path to be sent

from the ICU and will resume motion with step (2).

(4) Once the location of the crack has been verified by the LSS and the path has

been updated (if necessary) the manipulator will follow the crack and the LSS output will

be monitored. The LSS data can be used to determine if the manipulator runs off of the

crack. If this occurs, the ICU will be signaled and a search for the crack will begin as in

step (3). Once again, the result of the search will be sent to the ICU and the RPS will

wait for an updated path before resuming motion as in step (2).

(5) When the manipulator reaches the last point defined on the path it will signal

the ICU to indicate that the end of the crack has been reached.

Copyright 2011, AHMCT Research Center, UC Davis



69

Additional options:

(a) It will be possible to defme a maximum offset within the field of view of the

sensor. If the offset from the end-effector to the crack exceeds the maximum offset, the

manipulator will center itself on the crack using the LSS and signal the ICU in similar

manner to the signaling for the search routine described above.

(b) It will be possible to override all data from the ICU and follow cracks using

only the RPS and the LSS. This override will require the manipulator to be moved to the

start of the crack and aligned in the direction of travel using the teach pendant. The

motion speed for this override will be much slower than if global data were used.

(c) Crack following can also be conducted using crack direction data from the

VSS and using closed-loop control with the LSS for position control.

4.8.9 - COMMUNICATIONS

Communication to and from the RPS wifi be accomplished by means of serial lines.

Two separate lines will be used, one for communication with the LSS and one for

communications with the ICU. Specifics on the data transfer can be found in the

documented code for integrated control in Appendix G.

4.9 - SUMMARY AND CONCLUSIONS

This chapter has addressed the problem of developing a motion control algorithm

for hybrid control of an industrial robot. Hybrid control algorithms for both force and

relative proximity sensing were developed. The purpose of the hybrid control algorithm

is to follow cracks in the pavement with an industrial robot using the local sensor as part

of the ACSM.

The first section of this chapter defined the problem to be addressed and divided it

into three tasks, two of which implement control loops around the robot controller. The
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second section discussed previous work that has been done in the area of hybrid control.

Most of the work that has been done with hybrid control involves endpoint force sensing

rather than proximity sensing. This section also discussed the advantages of using

control loops closed around an industrial controller. The task frame for the problem was

presented and the difference between implementing hybrid control with force and relative

proximity sensing was also discussed.

The third section of chapter 4 presented a numerical simulation of hybrid control

using MATLAB. The MATLAB simulation revealed important qualitative results on

hybrid control using relative proximity sensing. The simulation showed that there is a

coupling effect between position and orientation control when using relative proximity

sensing. Therefore, an algorithm for hybrid control using the LSS should have

compensators for orientation control as well as control of position normal to the path.

Both compensators should be designed to yield a system that is heavily damped.

The fourth section began actual implementation of hybrid control using industrial

robots. The hybrid control algorithm was implemented on the Adept-3 robot using both

endpoint force sensing and endpoint relative proximity sensing with the LSS. Hybrid

control was also implemented on a slide-mounted GMF A-5 10 manipulator using the

LSS.

Due to the limitations of an industrial controller, it is difficult to rigorously apply

control theory to control ioops that are closed around an industrial controller. However,

the best performance is achieved when the gains were adjusted so that the system is

heavily damped. Also performance was increased by filtering the error data from the

LSS with a low-pass filter.

The final section of the chapter discussed how the hybrid control algorithm fits into

the overall architecture of the ACSM. The architecture attempts to combine off-line

machine vision data along with closed-loop control using the LSS to create an efficient

and robust crack-following capability for the ACSM.
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CHAPTER -5 SIMULATION AND TEST RESULTS

This chapter will discuss the results of implementing hybrid control on industrial

controllers. Results of the hybrid control simulation programmed on MATLAB will also

be presented. The results will show how the hybrid control algorithm with the LSS was

refmed progressively from the MATLAB simulation to implementation on the Adept-3 to

its fmal implementation on the slide-mounted GMF-A510 robot. The results presented

will be mostly qualitative in nature. The main criteria for the results are that the

algorithm is capable of performing the desired operation of crack following. The gains

for the controllers were adjusted until performance was satisfactory before data was

collected for results in this section. Because control theory cannot be rigorously applied

to the hybrid control algorithm, it is impossible to determine what optimal performance

of the system should be (section 4.6.3). However, the control laws should take

anticipated crack geometry into account (such as how quickly cracks change direction

and the amount the cracks jog from side to side).

Section 5.1 will discuss results of the MATLAB simulation. Section 5.2 will

discuss results of hybrid control using an endpoint force sensor on the Adept-3 robot.

Results of hybrid control using the LSS will be presented in section 5.3.

5.1 - RESULTS OF NUMERICAL SIMULATION OF HYBRID

CONTROL

A simulation of the hybrid control algorithm was done using MATLAB. There

were several reasons for performing the simulation. First, the simulation was to test the

validity of the compliant motion algorithm using endpoint force sensing and obtain some

idea of how well it would perform. Secondly, the simulation was to determine what

differences exist between using force sensing and relative proximity sensing for hybrid

control. Finally, it was hoped that the simulation could be used to help determine optimal

control gains for the hybrid control algorithm for implementation with an actual robot.
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The simulation was done prior to the arrival of the Adept-3 robot and therefore provided

a head-start for implementing hybrid control.

