APPLICATIONS OF TELEROBOTICS TO
HIGHWAY MAINTENANCE

T.C. HSIA, A.A. Frank
G.D. Benson, and R. Cobene

AHMCT Research Report
UCD-ARR-93-06-07

Final Report of Contract
TA65Q168-MOU 91-6

June 7, 1993

Copyright 2011, AHMCT Research Center, UC Davis

Abstract

This report covers telerobotics studies from the perspective of highway maintenance automation
conducted in the UC Davis Robotics Research Laboratory over the last fourteen months. Here we
document the four project objectives. First, we explore the current field of telerobotics to
understand the underlying principles and current technology. Second, we examine the feasibility
and benefits of telerobotics application. Third, we survey an array of “off the shelf” products that
can be incorporated in a highway maintenance telerobotic system. Finally, we document the
design and development of our telerobotics testbed that demonstrates the utility and feasibility of
telerobotics for highway maintenance and to provide practical experience with the development
process. The report is concluded with a recommendation of future research and development of a
mobile telerobotic system for man-in-the-bucket maintenance operations.

Copyright 2011, AHMCT Research Center, UC Davis

Executive Summary

The main objective of this study is to investigate the applicability of telerobotics technologies to
highway maintenance automation. The investigations were carried out through the following
tasks:

1. Comprehensive literature survey of telerobotics principles, applications, and
limitations.

2. Identify highway maintenance tasks which are feasible and beneficial for
telerobotics applications. Establish telerobotic system characteristics meeting
highway maintenance requirements.

3. Complete a comprehensive survey of commercially available robotic systems and
assess their capabilities in terms of meeting the requirements for highway
maintenance automation.

4. Set up a telerobotics test bed at UCD Robotics Research Laboratory to evaluate
the functionality of, and human factors in, telerobotics manipulation. Demonstrate
the feasibility of highway maintenance by performing a task (tree trimming was
chosen) in the laboratory.

Our findings are documented in this final report. Major results of this study and our conclusions
are summarized below:

e An appropriately designed telerobotic system using currently available
technology is feasible for highway maintenance automation in a number of areas
to improve maintenance crew safety, quality of work, and efficiency.

¢ A laboratory test bed has demonstrated the capability of a teleoperated
industrial robot to perform tree trimming task. Through this study the human
factor requirement and the corresponding control software and hardware
characteristics are understood which would help us to specify the operational
features of a telerobotic system for highway maintenance.

* A set of mechanical structure parameters for a flexible highway maintenance
telerobotic system are defined. A survey of existing off-the-shelf systems shows
that none meets all these requirements. The main problem is the lack of a single
system which combines the payload capability of a construction robot and the
computer-controlled high-precision manipulability, as well as the automated
function capability, of an industrial robot.

e A highly skilled operator controlling a construction robot is capable of picking
up and placing a large structure column in a hole in the ground, or placing a

Copyright 2011, AHMCT Research Center, UC Davis

brick on a wall. However, manual operations of this type require intensive
concentration on the part of the operator and the speed of operation is generally
slow. In addition it would be extremely difficult to extend this capability to
manipulations which require the end effector to follow some complicated
trajectories while the tool is in contact with the environment. Examples of this
kind in highway maintenance tasks are sign washing and tree trimming. Those
tasks need computer control to aid the operator. An appropriately designed
special telerobotic system would provide this capability, doing the task with
greater speed and precision. Moreover the skill of the operator is less
demanding so that more workers can be trained as operators.

¢ We recommend the development of a new telerobotic system which combines
the mobility and large lifting capability of a “man-in-the-bucket” Caltrans
maintenance truck with a dexterous industrial robot as end effector, to replace
the workman for the man-in-the-bucket operations. One major technical
challenge is to design a sensor-based computer control system which can
automatically compensate for the unwanted vibrations and motions of the truck
bed during task execution to achieve accurate robotic manipulation. We
propose that the inertial stabilization concept be applied to stabilize the base of
the end effector robot. Another technical problem is how to intelligently control
the motions of the robot such that the vehicle will not tip over when lifting a
heavy load.

Copyright 2011, AHMCT Research Center, UC Davis

Table of Contents

Executive Summary eeeeeamreeesasieissesteessistttsssssnratntaraessnrareeesesesesssrbasatesssarareennsnte 1
1 Introduction................... ressresssssseesnsaesaseanans 3
2 Telerobotics Technology ceeresuressaieesaeetisbee et s et et s e e s e ne e st areseesn st seenentesa st erasnarareraaes ansnnn 6
2.1 Overview of Telerobotics....... . eesererieette et tsesssnasssearresesessatasassntasnrerensnranane 6
2.2 Telerobotic Issues........curunn..n. ceeeesssseressenaces 7
2.2.1 Modes Of OPETAOMNccovrererererrrereesasesesesessnsenesessassssssassmesensasrssssosssssssnsses 7
2.2.2 CONMOl MELNOMS......ccevererererrerrerereeresssesssssessonsacensecessnssssssssssssssssesesessssssesssses 9
2.2.2.1 Joint-to-Joint Mappmg Vvs. Cartesmn Mappmg 9
2.2.2.2 Rate Control vs. Position Control . 10
2.2.2.3 Bilateral Control (Force Reflection) 10
2.2.3 Input Devices.....cceevmrrerrerrerernvaenns ereseeessasanensesnennaraasaens .11
2.2.3.1 JOYSHCKS.cevreerrrorenrrrrerrreseeressoresssssssesesseeesessmesaeeeseesesasessssssassensans 11
2.2.3.2 Force/Torque BallS.......ccceueeeeererueeersressssnseresesesesssensssssesesessssnesonse 11
2.2.3.3 MiNIAtre AIMS ..eeeveverueencecserseesesessssacoscssrssssesrosessessasessssssensessnsas 12
2.2.4 Remote Manipulators - reresaersasennsnnes 12
2.2.5 ViSUl FEEADACKcuciriucerccnnerisrnisaeirereresnessassessssisssensssssssssesssssesssossssssosansen 12
3 Telerobotics for Highway MaiNtenanCec.c.vvueeuereriinesesscesecsesssssesessasnssessssessessenssssssessnssssesons 14
3.1 Feasibilityccovrverrrervenenene reereesseseisatesatete st aesarenrasaarsaassasannsnaseanease .15
3.2 BENEfilS.ucuriseeeetereeurereerereenrenesesnessssessssesesssscensnssssnnes .15
3.3 The Ideal Telerobotic System cerereessrssesasassanaesasaeans 16
3.3.1 Controllers and SOftwareeeeveveeererecreemonnereans .16
3.3.2 MANIPUIALOTS c...ceeerreeeririrresrennrerenssnessseseassssesesssssesessosessassesssasasnssenssssssssesens 16
3.3.3 End EffeCtOrS....cuuemrierereeeeeseeeseeesesensesassessenas 19
4 A Survey of Commercially AVailable SYSIEIMS.evrerreuerecrieiaraseeeesssaseressessssnsnssssensessassssessssssas 20
4.1 Commercially Available Telerobotic SYSIEmSeeveeeeeeemereesemeeens 20
4.1.1 Aerospace/Marine Systems ... 20
4.1.2 Industrial Systems 21
4.1.3 COnSrucCtion SYSIEIMS ...c..ecvuereererererrerreereeseeseessssessrossosesssesensnsesens 22
4.2 Survey Evaluationceeeveemveeeeeeneninvesenesenes 23
5 The Telerobotics TESIDEA......cvevurrerrererererererererenereeseseesessecssnensarassesaes 28
5.1 System COnfigUration.......cccceerereeernserireeersnivsessseessceceneensssssssnsassasns 28
5.2 System Hardware vererensaninrens 30
5.2.1 The Schilling Input DEVICE ...cvirinrrrriinesineenessaenssnsntesssaessenessessssarossssassssssssens 30
5.2.2 The Host Computer eeeeteesetranneaasassaraseaessanesnseresnessssaes 31
5.2.3 The Unimate Controller and Puma 560.......... 32
5.2.4 The End Effectors cesreesses ettt e s oo sue s st eresaneseranesessesaeseserestassras 33
5.2.4.1 The Pick-and-Place Gripper...... 34
5.2.4.2 THE CHPPET......ccoueeemrereenecerrensierensesesssasesesssssssesseneasssessesessssesenes 36
5.3 System Software . 38
5.3.1 The Unimate Programs........ccccureersreererrsneseesercessesneons 38
5.3.2 The HoSt PTOGIrams.........ccoivreeerreereresrsesssessasssesnecs ..38
5.3.3 Using the Programscceceevrureene 40
5.4 Testbed Demonstration...........eeveeveevercereevennes 41
6 Conclusions and Future Researchc.oeveveveueveerenennnns 43
BIDHOGTAPNYcovieeecerreueenrarnreresernraesessaeseneesssisssssssessassessessesessnsnsansessesaes 47
Appendix A Commercially Available Systems Survey Data.............. . w51
Appendix B Puma End Effector Working DIAWINESceeeeeeucuceeeeeenreesassesseseensassessssesssasssnns .52
ADPENAiX C SOUTCE COUE.....cocevemrmrrerrrereiereerieresenesersssessse et ssssssssssnsssesssssssssssssssssesssssssssssssssessnsssses 53
iv

Copyright 2011, AHMCT Research Center, UC Davis

List of Figures

1.1 A TEleTODOHC SYSIEM...uuiieiiruescnsicsssusserasrsaraeaseesssnsaneseesssssrecasensesarasssnassensesseseesmesssasaassmssarsssnsesasnes 3

1.2 Basic TelerobOtiC SYSIEM SIUCHITEcovueerrrcrreerestesrerserressaresesaresesasasssserasnsesserasssenssnssnsanssrnssnesses 4

1.3 MObile TelerODOtC SYSIEIM....cceeirieeerrrreeereersessssesssssssnssssesssssassssssessessosessasssssasssensesessennessasssessassne 4

2.1 TelerObOC INETACHON .c.ceoueericsenraressrssrssrsnescesenmsssersonsessensesssesassrasasssersessesnssnssssassssaneensesssssesnsenns 8

2.1 The Force/Torque Ball.........cocunerrrereeccresaenressereesssersessesssesssscssssanssssssssserasssessesssesasessassessasasasasnssans 12
4.1 SyStem COIMPATISOM covvueresnriserssnscsessssseasasssnssossssssssssssstossosasessstsssssasssssesoranatossosassssassesssssssssssssssosasen 26
4.2 Average Payload to Weight RAHO......cccooerrericrcecceceriennensncesnesanrsnsssssssassosssanesasasensscsasenseesnennsnns 27
5.1 System Configuration 29
5.2 The Schilling Arm 30
5.3 The Puma 560 .32
5.4 AlgNMENt PIODIEM..ciccuiriiisciereirnrenesessessessenssessessnsssessnesssscesassssensanssessassnsasssssasssessesnsssesssanssssssns 33
5.5 The Pick-and-PlaCe GIIPPEr ...cccccervecriererseeieensrssssssersessesssessssesssmasasesssssastasssssssessassassessssssasassassnses 35
5.6 THe CLIDPETeeveeeeennenrseressncnsesssssessessssssssssssssssnessassesssassrsssessssssasas 37
6.1 Hydrodynamic Fluid Drive System.............. .44
6.2 Hydrostatic Fluid Drive System..... 45
6.3 Intelligent PlatfOrm SYSIEM...cieiceeiieresererreessrressessersessnsaesssasssessessessssssssssssssessessossosessessessasanssssss 45
6.4 Intelligent Platform HIUSIAtON.coceemecrreeecrrerereseessssessssasassssessssensesenseses 46

Copyright 2011, AHMCT Research Center, UC Davis

List of Tables |

4.1 Telerobotic Systems Survey Data..........c..c........
5.1 Schilling Arm Joint Rangescccceeeeceeevarennn.

.......................

Copyright 2011, AHMCT Research Center, UC Davis

.....

Disclosure/Disclaimer

The research reported herein was performed as part of the Advanced Highway Maintenance and
Construction Technology Program (AHMCT), within the Department of Electrical and Computer
Engineering at the University of California, Davis and the Division of New Technology and
Materials Research at the California Department of Transportation. It is evolutionary and
voluntary. It is a cooperative venture of local, state and federal governments and universities.

The contents of this report reflect the views of the authors who are responsible for the facts and the
accuracy of the data presented herein. The contents do not necessarily reflect the official views or
policies of the STATE OF CALIFORNIA or the FEDERAL HIGHWAY ADMINISTRATION and
~ the UNIVERSITY OF CALIFORNIA. This report does not constitute a standard, specification, or

regulation.

The contractor is free to copyright material , including interim reports and final reports, developed
under the contract with the provision that Caltrans, and the FHWA reserve a royalty-free, non-
exclusive and irrevocable license to reproduce, publish or otherwise use, and to authorize others to
use, the work for government purposes.

Copyright 2011, AHMCT Research Center, UC Davis

Acknowledgments

We wish to acknowledge the generous donation of a miniature control arm by Schilling
Development Inc. of Davis California. Their technical assistance on telerobotic systems
technology is also appreciated.

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 1
Introduction

Caltrans provides many services to our state's roadway system, including construction and
maintenance. Caltrans highway maintenance is undoubtedly crucial in keeping our roads safe,
efficient, and clean. As the state grows so do the demands on transportation, thereby increasing
the need for effective highway maintenance. Highway maintenance is time consuming and in
many cases it is dangerous to the maintenance crew despite all the precautions currently taken to
ensure worker safety. Clearly, increasing highway maintenance efficiency and worker safety are
two worthy pursuits. A relatively new technology called telerobotics appears to have great
promise to improve current highway maintenance tasks both in terms of safety and efficiency.
These objectives can be accomplished by removing workers from the work site, such as man-in-
the-bucket operations, and replacing them by remotely controlled robot manipulators. Our
primary goal is to explore telerobotics from the perspective of highway maintenance. By
determining both the capabilities and limitations of telerobotics, we can ascertain which highway
maintenance tasks are appropriate for this technology.

The underlying principle of telerobotics is to enhance and extend the capabilities of a human
operator to a remote work site. A telerobotic system will typically consist of a local control
station for human input, a controlling computer, and a remote manipulator (see Figure 1.1). By
extending human dexterity to a remote environment, we can perform tasks too dangerous for
direct human interaction and too complex for an automated robot. Thus we want to take
advantage of both the human mind to make quick decisions based on complex sensory
information and computer efficiency to perform repetitive calculations.

ot

Operator Control ~ Computer/ Remote
Station Controller Manipulator

Figure 1.1 A Telerobotic System

Although the telerobotic concept is straightforward, applications research of this technology is
rather limited. The largest amount of research in telerobotics is found in space telerobotics
(NASA) and undersea applications. In space telerobotics the goal is to provide earth-based
human control of remote space tasks (i.e. satellite repair and retrieval). Similarly, undersea

Copyright 2011, AHMCT Research Center, UC Davis

telerobotics provides for such tasks as deep-sea exploration, sunken ship retrieval, and oil line
repair and construction. More recently, telerobotics is used for nuclear waste cleanup and
removal. Each of these applications share two important factors. First, the task environment for
each application is either unsuitable or extremely dangerous for humans. Second, the tasks are
unstructured. Humans can adapt to new situations quickly, whereas computer simulated
intelligence (artificial intelligence) is still quite restrictive to be applied. Therefore, these systems
strive to relay an accurate picture of the remote environment to allow the operator to make
informed control decisions. The systems also provide a means for human input to allow the
operator to carry out manipulation tasks. Figure 1.2 illustrates the concept of this transfer of
information.

, Remots
peratol Input Devica Manupulator Remots
o r and Feedback and léensopurs Environment

Figure 1.2 Basic Telerobotic System Structure

Many highway maintenance tasks are both dangerous and highly unstructured. Using these
criteria it seems that highway maintenance tasks are well suited for telerobotics. As an example,
consider the task of roadside tree trimming and maintenance. Currently, many trees are trimmed
by a team with usually two or more workers. The team coordinates the tree maintenance process
by having someone on the ground directing a worker in a bucket elevated by a large hydraulic
crane (depending on the size of the tree). The worker in the bucket controls the position of the
crane and has the necessary tools to cut and remove branches. Because the tree is located
randomly relative to the roadside a safety region is formed by using cones to direct traffic around
the work site. This safety zone is usually quite large to provide maximum worker and traffic
safety. As a result traffic congestion is sometimes created.