5.1.1 - SIMULATION OF HYBRID CONTROL WITH FORCE SENSING

The simulation was first performed for compliant motion using force sensing. The

force sensor is simulated such that it will accurately return the distance between the end

effector and the desired path as well as the direction of the desired oath. This simulates

using a force sensor with a flexible tool attachment. The distance measurement can be

obtained by dividing the measured force magnitude by the estimated stiffness between

the end-effector and the environment at the contact point. The direction of the desired

path can be obtained by taking the inverse tangent of the measured forces along the axes

of the world coordinate system.

The hybrid control algorithm with force sensing uses one control ioop to control

motion in the force-controlled direction based on the force reading. Velocity and

orientation control are done open-loop. The gains for the force control loop were chosen

such that the system has a heavily damped response. This was done because stability was

determined to be the most important criteria for crack following.

5.1.2 - SIMULATION OF HYBRID CONTROL WITH RELATIVE PROXIMITY

SENSING

After the hybrid control algorithm was simulated for force control, the same

algorithm was tested using a simulation of the LSS. The simulation of the LSS measures

the distance between the end-effector and the crack along the scan line of the LSS and is

not capable of measuring the direction of the path directly. The direction of the path

using the LSS is determined by looking at previous positions of the end-effector and

taking secant lines. This method of estimating the tracking direction tends to make the

system less stable. Applying a low-pass filter to the estimated tracking direction

improves system stability. Although a low pass filter for orientation was never used in

the simulation, the need was recognized and a filter was used for hardware
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implementation. Filtering allows the end-effector to be aligned with the tracking

direction while not responding to oscillations in end-effector motion due to disturbances.

The hybrid control algorithm for the LSS uses two control loops; one for the normal

direction to the path and one for end-effector orientation. Overall, the hybrid control

algorithm simulation using the LSS has a less stable response than the algorithm using

force sensing because the LSS cannot directly sense path direction. The response of the

algorithm using both simulated force sensing and a simulation of the LSS is shown in

figure 5.1. Furthermore, the simulation revealed a coupling effect between the two

control loops of the algorithm using the LSS. Instability in one loop will tend to

propagate to the other loop. Therefore, the external control loops for hybrid control using

the LSS must be chosen such that the system response is heavily damped.

Code for the MATLAB simulation and the models that were used are contained in

Appendix A.

5.2 - HYBRID CONTROL WITH ENDPOINT FORCE SENSING

This section will discuss the results of implementing hybrid control on the Adept-3

manipulator using an Adept A-series controller with an integrated 6-axis force sensor.

The work that was done in force sensing is rather brief since it took place while waiting

for a hardware problem with the LSS to be corrected. No attempt was made to optimize

the external control ioop gains on the algorithm since priority was placed on

implementing hybrid control with the LSS. Hybrid control using loops closed around the

Adept-3 controller did in fact work, but a certain amount of passive compliance between

the end-effector and the environment was necessary. The need for a certain amount of

passive compliance when implementing counter following using force control is

mentioned in De Schutter (1988). The algorithm used was as described in section 4.6.
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Path using force sensing
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Hybrid control comparison with force sensor and LSS.
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Figure 5.1 The simulation results for hybrid control using simulated force sensing and the

LSS. The end-effector was started with a one inch offset in both cases.. For the same

system, the algorithm is less stable and has higher overshoot when using the LSS.
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Figure 5.2 The end-effector orientation error from hybrid control simulation using the

LSS. This result shows the need for a low-pass filter to damp out oscillations in the

estimated tracking direction.
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Figure 5.3 Comparison of the offset errors for the hybrid control simulation using a

force sensor and the LSS. The results show that the external control loops must heavily

damped to achieve stable tracking when using the LSSfor hybrid control.
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Figure 5.4 Result of2-dimensional contourfollowing using endpointforce sensing with

the Adept-3 robot. The contour consisted of a flexible plastic circle. The undeforined

contour and the actual path of the end-effector are shown.
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Figure 5.5 Error history from contour following shown in Figure 5.4. The sharp spikes

are disturbances due to friction.

5.3 - COMPLIANT MOTION USING THE LSS

The hybrid control algorithm was implemented on the Adept-3 robot with the

algorithm given in section 4.6.1. There were two main problems encountered with the

algorithm. The first problem simply involved adjusting the gains of the control loops to

achieve good performance. The second problem was how to handle cases where the

crack moved out of the field of view of the LSS.

The control laws used for hybrid control are digital implementations of PID control.

One difficulty of implementing a digital control law in this case is the fact that the

sampling rate isn’t accurately known. Therefore, an estimated time step is used which is

approximately the time it takes for the manipulator to make a single point-to-point move

in the algorithm. The difference between the actual and estimated move time varies with

each move.

Stability is an important criteria for the algorithm, since overshoots can cause the

point index
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Offset error and end-effector orientation

0
a)
a)

a)
.~

0

(U

C
a)
I.
0

0
0a)
a)

.~

C
w

Offset error

End-effector orientation

Figure 5.6 Offset error and end effector orientationfor crackfollowing with the Adept 3.
The graphs illustrate how the orientation is adjusted to follow the direction of travel of
the end-effector.
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crack to move out the field of view of the local sensor. Originally, both the position and

orientation control loops used digitally implemented PID compensators. Better

performance was obtained when the position control loop was reduced to a PD

compensator since this tends to make the system more stable. The orientation control

loop was left as a PID compensator since the estimated orientation tends to be a very

noisy signal (see Figure 5.7).