Input Device Mobile Remote
Operator ani Feedback Platform Environment

Figure 1.3 Mobile Telerobotic System

Now consider a telerobotic highway maintenance vehicle to perform the same tree trimming task
just described. For our purposes we will replace the hydraulic crane with an articulated robot arm
and replace the man-in-the-bucket with a device to cut and retrieve branches. The hydraulic crane
and robot arm will take the place of the remote manipulator, changing Figure 1.2 to Figure 1.3.
The robot arm and vehicle will be supplied with video cameras to provide vision to the operator in
the cab. Instead of a standard truck cab, we add television monitors and an input device (i.e. a
joystick) for controlling the robot arm. The worker uses the monitors to "see" the tree and uses

Copyright 2011, AHMCT Research Center, UC Davis

the input device to control the cutting device. Our new tree maintenance vehicle would then
require only one worker rather than a team, thus the time due to coordination is eliminated.
Because the driver and operator are inside the vehicle at all times a much smaller safety zone is
required, thus reducing the safety zone setup time and lessening the disturbance of traffic flow.
Most importantly, nobody is physically located on the road. Although it is a highly simplified
description, this example provides the setting and motivation for the application of telerobotics to
highway maintenance.

Our research objective during this period was to assess the feasibility of applying the telerobotics
concept and technology to highway maintenance. To accomplish this we have the following three
major tasks. First, we conduct an in depth survey of the current field of telerobotics to
understand the underlying principles and the present state of technology. Second, we identify
highway maintenance operations which are feasible and beneficial for telerobotics application.
Third, we survey an array of "off the shelf" products that can be incorporated in a highway
maintenance telerobotic system. Finally, we document the design and development of our
telerobotics testbed. The testbed serves to demonstrate the utility of telerobotics and to provide
practical experience with the development process. Based on these experiences,
recommendations for future research and development of highway maintenance telerobotic
systems are outlined.

The report is structured as follows. Thus far we have given a simplified definition of a telerobotic
system. Chapter 2 provides a detailed description of telerobotics and related concepts. Current
areas of research are also explored. In chapter 3 we further examine the issues involved
regarding applications of telerobotics to highway maintenance leading to the development of the
requirements for an "ideal" highway maintenance system. Using the requirements developed in
chapter 3 as guide we survey some of the current robotic and manually operated mechanical
systems commercially available in chapter 4. The laboratory testbed developed to acquire a
practical understanding of telerobotics is described in chapter 5. Finally, in chapter 6 we present
some concluding remarks and directions for future research and development.

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 2
Telerobotics Technology

The term "telerobotics” encompasses many ideas, therefore it can lead to ambiguity. Because
telerobotics is relatively new, this ambiguity is compounded. This chapter attempts to clear up
any confusion over the field of telerobotics. We discuss many related concepts and present some
of the current research in the field. The information expounded here will form a basis for the
remaining chapters.

In Section 2.1 we define telerobotics and related fields. We present the various facets of a
telerobotic system in Section 2.2.

2.1 Overview of Telerobotics

Telerobotics is a relatively new field that has stemmed from research in robotics and
teleoperation. The field of robotics is also vast, but holds to a central theme; to automate a task
or process normally done by humans. Thus we have robots that can paint cars, mix chemicals,
and assemble parts, to name a few. These examples require a human expert to preprogram the
robot for the desired task. If all goes well the task will be completed successfully. If for some
reason there is a problem (i.e. a car falls of the assembly line) then a human operator will have to
intervene. Although robots are equipped with sensors and are controlled by powerful computers,
a robotic system lacks the human ability to reason. Therefore we find that standard industrial
robots are limited to repetitive and mundane tasks.

Humans are still required to perform tasks that are highly unstructured. There are many tasks that
are both unstructured and hazardous to humans. For these tasks teleoperation was developed.
Unlike telerobotics, teleoperation has been in use for quite some time, dating back to 1947
[JC71]. Sheridan [She88a] defines teleoperation as an extension of a person's sensing and
manipulating capability to a remote location. A teleoperator typically consists of an input device,
a remote manipulator, and some type of interconnection. Early teleoperators were mechanically
coupled, but more recent teleoperation systems are electronically connected with local and remote
controlling computers. In most cases teleoperators are used to take advantage of human dexterity
in an environment that is unsafe or otherwise inaccessible.

Successful teleoperation is realized through telepresence. Telepresence refers to a system
characteristic in which appropriate sensor feedback is presented in an efficient way so that a
human operator feels physically present at the remote work site. The closer the local environment
comes to imitating the remote environment the better a human operator will be able to perform
remote tasks. Telepresence is achieved by various techniques. A visual display allows an
operator to see the task at hand. Bilateral control (force reflection at the input device) allows the
operator to feel proportionally similar forces that are imposed on the remote manipulator.
Teletouch, remote sensing of force patterns applied to the manipulator, and teleproprioception,

Copyright 2011, AHMCT Research Center, UC Davis

awareness of the manipulator position, are two other attributes of telepresence. For a complete
discussion of telepresence see [WR88] and [She88b].

Telerobotics, also referred to as supervisory control, consists of both traded and shared control.
In a traded mode an operator can control a manipulator manually, as in teleoperation, but also
command the manipulator to perform autonomous tasks. In a shared mode the controlling
computer, also referred to as the host computer, may coordinate some aspects of a task while the
human operator controls other aspects of the same task. For example the controlling computer
could be programmed to apply a specific force to a surface, while the operator controls the
position along the surface. This configuration allows the human operator to solve analytically
complex problems while letting the controlling computer perform computationally complex
problems and mundane tasks (i.e. straight-line movements). The goal is to maximize the utility of
both the operator and the controlling computer.

So far we have interpreted the telerobot as an extension of the human "arm". This makes sense
because most complicated tasks are done with the arms and hands. Other researches, however,
use telerobotics to describe remotely controlled land and space vehicles as well. These devices
share many of the same ideas as the remote arm, but the implementation techniques used are quite
different. Our approach to highway maintenance automation uses the arm paradigm. For these
reasons we will only consider the telerobotic arm for the rest of this report.

2.2 Telerobotic Issues

A telerobotic system can have several attributes including control methods and physical
components. This section describes the attributes of a telerobotic system. It is important to
remember that the goal of a telerobotic system is to allow a human to complete a task quickly and
efficiently in a remote location. To do so the human must have sufficient feedback (telepresence)
to make good control decisions. To carry out these decisions the operator must also have a
means of controlling the remote manipulator. Thus our goal as a telerobotic designer is to
improve both sensory feedback and operator input. Research in the areas that follow attempt to
work toward this goal.

2.2.1 Modes of Operation

A telerobotic system consists of both traded and shared control, therefore a reasonable system
will have different modes of operation and a method to switch between modes. There are three
basic modes of operation: autonomous, manual, and shared.

Autonomous mode is similar to a standard robotic system. The remote arm carries out some
preprogrammed task possibly based on the current sensory input. In autonomous mode the
operator can be a supervisor to the task, allowed to intervene at any time to stop the operation or
to switch to manual mode. Although we have stated that telerobotics is best suited for

Copyright 2011, AHMCT Research Center, UC Davis

unstructured environments, autonomous mode allows the operator to take advantage of any
regularity in a task.

Manual mode is identical to teleoperation. Essentially the operator has total control of the
remote arm with virtually no assistance from the controlling computer except to transmit the
desired motions. In a telerobotic system the manual mode might also have a teach function. This
allows the operator to program tasks to be used in autonomous mode.

The most complex mode in a telerobotic system is shared mode. In shared mode some aspects of
the task are controlled by the operator while other aspects are handled by the controlling
computer. The ratio of computer control to human control is variable. The operator may only
indicate when to start and stop, thus the computer has more control. In contrast, the operator
may control the position of the end effector, while the computer simply enforces a safety zone for
the end effector.

These modes of operation are essential to any telerobotic system, although their degree of
implementation may vary. Using these definitions we can pictorially represent the different modes
and the interaction of the operator, machine (host computer plus the remote arm), and the
environment [Wam88]. Figures 2.1 illustrates the basic telerobotic paradigm.

Machine

Operator | Environment

Figure 2.1 Telerobotic Interaction

The operator will perform tasks in the remote environment through the host computer. In Figure
2.1 the machine represents both the host computer and the remote arm. The environment (or
task space) is directly affected by the machine. Although the operator may get direct feedback
(visual) from the environment, he or she cannot directly interact with the task. It is easy to see
that all three modes of operation (autonomous, manual, and shared) can be applied to this
configuration. Next, we will concentrate on more specific aspects of a telerobotic system.