Tests with the Adept-3 were also the basis for adding the sensor saturation features

and the low-pass filter features to the LSS (see sections 3.3.2 and 3.3.3).

The tests for crack following were run on cracks routed in plywood. Data from

tests of crack following with the LSS and the Adept-3 are given in Figures 5.6 and 5.7.
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Figure 5.7 Estimated orientation errorfor crackfollowing using the Adept-3.
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Figure 5.8 Local sensor outputfor crackfollowing using the GMFA-5]O manipulator.
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Cartesian path of manipulator
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Figure 5.9 Cartesian path ofmanipulator, for crackfollowing with the GMFA-5]O. The

starting point is at the right-hand side of the graph. Some oscillation was present in end

effector motion.
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Figure 5.10 The LSS error as read by the controllerfor the same run as shown in figure

5.9. Oscillations in position can be seen in the offset error.
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Figure 5.11 Estimated rotation error for same run as above. The oscillations in

orientation error show the coupling effects between position and orientation control.
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Figure 5.12 Cartesian path of manipulator for same crack used in Figure 5.11 The

speed of the manipulator was reduced to obtain a more stable response. The starting

point was near (800,200).
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Figure 5.13 Offset errorfrom LSS read by controller for same run as above.

Copyright 2011, AHMCT Research Center, UC Davis



0
0
1~
U)
0

I..
0
1~
I
w

C
0

0

.U
0
0
E
4-
0)
w

87

Estimated Rotation Error During Crack Following

Controller Cycles

Figure 5.14 Estimated rotation error for same run as above.

5.4 - SUMMARY AND CONCLUSIONS

This chapter has presented results from implementing hybrid control using a

computer simulation, force sensing and relative proximity sensing. Two different

industrial robots were used. The most important result is that hybrid control using the

LSS can be used for on-line control in crack following for the ACSM. The largest

problems encountered were maintaining stable control loops while using an uncertain

time step in digital control law and the limited field of view of the LSS. In order to

maintain stable control loops the gains must be adjusted so the system response is heavily

damped. The field of view of the local sensor is effectively increased by simulating

sensor saturation in software.

10 60 110 160 210
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CHAPTER 6- CONCLUSIONS AND FUTURE
WORK

This paper has developed algorithms for crack following using an industrial robot

and a relative proximity sensor. The algorithm is successful in following cracks of

similar geometry to those which will be addressed by the ACSM. Limitations on system

performance are largely a function of the capabilities of industrial controllers (in this

case, the Karel controller) and the limited field of view of the LSS. Also, since the LSS

cannot directly measure crack direction, it is very difficult to follow cracks which make

sharp changes in direction (>45°).

6.1 - RECOMMENDATIONS

6.1.1 - CUSTOM HARDWARE

The GMF-A510 manipulator was selected for use on this project because it was

determined to be the best commercially available manipulator for the task. Time and cost

constraints eliminated the use of a custom manipulator for the ACSM. For a

commercialized version of the ACSM prototype, it would be desirable to have a

manipulator that had the ability to reach of full 12 feet of highway lane from an eight foot

truck bed. The manipulator should also have a high payload capacity to handle dynamic

loads caused by accelerating the mass of the process equipment. Since no commercially

available manipulator meets the above specifications, it will be probably be necessary to

build a custom manipulator. The custom manipulator should have full dexterity in the

plane of the road. The manipulator should be easily controllable in two-dimensions in

order to assure that on-line Cartesian path planning can be implemented.

There are several robotics companies in the United States who make custom

manipulators. Two of these include Schilling Development of Davis, California and

Odedics, Inc. of Anaheim California. Odedics has designed and built a SCARA robot for

military use. It has a payload of 300 lbs, a reach of 8 feet and a top speed of 50
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inches/sec. The manipulator has a weight of 350 lbs. Estimated price as of 1991 is

$175,000.

Schilling Development produces a titanium, hydraulic-driven manipulator which

has a 6 foot reach. The manipulator has a 200 lb. payload and a maximum speed of 3

feet/sec. Due to the fact that this is a hydraulic manipulator, it cannot be servo-controlled

like many industrial manipulators. Estimated 1991 price for the manipulator is $105,000.

The controller for a custom manipulator can be a controller provided by the

manipulator manufacturer, a custom controller or an available industrial robot controller

that can be ported over to control a different type of manipulator. Adept Technology of

San Jose, California produces both manipulators and controllers. Adept will port their

controller to any manipulator that can be servo-controlled (.i.e.. is run by electric motors).

6.1.2 - LINEAR SLIDE INTEGRATION

It may be desirable to mount the manipulator on a linear slide or similar device to

increase the workspace. The addition of the linear slide will add a redundant degree-of-

freedom. On-line control of a manipulator with a redundant degree-of-freedom

represents a serious problem. The integration of the linear slide and the A-S 10

manipulator was done assuming the path of the cracks to be relatively simple (see

Appendix E). The control problem for a generalized path in two dimensions is much

more complicated. The complexity of the redundant degree-of-freedom integration

problem will depend largely on the types of crack paths to be addressed by the

commercialized ACSM. If the cracks are mostly transverse in direction the problem will

be relatively simply. If a meandering crack is to be followed the problem will be very

complex.

6.1.3 - HARDWARE CONFIGURATION

Presently, the A-5l0 manipulator is mounted on the linear slide such that the motion

of the linear slide is parallel to the ‘x’ axis of the manipulator. The workspace of the

system would be enhanced if the manipulator were rotated 90° with respect to the slide
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such that the linear slide motion is parallel to the ‘y’ axis of the manipulator. This would

allow the linear slide motion to account for the joint stops in the rear of the manipulator

workspace.