Copyright 2011, AHMCT Research Center, UC Davis

2.2.2 Control Methods

A telerobotic system can be "controlled” in many different ways. By control we mean the way the
host computer interprets and processes operator input that determines the position and actions of
the remote arm. Therefore there are two important aspects of a control method; the way the
operator perceives to affect the remote arm and the way the host computer actually processes
input and output. This section covers three important issues related to telerobotic control.

It should be noted that our use of the word "control” is somewhat broader than that used in
robotics texts [Fu87, Cra87]. Control in the strict sense refers to the low-level algorithms based
on control theory that actuate the motors in the robot. We refer to control as the combination of
low-level algorithms and the high-level operator interface. Therefore control involves the host
computer as well as the human operator.

2.2.2.1 Joint-to-Joint Mapping vs. Cartesian Mapping

To position the remote arm the operator will manipulate an input device. The input device can be
of many different forms (see section 2.2.3). If the input device is a miniature version of the
remote arm then we can either use joint-to-joint mapping or Cartesian mapping.

In joint-to-joint mapping the movement of a joint on the input devices causes a similar movement
on the remote arm. If we use a one-to-one mapping then a movement of one degree on a given
joint of the input device will move the corresponding joint on the remote arm one degree. This
mode is easy to implement and requires little operator training time. If the input device and the
remote arm are proportional then movements in the operator space will produce exactly
proportional movements in the remote arm space.

Having a proportional arm as the input device is the ideal situation, unfortunately they are hard to
find. In many cases the remote arm geometry could require the proportional input device to be
physically awkward. If the input device is not proportional to the remote arm then although joint
movements will be proportional, the end effector positions will not correspond. If the input
device and the remote arm are relatively similar then this effect may not be a problem. The
operator can adapt to the inconsistencies.

Cartesian mapping solves this problem by mapping the movements of the input device end
effector to the remote arm end effector. Even if the two arms are not proportional, the Cartesian
positions will directly correspond. For example we can have 1 mm to 1 cm mapping. If the input
device moves 1 mm in the x-direction then the remote arm will move 1 cm in the x-direction.

By using Cartesian mapping we eliminate the need for proportional arms. However Cartesian
mapping is more complicated to implement and incurs some problems not found in joint-to-joint
mapping. First, we must now determine the Cartesian position of the input device instead of the
joint positions. This requires that we solve the forward kinematics for the input device [Fu87,
Cra87]. Solving the kinematics is not difficult, but it does add computational overhead. Second,

Copyright 2011, AHMCT Research Center, UC Davis

we must control the remote arm in Cartesian mode which introduces the problem of singularities.
To move the remote arm the joint motors must be actuated. We want to command a Cartesian
position and not joint positions. To do so we must solve the inverse kinematics to obtain the joint
positions that correspond to the given Cartesian position [Fu87, Cra87]. When solving the
inverse kinematics we might reach a singularity. A singularity is a position that either the remote
arm cannot physically reach or one that produces an infinite number of solutions. If a singularity
is reached then the remote arm must stop and be guided out of the position.

2.2.2.2 Rate Control vs. Position Control

Whether we use joint-to-joint mapping or Cartesian mapping we need to specify how the input
device will "move" the remote arm. There two basic methods of control: rate control and
position control.

Under rate control, movement of the input device cause a change in velocity (direction and speed)
of the remote arm. If we are using Cartesian mapping and joystick for input then a small
displacement of the joystick in the x-direction will can the remote arm to move at a low speed in
the x-direction. A larger displacement of the joystick will increase the rate. Rate control can be
used both in joint-to-joint mapping and Cartesian mapping along with many different input
devices.

Position control allows the operator to specify the location of the remote arm with the input
device without regard to speed. Position control is ideal for miniature arms and joysticks. When
the operator moves the input device to a new position the remote arm immediately tracks the
movement. If the input device is moved to quickly then the remote may have a velocity limit
which will cause the remote arm to lag behind the input device.

Both rate control and position control have been well studied. In [KTES87] position control and
rate control are compared. Experiments were conducted to acquire the completion times of
simple tasks using both control methods. The study determined that in most cases position
control produced better results.

2.2.2.3 Bilateral Control (Force Reflection)

A very popular method of control is bilateral control, also called force reflection. Using this
control method the operator feels the contact forces of the remote manipulator and its
environment. If the remote arm presses against a wall, the operator will feel a proportion force in
the input device. This method increases the level of telepresence by giving the operator another
sense of the task environment. Force reflection is ideal for many tasks, but it is also complicated
to implement and very expensive. Under force reflection the host computer must not only control
the remote arm, but the input device as well. If the input device is a miniature arm, each joint will
have a motor, thus making it a small robot arm.

10
Copyright 2011, AHMCT Research Center, UC Davis

There is much research in the area of force reflection, both in theory and implementation. See
[AS89, HANS9] for more detailed information. Force reflective telerobotic systems are mostly
limited to research laboratories.

2.2.3 Input Devices

Although the operator will interact with a telerobotic system through the host computer (i.e.
keyboard) most teleoperation (manual control) will be done with the input device. Because the
input device the is the primary interface tool, its design is critical. There exist many different
input devices, both commercially available and custom made. In [FDS90] Fischer ez al. present
criteria for specification and design of input devices for teleoperation. In this section we look at
three popular devices used for teleoperation: the joystick, the force/torque ball, and the miniature
arm.

2.2.3.1 Joysticks

The joystick is a device that has many uses; from airplane control to video games. In the most
general case a joystick consists of a base, a stick for grasping, and possibly some buttons. Some
joysticks will only span two dimensions, while other will span three dimensions. Joysticks can
usually operate in one of two modes. In the first mode the joystick returns to a "center" position
when released. Thus the user will feel a force that is opposite the direction of movement. When
used for teleoperation this mode is useful for rate control (see Section 2.2.2.2). In the second
mode of operation the joystick maintains the current position. In this mode the user can position
the joystick in space and it will remain there until it is moved again. This mode is applicable to
position control using Cartesian mapping (see Section 2.2.2.1 and Section 2.2.2.2)

2.2.3.2 Force/Torque Balls

Force/torque balls offer another type of input for teleoperation. The force/torque ball is simply a
ball, the size of an orange, mounted on a base (see Figure 2.1). The base may also have some
buttons for input. When the ball is grasped it can sense forces in the X, y, and z directions, as well
as moments around each axis. This input device serves well for rate control using Cartesian
mapping (see Section 2.2.2.1 and Section 2.2.23.2). As the user pushes the ball in the x-
direction, the remote manipulator will also move in the x-direction. The greater the force applied
to the ball the greater the speed of the remote arm. The torque input from the ball is used to
determine the orientation of the end effector.

11
Copyright 2011, AHMCT Research Center, UC Davis

Figure 2.1 The Force/Torque Ball

2.2.3.3 Miniature Arms

The miniature arm is a useful device for teleoperation. In this case the input device is simply a
small version of the remote manipulator. All movements of the miniature arm will correspond to
similar movements in the remote arm. This device is preferred over others because it is very easy
to use. The operator simply positions the miniature arm based on the current position of the
remote arm, whether it is viewed directly or through television monitors. The miniature arm can
be used for both joint-to-joint mapping and Cartesian mapping. Although the miniature arm could
be adapted to work with rate control, it is ideal to use it with position control.

2.2.4 Remote Manipulators

The remote manipulator (or remote arm) is the device that interacts with the environment. Under
teleoperation the remote manipulator becomes an extension of the operator. Along with many
other properties the remote arm should be articulate, that is it should be able to realize several
configurations. The remote arm should also have the appropriate reach and payload capacity for
the task requirements. These aspects and more are discussed thoroughly in Chapter 3.

2.2.5 Visual Feedback

Visual feedback is an import element of a telerobotic system. If the operator cannot directly see
the work space, visual information allows the operator to view the environment. In this situation
the operator will make all movements and control decisions based on the visual feedback. It is
important that the visual feedback provide an accurate representation of the task space and that it
is presented in real time. The less accurate the visual feedback the slower the operator will be
able to complete tasks [KS89]. If the visual information is delayed in some way the operator will
have a difficulty compensating for the time delay [BKV90].

Visual feedback can be as simple as a closed-circuit television monitor connected to a remote
camera. One camera/monitor pair can be used to view the task environment from a specific

12
Copyright 2011, AHMCT Research Center, UC Davis

perspective. Several camera/monitor pairs can be used to obtain a variety of perspectives. In
some cases it is desirable to attach the camera to the end of the remote manipulator to directly
view the objects affected under teleoperation. Another option is provide another remote arm with
a camera as the end-effector. This allows one camera/monitor pair to view the task from several
different positions.

Using a single camera/monitor only provides monocular vision, thus it lacks depth perception.
More sophisticated vision systems provide binocular vision by using two cameras that are directed
at the environment in slightly different configurations [KS89]. The output signals from the
cameras are fed back to either two monitors or a special binocular vision headset. This method
allows the operator to perceive depth and thus provides a more accurate representation to the
task environment.

13
Copyright 2011, AHMCT Research Center, UC Davis

Chapter 3
Telerobotics for Highway Maintenance

The main objective of this study is to investigate the applicability of telerobotics technology to
highway maintenance automation, with the goal of performing the duties now performed by
people on the road quicker, better, and with people removed from the hazards of the road. One
important issue to be addressed is to identify specific areas within the scope of the Caltrans
highway maintenance program in which it would be feasible and beneficial to apply telerobotics
technology. A survey of Caltrans’ Highway Maintenance Manual has led to the identification of
the following areas of interest. The estimated maintenance costs in some areas are also listed
based on data taken from Caltrans’ maintenance budget of fiscal year 1990/91.

1. Roadside tree/bush trimming and brush removal ($17.4M for landscaped category and
$7.5M for non-landscaped category).

2. Selective herbicide spraying for long range (up to 30 ft. reach) roadside weed control
($11.5M for landscaped weed control and $10.9M for non-landscaped weed control).

3. Sign and guide marker washing.

4. Safe pickup and disposal (sweeping, vacuuming, collecting, transporting) of hazardous
material in hazardous spill clean-up.

The above list represents maintenance tasks which are the most promising candidates for
telerobotics application. Other areas of potential can be identified later as we gain more
experience with telerobotics technology. The basic capability that telerobotics can deliver in all

these cases is that maintenance tasks can be accomplished by one worker in the cab through
robotic arm teleoperation.

Many important technical problems need to be addressed. They include the following:
1. vehicle motion and dynamics;

2. lift capability;

3. precision capability; and

4. user control and human factors.

14
Copyright 2011, AHMCT Research Center, UC Davis

3.1 Feasibility

A fundamental issue in this research is: what is the feasibility of a telerobotics system for highway
maintenance at this time? To answer such a question, an assessment of the current "state of the
art" technology capabilities relative to the requirements of a highway maintenance system is
necessary.

As cited later in this section, industrial robotics have evolved for the past 31 years and the success
has been impressive. Autonomous industrial robots operate for 24 hours at full capacity for
thousands of hours before any maintenance on the system is needed. Therefore the reliability in
robots has proven to be excellent. Similarly, through the fields of space and sea applications,
development of fully functional and environmentally resistant robotic/telerobotic systems have
been successful. The current level of technology in controllers and software for a telerobotic
system have also evolved into user friendly and responsive systems.

The issue of safety is also a major concern of robotic systems development history. Since the
beginnings of robotics, schemes for "safe" work areas has been seriously addressed. The idea of a
user defined safe workspace can now be realized through innovative software means.
Development of a functional and safe telerobotic system is essentially a reality.

3.2 Benefits

The most important aspect of telerobotics for highway maintenance is "getting people off the
road" and into a much safer position. By appropriate highway maintenance automation, not only
are lives saved but economic benefits can also be realized.

With automation, improvement of task quality is also possible. By allowing the operator of a
highway maintenance system to focus on higher functions of maintenance, repetitive operations by
robotics can be achieved in a much more accurate and consistent manner. The speed of
maintenance operations can also be improved because the operator can focus on the "big picture”,
of a maintenance task, and let the telerobotic system perform repetitive work at full speed.

In conclusion improved safety, quality, economics, and speed of highway maintenance operations
are feasible when applying a fully functional telerobotics system. In order to realize a telerobotic
system for highway maintenance, the basic characteristics of an "ideal" system must be
determined. These characteristics are defined and analyzed below.

15
Copyright 2011, AHMCT Research Center, UC Davis

3.3 The Ideal Telerobotic System

3.3.1 Controllers and Software

At the crux of a telerobotic system lies the controller and corresponding software. The controller
is essentially the computer that coordinates the entire telerobotic system. The controller handles
everything from high-level processing to low-level processing. In many systems there will be
more than one controller (computer). At the lowest level the controller contains a tight control
loop that determines the position and movement of the remote manipulator. The low-level also
includes the ability to read the signals from the input device and the force sensors. At the higher
levels the controller will execute operator commands and provide a user interface.

The controller is basically a computer, therefore high-speed processing and large amounts of
memory are desirable in the ideal system. The controlling computer should be able to interface
with all of the elements of the telerobotic system, thus it best to choose an architecture that
supports a large amount of "off the shelf" interface products. The most popular computer bus
today for real-time interfacing is the VME bus. If the system you want to use does not have a
VME bus, adapter cards are available for many bus types.

The operating system should also be suited for interfacing and real-time processing. Thus is it
desirable to use a real-time operating system such as VxWorks or QNX. All of the standard
software development tools are valuable to any software project. Hardware debuggers may also
be useful during the design phase of a telerobotic system.

Most commercially available manipulators also come with a proprietary controller system. These
controllers usually provide mechanisms to program the arm to carry various tasks. Unfortunately
most of the systems are designed to simply repeat programmed tasks. For teleoperation it is
necessary to have direct access to the low-level controller so that the trajectory of the remote arm
can be updated in real-time to follow the position, speed and acceleration of the input device.
When choosing a manipulator a major consideration will be whether or not it allows an external
computer to have access to the low-level control loop. If the manipulator does not allow access
to the low-level control loop or does not allow real-time path modification, then the controller
will have to be replaced [BH88].

3.3.2 Manipulators

In this section the mechanical parameters for the structural design of the ideal telerobotic
manipulator is discussed. Various basic coordinate frames and arms with different degrees of
freedom are used for robotic manipulators. Their selection in the design stage is dictated by
specifications on the basic parameters of the robot. In this case, the ideal system, the robot is
subject to a broad range of specifications. Therefore, the specifications are somewhat general but
do define the necessary properties of the mechanical manipulator for this ideal situation.

16
Copyright 2011, AHMCT Research Center, UC Davis

Before discussing the principal structural parameters of the ideal highway maintenance
manipulator, it is important to describe eight basic factors governing the mechanical structure:
[Riv87, Sto85]

Payload

Mobility, i.e., number of degrees of freedom (DOF)
Workspace

Agility (effective speeds of execution of prescribed motions)
Accuracy and repeatability of positioning in various DOF
Structural stiffness (compliance's) payload to weight ratio
Environmental resistance

Economics (cost, reliability, maintainability, etc.)

PN AR

Many of these parameters are interrelated, depending on the point at which they are being defined.
However, some standards need to be set for the ideal manipulator and these parameters generally
describe it.

The rated Payload is the maximum mass the robot can handle in any configuration of its linkages.
Of course, some orientations allow the robots payload to be greater than others but with different
orientations it is more appropriate to discuss torques on the manipulator instead of the masses.
However, mass is a basic parameter that adequately describes or quantifies a robots payload
capabilities. For the most general description, it is necessary to define a high value for the
payload, thereby ensuring that the ideal system is flexible and will not be limited in certain
applications.

For the four candidate application areas of telerobotics mentioned earlier, the typical payload
would be roughly equivalent to that of a man-in-the-bucket system of a maintenance truck. That
is, a payload capacity at the range of 400 Ibs. would be necessary.

The Mobility of a robot is determined by the number of DOF which can be performed by all of its
links. It should be noted that the end effector has its own degrees of freedom but are omitted
when describing manipulators. A telerobotic system needs at least 6 DOF, which is often found in
industrial robots, to ensure full articulation potential of a system.