6.1.4 - PROCESS EQUIPMENT DESIGN

The weight and geometry of process equipment for the crack sealing process affects

the motion capabilities of the manipulator. As the process equipment becomes larger and

heavier the speed at which the manipulator can move will become slower. Also, the more

inertia due to the process equipment the more difficult it will be to accurately control the

end-effector. Optimization of the crack sealing machine must take into account the fact

that the amount of process equipment present will greatly affect the efficiency of moving

that equipment with a manipulator.

6.1.5- TUNING FOR THE ACSM

Adjusting the gains for the hybrid control loop on the robot controller will be an

ongoing process throughout development and testing of the ACSM prototype. Other

parameters that will have to be adjusted that affect system dynamics are the specified

velocities accelerations for the manipulator and the linear slide. The filter order and cut

off frequency on the LSS will also have to be adjusted according to crack geometry and

end-effector speed. The external factors that will affect the system dynamics are end

effector loading and crack geometry. The addition of process equipment will add a large

inertial element to the system. The control gains must be adjusted to obtain good

performance with the payloads present. The speed at which the end-effector moves over

cracks and the nature of the cracks being sealed will determine the frequency content of

the output of the LSS. This frequency content should be analyzed to determine desirable

filter characteristics for the LSS low-pass filter.

6.2 - TUNING AND CONTROL ALGORITHMS

Determining the optimal control laws and gains for the hybrid control algorithm is a

difficult task. The difficulty is primarily due to the fact that most industrial controllers
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perform point-to-point moves that cannot be updated once the move command has been

issued, If a system cannot be updated continuously or at least at known time intervals,

then most control theory does not apply.

Val II, a programming language used by tJnimation, Inc. has the capability to

update end-effector trajectories while a move command is being executed. A command

‘ALTER’ can be used to change the present position of the end-effector as well as the

destination position. The ALTER command can take position changes in terms of

incremental changes in Cartesian coordinates in 28 ms cycles. ALTER is an extremely

useful tool for real time path control of a robot (Loughlin, 1983). Unfortunately, neither

GMF nor Adept has an equivalent of the ALTER command and Unimation no longer

makes robot controllers. However, if a controller with a command similar to ALTER can

be found, it could greatly improve the process of on-line control.

Even with the limitations of an industrial controller, it may be possible to determine

an optimal range of gains for the hybrid control algorithm by estimating the time step.

The average value of the time for each move will depend on the specified end-effector

velocity and acceleration, the tangential direction velocity gain and end-effector loading.

if the average value of each move time can be found (perhaps by measuring move-times

with a given set of parameters) and if the move time does not vary to far from the

average, it is possible to model the system as a discrete-time system with a sampler and

zero-order hold connected to the plant. The input from the sensor can also be treated as a

sampled signal. Difficulties will arise from determining an exact model for the robot

controller system comprising the plant. It is possible to obtain an approximate model of

the plant by empirically measuring plant dynamics.. The control problem will be further

complicated by the fact that the local sensor sampling rate will be faster than the robot

cycle rate and a multi-rate system will result. In short, modeling the hybrid control

algorithm using discrete control theory would be a difficult and tedious process and the

quality of the results will be questionable.
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6.2.1 - GEOMETRIC BASED ORIENTATION CONTROL

It is possible to control the orientation of the end effector by using the LSS and

incorporating geometric based (rather than dynamic based) control. For the dynamic

control scheme, the orientation of the crack is calculated by taking a secant line through

the previous two points. The difference between this estimated orientation and the actual

end-effector orientation is used to generate an error signal which is filtered through a

digital proportional plus integral (P1) compensator. A difficulty arises from selecting the

dynamics of the PT compensator because the time step is invariant and unknown.

The position of the end-effector can be found at any time along with the local

sensor reading at any time. This data gives us fairly accurate information about the past

positions of the crack. The true orientation of the crack can be found by looking at past

points, creating a curve based on the past points and determining the calculated direction

of the curve at the last end-effector orientation. This method was implemented in section

4.7.3. by using a linear regression of the previous five crack points to find the crack

direction. This allows for orientation control without the need for a known time step.

It is possible to expand this methodology and to fit higher order functions to

previous crack points. Potential problems with the control algorithm may arise from

manipulator dynamics which are not taken into account. If the dynamics for the degree-

of-freedom being controlled has a small time constant compared to the external control

loops, it may be safe to ignore dynamics. It may also be possible to implement geometric

based control for position control of the manipulator, but position dynamics are likely to

have a much larger effect than orientation dynamics. One other factor affecting

geometric control is the fact that the LSS data may be older than its corresponding end

effector position data. This would introduce a time lag effect into the geometric control

scheme.

The suggestions made in this chapter are intended to improve the performance of

controlling a manipulator for the ACSM. Many of the suggestions will hopefully be

Copyright 2011, AHMCT Research Center, UC Davis



useful in any application involving hybrid control with an industrial robot.

93

Copyright 2011, AHMCT Research Center, UC Davis



APPENDICES

94

Copyright 2011, AHMCT Research Center, UC Davis



95

APPENDIX A - CODE FOR SIMULATION OF
HYBRID CONTROL WITH MATLAB.