The Workspace of the manipulator is the space composed of all points which can be reached by
its arm end or some point on its wrist but not by the end effector. The reason for such a standard
is the workspace will change depending on the size and shape of the end effector. The volume
and shape of the workspace are very important for this application since they determine
capabilities of the robot. The use of a robot might be severely limited for some applications since
the workspace usually has voids or "dead zones” which cannot be reached by the robot.
Therefore, the workspace should be large enough to perform all tasks necessary for highway
maintenance. Yet, the dead zones should be utilized as those that are not being used, e.g., the
space occupied by the cab of a truck mounted system.

17
Copyright 2011, AHMCT Research Center, UC Davis

The Agility of the robot is interrelated to many other factors but is primarily the rate at which the
robot can accelerate from one position to another. One of the governing factors for agility are the
masses of the links, or more appropriately the moments of inertia of the links. The structure
should be relatively lightweight to ensure quick motions when necessary yet strong enough to
handle high payloads without excessive deflections. A high degree of agility is perhaps not
essential for a maintenance system, but for an ideal system it is an important parameter.

Accuracy is important in both point to point and trajectory operations. It can be defined as the
difference of the target coordinate and the actual coordinate which the robot reaches. Accuracy
and repeatability can be influenced by friction, hysterisis, backlash, compliance in links or joints,
joints and drive interfaces, etc.. Accuracy is influenced by the design and kinematics of the
linkages, as well as by its payload, types of drives, and overall system configuration. In highway
maintenance, a high level of accuracy (i.e. industrial robotics quality) is required for delicate
operations; however, a high level of accuracy is not required for most large scale, high payload
operations. The concept of slow powerful systems with agility could be accomplished by a dual
robot, a manipulator as an end effector on the master manipulator.

Structural stiffness, which is akin to structural dynamics, is characterized by masses and
moments of inertia, stiffness, damping constants, natural frequencies, and modes of vibration
which is critical for several reasons. Large masses and moments of inertia lead to the need for
large drive actuators and not a very responsive system. Low stiffness leads to excessive
deflections from the robot in turn decreasing accuracy and repeatability. Similarly, low damping
constants and low natural frequencies of the system will lead to problems with oscillations and
"overshoot". Of course, all of these factors explain the modes of vibration which are interrelated
to the accuracy and repeatability of the system. Although a system with less than adequate
stiffness properties can be somewhat compensated for through the software, the best design
dictates that the robot have high structural integrity (see Section 3.3). As with the possible high
payload needs of a maintenance system, high structural stiffness is of paramount importance.

Environmental resistance is the ability of the system to withstand harsh conditions (i.e., extreme
cold, rain, snow, and heat without appreciably decreasing functionality). Similarly, the system
also needs to be able to maintain a high level of reliability without being effected by harsh
environments.

Economics is always a factor that governs the practicality of any system. Therefore, it is of
utmost importance to understand and regard economics as a major parameter in a telerobotic
system. Cost, of course, is an important parameter because the price of a system or even sub-
systems will affect the overall system. Reliability is an economic consideration within the
maintenance costs of operating a telerobotic system. Maintainability is closely related to reliability
in that a system that is low maintenance is often also easily maintained. As such, an ideal system
should encompass reasonable component cost with a low maintenance schedule. In this section it
should also be mentioned that the ideal telerobotic system for maintenance should be able to
endure adverse environments without excessive system maintenance (low maintainability).

18
Copyright 2011, AHMCT Research Center, UC Davis

3.3.3 End Effectors

End effectors usually are designed for specific applications or operations. For a maintenance
system, there are a large number of tasks or applications that such an end effector would have to
perform. Current industrial systems use an interchangeable end effector scheme where the robot
arm selects the appropriate end effector (tool) from a turret housing a variety of tools.

For an ideal highway maintenance system, a selection of end effectors would be necessary. In this
way, the system is robust and can accommodate a variety of applications. These tools may simply
be stored on the truck or platform. Essentially, the highway maintenance robot or telerobot is one
which has high power as well as high accuracy capabilities.

19
Copyright 2011, AHMCT Research Center, UC Davis

Chapter 4
A Survey of Commercially Available Systems

4.1 Commercially Available Telerobotic Systems

It would be extremely desirable to find a commercially available telerobotic system that could
simply mount to the back of a Caltrans truck. However, such systems, for the parameters needed
for highway maintenance, have not been discovered in this survey. It should also be noted here
that the data shown is representative of the available systems currently on the market. During the
initial survey, many robotic systems were found to be very similar if not the same; therefore, we
will present representative systems in this section.

In the survey data it is evident that several possible areas exist and should be grouped into
telerobotics systems and sub-systems. The basic robotics fields surveyed were:

Industrial Robots

Hazardous Environmental Robots
Space Application Robots

Deep-Sea Application Robots
Agricultural and Food Service Robots
Construction Manipulators

A S

Many of these systems are interrelated and as such they have been combined. The most
advanced, as expected, robotic systems are those found in the aerospace and marine fields--
these fields are very specialized and only a limited number of manufacturers that market
commercially available systems exist. The next most applicable area to telerobotics is the
industrial robotics field. An abundance of commercially available systems exist in industrial
robots, more so than any other field. In this survey a relatively small number of industrial robot
data is presented but it should be noted that the basic industrial robotic system is the same
independent of manufacturer. Finally, the construction field offers manipulators with the high
payload capability with low cost yet primitive controls. Construction systems rely totally on the
dexterity of the operator for repeatability and accuracy. Therefore, evaluation of construction
systems using the characterization parameters based on aerospace/marine and industrial systems is
difficult.

4.1.1 Aerospace/Marine Systems

These systems already have telerobotic capabilities due to the high technology applications.
Schilling Development, a local company, is developing large scale telerobotic systems for
primarily marine applications. They have been adapted to space and hazardous waste removal
applications.

20
Copyright 2011, AHMCT Research Center, UC Davis

Controllers

These telerobotic systems generally include a controller with sophisticated software that enables
operator override during an operation as well as teaching functions. The control arm may also
come with force feedback capability. Force feedback control enables the operator to "feel” the
remote arm's interaction with the environment. This function, called telepresence, gives the
operator a true sense of the interaction forces. However, it is presently quite expensive and still in
the development stages.

Environmental resistance

The systems for marine applications are subjected to severe environmental effects, namely
corrosion and high pressures from great depths of operation. Thus the use of expensive corrosion
resistant and high strength materials drives up the price of such systems.

End effectors

The majority of end effectors available for marine applications are four bar linkage, two jawed
grippers. In addition, interchangeable tooling end effector systems that will enable the system to
change end effectors in adverse environmental conditions are being developed.

4.1.2 Industrial Systems

The industrial robotics field is the most developed robotics field to date. These systems are built
for repetitive tasks in the application of automated manufacturing. They are used for high
accuracy (e.g. servo motors with encoders, for absolute position control) throughout the
industrial robotics industry. However, a fundamental problem exists with these systems: low
payload capability. The need for high payload is often not an issue in automated production
systems. The low payload capability is also due to the basic design of these robots. The large
forces transmitted through the joints of the robot cause extremely large servo motors to be used.
Servo motors are limited by the amount of torque necessary to resist the internal loads induced by
the payload. At some point, the torque at a joint will be high enough to require a servo motor
disproportionate in size to the robot arm. Due to the nature of automation, industrial robots are
designed for high accuracy not high payload applications.

The service record of these robotics systems are "the best in the business” because they have
been used so extensively in factory automation. Panasonic U.S.A. quotes a 15-25,000 hour
service period between maintenance checks for a 24 hour a day work schedule. This impressive
reliability is partially due to a controlled environment. The environment for a highway
maintenance system is not so kind to the robot. Therefore, some modification would be necessary
to ensure adequate environmental resistance if industrial robots are used.

The controllers for industrial robots lend themselves easily to telerobotic operations. A typical
controller includes operator interrupt and path teaching capabilities. These controllers typically
have a joystick input from the operator or a direct coordinate input via. a teach pendant.
Although these controllers are easily adaptable, they are primarily designed for repetitive tasks,
such as those in automated manufacturing

21
Copyright 2011, AHMCT Research Center, UC Davis

End effectors for industrial robots are totally based on the particular application. Most end
effectors are either pneumatically actuated or driven by a servo motor. Pick-and-place grippers
are the same as those being used in the aerospace/marine fields. Much research and development
has been done for end effectors in the industrial robotics field. As such, an existing "off the shelf”
end effector could be selected or modified for some highway maintenance applications.