%this program will simulate hybrid control for crack
%following.
%the robot must be given a starting location and orientation
%for the crack in global coordinates.
% take input for starting parameters:
xl(1,1)=input(’starting global x’);
xl(1,2)=input(’starting global y’);
% input for starting initial orientation (in radians)
f(1)=input(’starting orientation, rads’);
%an estimate of the robot-controller system is given in the
%form of a transfer function. The numerator coefficients are
%given in num and the denominator coefficients in den.
num=36864;
den=[1 105.6 36864];
%convert the transfer fucnction to state-space form.
[a,b,c,d]=tf2ss(num,den);
% specify the state-space output matrix C:
c=[0 1];
%specify the tangential velocity gain, v.
v=1000000;
%initialize variables to be used
e=0;
g=0;
k=1;
dp(1)=0;
dp(2)=O;
% specify the time step for the sampling rate, dt:
dt=.02;
g(1)=f(1);
%move in the specified orientation with velocity gain v
%for duration of time step dt.
% vel is a function that returns and x and y position, p(2x1)
% and an x and y velocity, dp(2X1) for a given starting
% position X(k) (2X1) and direction f(k) (rads)
% the state space matrices time step and initial velocities
% and positions are also required inputs.
[p,dp] =vel(a,b,c,d,dt,v,x 1 ,f(k),k,dp);
k=k+ 1
xl(k,1)=p(1);
xl (k,2)=p(2);
%check distance between end effector and crack function
%given by err
l=lerr(x 1 ,f,k);
e(2)=l;
e(1)=0;
%begin loop, end of crack will be signalled when err= 128
while e(k)<128

%obtain gain for velocity in force direction by applying
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%PID control law contained in gain(e,k,dt).
fg=l0000*gain(e,k,dt);
%move with specified velocity in force direction for time
%step dt.
%fvel is same as vel except that the ee moves perpendicular
%to the crack with a direction and magnitude determined
%by the force-velocity gain fg.
{p,dp]=fvel(a,b,c,d,dt,fg,xl ,f,k,dp);
k=k+ 1;
xl(k,l)=p(l);
xl (k,2)=p(2);
%caleulate orientation of end effector
f=ro(xl,k);
g(k)=f;
%move in velocity direction
[p,dp]=vel(a,b,c,d,dt,v,x1 ,f,k,dp);
k=k+l;
xl(k,1)=p(l);
xl (k,2)=p(2);

%take sensor reading and go to beginning of loop.
e(k)=lerr(x 1 ,f,k);

end
%x,y locations at each time step are contained in matrix x.
%g contains the orientation for all odd values of k.
‘end’

function fe=err(x,k,dt)
%simulates sensor output
%returns magnitude based on present position x
%and desired position function xd
%Use this routine for FORCE sensing.
xl=x(k, 1)
yl=x(k,2)
y2=xd(xl)
x3=ixd(yl)
a=y l-y2
b=xl-x2
c=(aA2 + bA2)i\5
err=(a/b)*c
end

function fe=err(x,k)
%simulates sensor output
%returns magnitude based on present position x
%and desired position function xd
% returns end of crack flag for specified value of k.
if k=lOO
fe= 128;

else
%calculates distance between end effector present
%location and crack, along normal to crack.
%Use this routine for FORCE sensing.
xl=x(k,l);
yl=x(k,2);
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y2=xd(x 1);
x3=ixd(y 1);
a=yl-y2;
b=x3-xl;
c=(aA2 + b’~2)”~5;
if b==O
fe=O;
else
fe=_a*sin(atan(b/a));
end
end
end

function l=lerr(x,f,k)
%simulates visual line scanner output
%gives position of crack function relative to sensor
%with position x(k) and orientation f.
% if f=O then the line of the sensor is not an explicit
% function y=mx + b
xl=x(k,1);
if abs(f)<.005;
x2=x 1;
y2=xd(x2);

end
% else express sensor line as y=mx + b
yl=x(k,2);
m=tan( 1 .5708+t);
b=yl~m*xl;
% (xl,yl) is location of center of sensor
% (x2,y2) is where sensor line intersects crack function
% solve for x2, y=f(x) must be known explicitly to solve
% and get the following equation.
x2=b/( 1-rn);
y2=xd(x2);
% sign convention: left side -, right side +
s=sign(xd(xl)-y 1);
% distance formula
d=((y 1-y2)’~2+(x 1-x2)”2)~.5;
l=s*d;
if k==100;
1=128;
end
end

function fo=force(x,xd,k,dt)
normal(1,1)=O
normal(1 ,2)=- 1
normal(2, 1)= 1
normal(2,2)=O
dx=xd(k, 1)-x(k, 1)
dy=xd(k,2)-x(k,2)
d=(dx*dx+dy*dy)~~.5
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delx( l)=dxld
delx(2)=dy/d
xn=gain(x,xd,k,t)*normal*error(x)*delx
fo=x+xn
end

function [p,dp]=fvel(a,b,c,d,dt,v,x,f,k,xO)
%returns position (2x1) and final condition (2x1)
%fmal condition =[dx dy]’
%for given velocity magnitude (v), direction (1)
%and starting position x(k) after time response dt.
%xO(2x1) contains the starting time derivatives for x and y.
%the new x location is given in p(l)
%new y locatin is given in p(2)
%new time derivatives of x and y are contained in vector dp (2x1)
%calculate gains in x and y for motion normal to the crack.
gx=~sin(f)*v;
gy~os(f)*v;
t=O:dtJlO:dt;
ic(2)=O;
ic(l)=xO(l);
% calculate points for move in x-direction
vx=lsim(a,b,c,d,gx*t,t’,ic’);
% specify initial conditions of states
ic(2)=O;
ic(l)=xO(2);
% calculate points for move in y-direction
vy=lsim(a,b,c,d,gy*t,C,ic’);
%add old position to final values of vx and vy to calculate
%new values for x and y
p(l)=vx(l l)+x(k,l);
p(2)=vy(1 l)+x(k,2);
%calculate time derivatives for x and y.
dp(l)=(vx(l l)-vx(lO))I(diJlO);
dp(2)=(vy(l l)-vy(lO))I(dtJlO);
end

function ga=gain(e,k,dt)
%calculates the velocity gain for the force directions by using a
%PID control law applied to the position error given by e(k).
%integral, derivative and proportional gains are given by
%ki, kd and kp, respectively.
ki=lO;
kd=.O;
kp=20;
%no error at time 0 when k=l so g(k)=0
gi(l)=O;
e(l)=0;
if k=2
%integrate between previous and present time step.
%multiply by error and ki for case k=2.
gi(k)=(ki*dt*.5)*e(k);
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gd=kd*e(k)/dt;
else
% if k>2, calculate gains:

e(k-l)=O;
gi(k-l)=O;
%calculate integral gain
gi(k)=(ki*dt*O.5)*(e(k)~e(k~2))+gi(k~2);
%calculated derivative gain
gd=kd*(e(k)~e(k~2))/dt;
end
%calculate proportional gain
gp=kp*e(k);
%total gains
ga=gi(k)+gd÷gp;
end

function [p,dp]=vel(a,b,c,d,dt,v,x,f,k,xO)
%returns position (2xl) and final condition (2x1)
%final condition =[dx dy]’
%for given velocity magnitude (v), direction (f)
%and starting position x(k) after time response dt.
%xO(2x1) contains the starting time derivatives for x and y.
%the new x location is given in p(l)
%new y locatin is given in p(2)
%new time derivatives of x and y are contained in vector dp (2x1)
%calculate gains in x and y for motion parallel to crack.
gx=cos(f)*v;
gy=sin(f)*v;
t=O:dtllO:dt;
%set initial conditions for states:
ic(2)=O;
ic(l)=xO(l);
%calculates points for move in x-direction.
vx=lsim(a,b,c,d,gx*t,t’,ic’);
%set initial conditions for states:
ic(2)=O;
ic(l)=xO(2);
%calculate points for move in y-direction.
vy=lsim(a,b,c,d,gy*t,t’,ic’);
%add old positions to fmal values of vx and vy to calculate new
%values for x and y
p(l)=vx(l l)+x(k,l);
p(2)=vy(l 1)+x(k,2);
%calculate time derivatives for x and y.
dp(l)=(vx(l l)-vx(lO))I(dtIlO);
dp(2)=(vy(l l)-vy(lO))/(dt/lO);
end

function a=xd(x)
%crack function
%gives y as a function of x.
%the crack is a line of the form Y=X.
%ifx<=8

Copyright 2011, AHMCT Research Center, UC Davis



100

a=x;
%else
%a=4+.5*x;
%end

function a=ixd(x)
%inverse crack function
%(x as a function of y)
%the crack is a line of the form Y=X
%ifx<=8
a=x;
%else
%a=2*(x~4);
%end

function f=ro(x,k)
%calculates the orientation of the end effector to be
%aligned with the direction of travel. Assumes no
%no dynamics for end effector orientations.
%dx=x(k, 1)-x(k-2,1);
%dy=x(k,2)-x(k-2,2);
%f=atan(dyldx);
f=.754;
end
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APPENDIX B - FORCE CONTROL WITH THE
ADEPT-3 ROBOT

.PROGRAM fs_mainO
Main program for compliant motion
;with force control
LOCAL point[j, n, vg, dt, loc[], loci, stat
i=1
n= 10000
vg =0
phiO=45
dt = 0.2
magO =1
CALL fs.initialize(stat) I
F stat <0 GOTO 50
CALL init_guard()
out[01 =0
DEVICE (2, 0, status, fs.ena.guard, 1) out[j
DEVICE (2, 0, status, fs.set.zero)

ACCEL 80,80

SPEED 70 ALWAYS

eiT[ij = 0

phi[ij = phi0

CALL gen_point.sub(point[iJ, dt, vg)

DECOMPOSE loc[1J = point[i]

TYPE Ioc[1], loc[2], loc[31, loc[61

MOVE point[ij

i=i+1

WHILEi<nDO

CALL readjs()
CALL gen_point.sub(point[i], dt, vg)

MOVE point[i}
i=i+1

TYPEi
END

50 IF stat <0 THEN
TYPE “error ocurred while initializing force sensor”
END

END.
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PROGRAM gen._point.sub(point, dt, vg)
LOCAL newx, newy, fg, xl, yl, z, loc.now, theta, x, tw, p
CALL for_law.sub(err{], i, dt, fg)
HERE loc.now
DECOMPOSE x[l] = loc.now
xl=x[l]
yl = x[2]

z=x[3]

p=x[6]

tw = 180-p-phi[i]

newx = xl+vg*STN(tw)+fg*COS(tw)

newy = yl+(~l)*vg*COS(tw)+fg*SIN(tw)

SET point = TRANS(newx,newy,z,0,180,45)

RETURN

END.