4.1.3 Construction Systems

The construction industry offers manipulators that can easily meet high payload capabilities and
severe environmental requirements for a highway maintenance telerobotics system. However,
these manipulators are controlled by "primitive" controllers relative to the controllers for the other
systems in this survey. In fact, construction manipulators are not robotic systems at all
Construction manipulators are predominantly hydraulic actuated and not servo motor driven. The
operator must manipulate levers that control the rate of fluid into the hydraulic cylinder of a link
in the manipulator either directly or via a proportioning valve. The pressure in the system may be
held constant so that if the operators level of dexterity is not high, the manipulator moves in
discrete steps and not a smooth continuous motion, sometimes characterized as a "jerking"
motion. However, IMT Inc. manipulators use proportioning valves to control the fluid pressure
to each actuator so that the system operates more smoothly. IMT also has fine actuator controls
which allow the operator to position the manipulator at a slower and more accurate manner.
Other proportional control valves are available which could be used for a highway maintenance
robot.

Typically, an operator controls one lever at a time, each lever only controls one actuator on the
manipulator. Thus, in order for an operator to control a construction manipulator similar to an
industrial robot, he must operate multiple levers at one time. Obviously, the level of dexterity of
such an operator would need to be excellent, almost an art form because computer control is
absent. Comparison of accuracy and agility of these systems with the others in this survey is not
applicable because of the direct operator input dependence.

Construction manipulator technology has been tested and proven over the past 50 years. The
reliability of these systems is quite high. Similarly, construction systems have been developed to
operate in harsh environments so, their environmental resistance is excellent.

End effectors for construction manipulators often include their own DOF which is usually the
wrist section of a robotic manipulator. For this reason, in this survey, the DOF for the
construction manipulators is stated as only 4. Construction end effectors are mainly used for
digging, scraping, drilling, and demolition applications--these applications require high payload
capabilities with accuracy of +/- 100mm or more depending on the operators skill.

22
Copyright 2011, AHMCT Research Center, UC Davis

4.2 Survey Evaluation

From a controller standpoint, aerospace/marine and industrial robotics systems have the best
controllers and require little or no modification for teleoperation. In fact, the basic controller
scheme used for both aerospace/marine and industrial robotics is the same. However, the input
devices and software for aerospace/marine systems are more evolved. The more evolved systems
use operator input devices that minimize the required dexterity level so that the operator can
concentrate on higher order operations. Similarly, the more similar the controller is to human
movement, the higher the quality of operator control.

In construction systems, the controllers currently used are not conducive to teleoperation.
Teleoperation for a construction manipulator would require extensive research and modification
to the system. Most industrial controllers also require modifications, mostly software, to be used
in teleoperation. The best choice of a controller scheme for teleoperation is definitely those used
in the more advanced aerospace/marine systems.

Of course, controllers are only one parameter in a telerobotic system. Evaluation of these systems
with respect to the ideal highway maintenance system hardware is based on the seven other basic
factors mentioned earlier. Mobility is the next factor and all of these systems are already capable
of 6 DOF. However, these robots are not capable or easily adaptable to highway mobility.
Highway mobility is more complex because the robotic system must be portable. One indication
of highway mobility is in the payload to weight ratio. A high value for the payload to weight
ratio relates to a system with high mobility.

Even though the aerospace/marine systems have the highest value for the payload to weight ratio,
they are also the most expensive. Therefore, construction manipulators are the most adaptable for
highway mobility. In fact, the IMT manipulators surveyed are truck mounted systems, making
them the best for a highway maintenance system.

In the survey data, workspace varies from system to system so evaluation of maximum reach is
based on either maximum vertical or horizontal reach, listed in Table 4.1. A comparison of the
average maximum reach among systems clearly shows that the construction systems have the
largest reach (see Figure 4.1). Figure 4.1 also shows that the construction systems have the
highest average payload capability. In a similar manner, system vs. cost is graphed on figure 4.1,
indicating that construction systems have the lowest cost.

23
Copyright 2011, AHMCT Research Center, UC Davis

Table 4.1 Telerobotic Systems Survey Data

Aerospace/Marine

Schilling Dev. TitanII 108
Schilling Dev. Titan 7F 113

Industrial

Kawasaki
Heavy
Industries
Ltd.

Panasonic

Motoman
Inc.

Copyright 2011, AHMCT Research Center, UC Davis

UZ-100 100
EH120 120
AW-8100 100
AW-8060 60

K150S 150
K60S 60

K100S 100

0.3

0.5

0.4

0.2

0.5

0.3

0.5

N N

24

1940
1980

2580

2840

2390

2000

2387

1300

1500

1600

1200

1600

980

1600

1.37
1.69

0.08

0.08

0.06

0.05

0.09

0.06

0.06

($x1000)

140
112

98

89

111

92

107

99

98

Table 4.1 Continued

Company Model Payload Accuracy Mobility __Reach Weight Payload/Wt _Cost
Kg) (+/- mm) DOF (mm) (Ke) ($x1000)
Construction Equipment
IMT Co. 2115 636 -- 4 4560 544 1.17 10
e 6425 680 - 4 9450 1792 0.38 20
20017 5216 - 4 5180 3467

Copyright 2011, AHMCT Research Center, UC Davis

25

1.50 33

2500-1

2000+

Avg. Values

Reach (x 10 mm)

Payload (Kg.)

Cost (x $1000)
Indust.

Const.

Figure 4.1 System Comparison

Based on the reach, payload, and cost parameters it is apparent that the construction system is
best for an ideal highway maintenance manipulator. However, the controller issue still exists in
that computer controls are not part of the construction systems. As such, it does not make sense
to compare accuracy between the other two systems.

If the aerospace/marine and industrial systems are compared, see Figure 4.1, the industrial systems
have lower average price, higher average reach, but lower average payload. For environmental
resistance, the aerospace/marine systems are far better.

Another parameter to consider is the structural stiffness. One possible way to quantify this
parameter is by the payload to weight ratio of the manipulator. Typically, the higher the ratio
value the higher the strength of the manipulator. As stated earlier, if a structure is rigid or stiff
then it will have high natural frequencies and problems like overshoot during operation are not
substantial. The average values of the payload to weight ratio from Table 4.1 are shown in Figure
4.2.

26
Copyright 2011, AHMCT Research Center, UC Davis

16 W

14 ¢4
12 ¢
Avg. o1
Payload/Wt

06 +
04 ¢
02 1

0 - i

Aero/M Indust. Const.

System

Figure 4.2 Average Payload to Weight Ratio

The aerospace/marine systems have the highest effective stiffness of all the systems surveyed
because of the requirements of such a system. As an overall evaluation, the construction system
manipulators are the best when compared to an ideal highway maintenance system. However,
they lack the flexibility of automated control. The best robotics systems are the aerospace/marine
systems but they lack the large workspace needed for highway maintenance. Aerospace/marine
systems are also the most expensive but they have the most user friendly control systems.

Therefore, an "off the shelf" flexible highway maintenance telerobotic system is not commercially
available based on the manufacturers in this survey.

27
Copyright 2011, AHMCT Research Center, UC Davis

Chapter 5
The Telerobotics Testbed

To demonstrate the capabilities of a telerobotic system we have developed an experimental
testbed. Our goal was to build a small-scale system that uses standard components whenever
possible. This approach not only allowed us to quickly implement a working system to gain
valuable first hand experience in telerobotics, but also enabled us to keep research and
development costs down. The design and implementation process revealed many practical
considerations that can be directly applied to large-scale systems. The testbed also provides a
foundation for future telerobotics research and application development.

This chapter presents a detailed description of the telerobotics testbed. First, we describe the
overall system configuration. Second, the system hardware is presented, including the input
device, the controlling computers, the robot arm, and the grippers. Third, we cover the system
software; concentrating on both the low-level drivers and the high-level interface. In the final
section we discuss the demonstration tasks.

5.1 System Configuration

Before we present the hardware and software details we will review the overall system
configuration. The testbed is composed of five basic components: the input device, the host
computer, the robot controller, the robot arm, and the end effector (see Figure 5.1).