PROGRAM init_guard()
LOCAL mode, ft. dim[], lowU, up{j, vec[,], status
mode =1
ft=0
dim[0] = 3
dim[lj=0
dim[2] =0
dim[3] =0
low[0]=-l5
up{0]=15
vec[0,0] =0
CALL fs.config(mode, ft. dim[], vec[,], low[], up[], status)
IF status <0 THEN
TYPE “error configuring guarded move”
F~D
RETURN

END.

PROGRAM read_fs()
LOCAL in[j, status, mag DEVICE (2, 0, status,fs.get.force), in[j

]FstatusOGOTO100
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mag = SQRT(in[0]*in[0]+in[1j*in[1})

err[i} = mag-magO

phi[ij = ATAN2(in[1j,in[0])

100 lFstatus<OTHEN

TYPE “force system error”
END
RETURN

J~ND.
END.

PROGRAM seLfrfO
LOCAL start.loc, pt{], i, status
HERE start.loc
DECOMPOSE pt[1] = start.loc
SET out.t = TRANS (,pt[1J,pt[2],pt[3j,pt{41,pt[51,pt[6])

DEVICE (2, 0, status, fs.set.frf, 0, 1), , out.t
RETURN

JEND

PROGRAM for_law.sub(err[], i, dt, fg)
LOCAL ki, kp, kd, gd, gp, gifl
ki=-0.1
kp = -3
kd =0
gi[1]=0
err[1J=0
IFi= 1 THEN

gi[ij =

gd = kd*err[ij/dt
ELSE

gi[ij = (1ci*dt*O.5)*(err[j1+err[i_1])+gi[i~11
gd = kd*(err[ij~err[i_1j)/dt

END
gp = kp*err[iJ
fg = gi[ij+gd÷gp

RETURN
JEND
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.PROGRAM a.user_fs()

Non-AIM user initialization and utility routines for Force Sensing Module.

;* Version V1.8

;* Copyright (C) 1989 by Adept Technology, Inc.

.* *

;* The information set forth in this document is the property *

;* of Adept Technology, Inc. and is to be held in trust and *

;* confidence. Publication, duplication, disclosure, or use *

;* for any purpose not expressly authorized by Adept Tech- *

;* nology in writing is prohibited. *

.* *

;* The information in this document is subject to change *

;* without notice and should not be construed as a commitment *

;* by Adept Technology. *

.* *

;* Adept Technology makes no warranty as to the suitability *

;* of this material for use by the recipient, and assumes no *

;* responsibility for any consequences resulting from such use. *

.* *

DESCRIPTION:

This file contains Force Sensing Module routines for use in
non-AIM applications. It contains initialization code that
should be used to define global variables (“fs.initialize”), a
routine to convert force system error messages to string form
(“fs.error”), and several routines as examples of use of the
force system.

SPECIAL INSTRUCTIONS:

This package requires V+ version 8.2 or above, with the stop-
on-force option.

The user should not directly edit the routines within this
package. It is recommended that an archive copy be kept, and
that the user modify a special copy of his own. For example,
to copy this to a bard disk and make a user-modifiable copy
(named FSM.V2), the following monitor commands may be issued:

FCOPY C:USER_FS.V2 A:USER_FS.V2
;Assuming FSM disk in drive A
FCOPY C:FSM.V2 = C:USER_FS.V2

;Make customizable copy

GLOBAL ENTRY POINTS:

fs.auto.offset Clear force readings by offsetting current forces
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fs.buffer Enableldisable force signature buffer
fs.config Configure guardedlmonitor mode
fs.error Determine detailed force error code and string
fs.initialize Initialize global variables and force system
fs.read.buffer Read force buffer data

AUTHOR: John A. Tenney (890601)

CHANGES:

RETURN

The CALLs below are never executed. They are used only to cai~e the
programs included with this header to be saved with the command:

STOREP/2 USER_FS .V2 = a.user_fs

Programs added to this package should be included in the list.

CALL fs.auto.offset()

CALL fs.buffer()

CALL fs.config()

CALL fs.error()

CALL fs.initializeO

CALL fs.read.bufferO

END.

.PROGRAM fs.auto.offset(stat)

ABSTRACT: Force system utility to offset current force level.

This routine can be used before beginning a force-controlled
operation to compensate for any force drift, weight of end
effector, or any other contribution to off-zero force readings.
It zeros the current force readings by setting a force offset
equal to the opposite of the current force readings. This
offset can be removed after the end of the operation by
resetting the offsets to zero.

This routine performs a different function from that of opcode
“fs.set.zero”. This routine creates a temporary “zero” level
using one force reading, while “fs.set.zero” sets a more reliable
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and permanent “zero” level by averaging many force readings.

The advantages to “auto-offset” are that it is fast and non
permanent. Its speed allows it to be performed without slowing
down an operation, so as to cancel end-effector weight or sensor
drift while in motion. Being non-permanent, one can use a force
offset in one part of an operation and cancel it later.

INPUT PARM: None

OUTPUT PARM: stat = Status of operation. Standard V+ en~or code.

SIDE EFFECTS: Changes force readings until offset is removed.

MISC: Identical copies of this routine exist in the files
LIB_FS.V2 and USER_FS.V2.

;* Copyright (c) 1989 by Adept Technology, Inc.

AUTO force[5j, i, offset[5]

Read current offset levels.

DEVICE (2, 0, stat, fs.get.offset) , offset[]
iF stat> 0 THEN

Read current force levels.

DEVICE (2, 0, stat, fs.get.force) , force[]
IF stat> 0 THEN

Subtract current offset from current force levels to obtain offset
level that will cause current force reading to go to zero.

FOR 1=0 TO 5
offset[i] = offset[i]-force[i]
END
DEVICE (2, 0, stat, fs.set.offset, 6) offset[j

END
END

RETURN.
END

.PROGRAM fs.buffer(enable, reset, rate, wrap, record, stat)

ABSTRACT: Utility routine to enable/disable the force signature buffer.

INPUT PARM: enable = Flag: indicates whether to enable or disable the
force signature buffer
reset = Flag: indicates whether to reset the buffer before
enabling it (used only when “enable” flag is set)
rate = Real: buffer update rate in milliseconds
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(used only when “enable” flag is set)
wrap = Flag: indicates whether to allow the buffer to wrap
when full (an INPUT only when “enable” flag is set).

OUTPUT PARM: wrap = Flag: indicates whether buffer wrapped (an OUTPUT
only when “enable” flag is clear).
record = Real: when enabling, this is the first record number
in which data is being stored; when disabling, this
is the number of the last record with valid data.
stat = Status of operation. Standard V+ error code.
(Other outputs are NOT defined if error occurs.)

SIDE EFFECTS: None

MISC: Identical copies of this routine exist in the files
LIB_FS.V2 and USER_FS.V2.

;* Copyright (c) 1989 by Adept Technology, Inc.

AUTO in[3j, out[1]

IF enable THEN
Enable buffer

IF reset THEN
;Copy “reset” bit
out[0] = 1
ELSE
out[0]=0 END
IF wrap THEN
;Copy “wrap” bit
out[0J = out[0j
END
out[1] = rate
;Copy sample rate

DEVICE (2, 0, stat, fs.ena.buffer, 2) out[}, in[J
IFstat< OGOTO 100

record = in[0J
;Note start index

ELSE
Disable buffer

DEVICE (2, 0, stat, fs.dis.buffer) , mEl
IFstat<OGOTO 100

wrap = in[0j
;Note if wrap occurred

record = in[1j ;Note end index

END
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100 REI’URN
END.

PROGRAM fs.config(guarded, ft.flags, dim[], vec[,], lowerl], upper[I, stat)

ABSTRACT: Force utility routine to configure Guarded or Monitor mode.

This routine is typically executed before enabling Guarded or
Monitor mode of operation. It packages trip-condition data that
is sent (via the DEVICE instruction) to the force-sensing system.
This routine does not, however, actually enable Guarded or
Monitor mode.

iNPUT PARM: guarded = Flag indicating operating mode to configure:
TRUE (=fs.guard) => configure Guarded Mode
FALSE (=fs.monitor) => configure Monitor Mode
ft.flags = Bit array of flags indicating the types of
trip conditions to be used--torque (bit set)
or force (bit clear). First bit corresponds
to trip condition 0, second bit to condition
1, etc. For example, to set the first two
conditions to be force, second two to torque,
“ft.flags” should be set to AB 1100.
vec[,] = Array of 3-element trip vectors. vec[0,0j,
vec[0,1j, vec[0,21 contain the X, Y, and Z
coordinates of the first vector, respectively.
First array index goes from 0 to “fs.vec.num”.
dimE) = Real array of trip condition dimensions.
dim[0j contains dimension of 1st condition, etc.
If dim[i]==0, then condition “i” is ignored and
vec[i,], upper[i], and lower[ij info is unused.
upper[J = Real array of upper force or torque thresholds
lower[] = Real array of lower force or torque thresholds

OUTPUT PARM: stat = V+ error code. stat <0 implies error occurred.

SIDE EFFECTS: None

MISC: Identical copies of this routine exist in the files
LIB_FS.V2, TEST_FS.V2, and USER_FS.V2.

;* Copyright (c) 1989 by Adept Technology, Inc.

LOCAL num.args, out[j AUTO v

Ensure “out[j” array is defined, since some elements are not given
values as a result of conditional statements below.

IF NOT DEFINED(out[0]) THEN
num.args = 2+6*fs.vec.num FOR v =0 TO num.args-1
out[vJ = 0
END
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END

Load the input parameters into the array “out[j”.

out[Oj = guarded ;Load mode flag

out{1j = ft.flags ;Load trip-condition flags

FOR v =0 TO fs.vec.num-l
Load threshold data...

IF dim[vj THEN
out[v+18] = upper[vJ out[v+22} = lower[vj IF dim[v] <3 THEN

out[2+3*v] = vec[v,0J out[3+3*vj = vec[v,l] out[4+3*v] = vec[v,2]
END
END
out[v+14j = dim[vj

END

Send the information to the force system.

DEVICE (2, 0, stat, fs.set.guard, num.args) outi]

RETURN
J~ND

.PROGRAM fs.error(stat, $error)

ABSTRACT: Determines latest force system error code and string.

Issues the “fs.get.status” DEVICE instruction to obtain system
status, then returns an error string associated with that error
using a lookup table.

INPUT PARM: None

OUTPUT PARM: stat = Real variable that receives the latest force
system error. If no error occurred, “stat”

is returned unchanged.
$error = Error string associated with latest force
system error. If no error occurred, the
string is empty.

SIDE EFFECTS: None

MISC: Identical copies of this routine exist in the files LIB_FS.V2,
TEST_FS.V2, and USER_FS.V2

;* Copyright (c) 1989 by Adept Technology, Inc.

AUTO in{12j, St

$error
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