The user guides the robot arm through the input device and the host computer. The input device
used is manufactured by Schilling Inc. and was provided as a donation. This input device (as
shown in Figure 5.2) is kinematically similar to the Puma 560 which is the remote robot arm used
in our testbed. The primary function of the input device is to allow the operator to manipulate the
position of the robot arm. The tip of the input device is equipped with three buttons (see Figure
5.2), each of which can be programmed for different actions. For our purposes we dedicate one
button for an engage/disengage function. While disengaged, movements of the input device have
no effect on the remote arm. Once the engage/disengage button is pressed, the remote arm will
track the movements of the input device. A second button is used to activate the end effector. If
the end effector is a gripper, pressing this button will cause the hand to open/close if the hand was
previously closed/opened.

The host computer provides another means for the operator to control the robot arm. In general,
the host computer is used to switch between different modes of operation and to execute high-
level tasks. For instance the user might want to switch from a joint-to-joint mode (motions of the
remote arm joints track those of the input arm joints) to a Cartesian mode (end effector motion of
the remote arm tracks that of the input device). The user can also execute high-level tasks such as
teach and play back or a preprogrammed operation. The host computer is also used to interface

28
Copyright 2011, AHMCT Research Center, UC Davis

the input device to the robot controller. At each joint in the Schilling arm there is a
potentiometer. By connecting the potentiometers to an ADC (analog to digital converter) board
we can read the absolute position of each joint. Not only must we supply the host computer with
an ADC board, but we must have software drivers to process the input and a connection to the
robot controller. In our testbed we connect the host computer directly to the robot controller via
a serial line. This connection allows the host to send position and end effector commands to the
robot controller.

Input Device

Y

Operator < » Host Computer

A

A 4

Robot
Controller

A

Effector

Robot Arm

Figure 5.1 System Configuration

The robot controller used in the testbed is the Unimate computer/controller running the VAL 1II
language. Together the Unimate controller and VAL II coordinate the movements and actions of
the Puma 560 robot arm. A set of programs written in VAL II enables the controller to accept
commands from the host computer. These commands are interpreted and then issued to the robot
arm. Conceptually the VAL program is a simple infinite loop that moves the arm to each
commanded position read from the host. The VAL program also activates the end effector as
commanded by the host.

29
Copyright 2011, AHMCT Research Center, UC Davis

The Puma 560 robot arm is used as the remote arm to interact with the environment. The Puma
is a widely used research tool and serves well for a small testbed as ours. The work envelope of
the Puma, however, is quite small and poses some limitations on telerobotic tasks. - For the
purpose of demonstrating the feasibility of telerobotic technology for highway maintenance, we
have designed and fabricated two end effectors that attach to the Puma 560. The first end
effector is a simple parallel gripper that can grasp small objects. The second end effector is a
clipper that is used to cut thin sticks and branches. The end effectors are discussed further in
Section 5.2.4.

It should be noted that the operators only feedback is from directly viewing the task space. This
does not present any problem other than the input device and host computer must be relatively
close to the task environment. For remote work-site operation, a vision feedback system must be
used. A more realistic system might have some sort of binocular vision as discussed in Chapter 2.

5.2 System Hardware

The system hardware forms the foundation of the telerobotics testbed. In this section we will
examine each component mentioned in Section 5.1.

5.2.1 The Schilling Input Device

The Schilling Inc. miniature manipulator serves as our input device. Because the Schilling arm is
kinematically similar to the Puma 560 the task of integrating it into the system is simplified. The
kinematic similarity also eases the difficulty of remote manipulation because movements in the
input arm space correspond closely to movements in the remote arm space. Figure 5.2 illustrates
the Schilling arm.

Joint 3 ————

/ Joint 4
/ Joint &

Joint 2 Joint 6
Joint 1 — Buiton 1
— Button 2
<~/ — Button 3

Figure 5.2 The Schilling Arm

30
Copyright 2011, AHMCT Research Center, UC Davis

Like the Puma 560, the Schilling arm has 6 DOF (degrees of freedom) consisting of three
positional joints and three orientation joints. Just as the Puma has joint limits so does the Shilling
arm. Table 5.1 lists the Schilling arm joints and there respective ranges. Although the joint
ranges of the Puma and the Schilling arm are not identical, they are close enough to make almost
all of the Puma work envelope accessible. Each joint of the Schilling arm is equipped with a
potentiometer that supplies absolute position data.

Joint | Range (in degrees)
1 0-270
2 0-270
3 0-270
4 0-330
5 0-180
6 0-330

Table 5.1 Schilling Arm Joint Ranges

The Schilling arm is mounted on an aluminum case. The case contains a SV power supply, some
minor wiring, a power switch, and a connector. The connector provides lines to the six
potentiometers (the joints) and the three digital inputs (the buttons). The connector is a standard
37 pin D type. The pinouts are wired specifically for the CIO-ADI16JR board for the IBM
PC/AT. The CIO-ADI16JR is discussed in the next section.

5.2.2 The Host Computer

The host computer is an 1486 IBM PC/AT type computer running at 33MHz. The computer has
8 MB of RAM and a 120 MB hard disk. This platform was chosen because of its low cost and
wide availability. In addition, the UCD Robotics Research Lab has extensive experience with the
IBM PC/AT platform [Las90][Ben90].

To interface with the Schilling arm we use a ADC board, the CIO-AD16JR from
ComputerBoards Inc. The CIO-ADI16JR is capable of high sampling rates (120 KHz) and is
compatible with many popular data acquisition boards (Metrabyte DAS-16, Metrabyte DAS-16/F,
and Advantech PCL718). To interface with the Schilling arm we use the 6 of the 8 differential
analog inputs to read the potentiometers and 3 of the 4 digital I/O lines to read the buttons values.

One of the two serial ports is used to interface with the Unimate controller. We use a standard
RS232C cable running at 19200 baud with 8 data bits, no parity, 1 start bit and 1 stop bit. To
allow for high speed communication interrupt driven I/O is used on both the host computer and
the Unimate controller, see Section 5.3.

The operating system is MSDOS and the development compiler is Borland C++ 3.1. All the
software for the testbed is written in 80x86 assembly and C. The Borland development
environment is comprehensive and is easy to work with.

31
Copyright 2011, AHMCT Research Center, UC Davis

5.2.3 The Unimate Controller and Puma 560

The remote Puma 560 arm uses the standard Unimate controller running VAL II
[Uni85a][Uni85b]. The Puma 560 is a 6 DOF (degree of freedom) anthropomorphic robot
manipulator, see Figure 5.3. Each joint consists of a servo motor, a potentiometer, and an optical
encoder. Like the potentiometers on the Schilling arm, the potentiometers on the Puma provide
absolute joint positions. The potentiometers, however, are unreliable for accurate joint positions.
Instead the optical encoders are used to provide extremely accurate relative joint positions.

Figure 5.3 The Puma 560

The Puma is traditionally used for industrial applications, but it is also popular for researchers to
use it for telerobotics [LLNL91]. The Puma is versatile, but has a limited work envelope. When
operating path control in Cartesian mode, we should be aware of the problem of kinematic
singularities. There are basically two types of singularities: joint limited and mathematical. Joint
limited singularities occur when the commanded end effector Cartesian position requires a joint to
move beyond its limit. Mathematical singularities occur when the inverse kinematic solution for a
given Cartesian position is undefined (or infinite solutions exist). This type of singularity occurs
when joints 4 and 6 become aligned. This problem can be avoided when we only allow the
Schilling arm to manipulate the Puma in joint mode. From a software perspective using joint
mode is less complex than Cartesian mode. We further note that the Puma and the Schilling arm
are only kinematically similar, not proportional. This means that a straight-line movement in the
Shilling arm space may not necessarily produce a straight-line in the Puma arm space, see Figure
5.4. For many tasks this does not present a problem if the operator bases movements on the
current position of the Puma arm and not on the Schilling arm.

32
Copyright 2011, AHMCT Research Center, UC Davis

c’
c I
//
a a
Input Arm Remote Arm

Figure 5.4 The Alignment Problem

5.2.4 The End Effectors

Although the existing PUMA end effector is a limited travel gripper, a more versatile end
effector is needed to demonstrate the different capabilities of the telerobotic system. Two basic
operations have been chosen for the demonstration: pick-and-place and a clipping.

An end effector is a device attached to the end of a robotics manipulator system which will
perform one or more functions, in our case pick-and-place and clipping. The term "end effector”
is used interchangeably with the term "gripper” (a tool mounted on the manipulator wrist), but
"end effector” covers a wide range of movable tooling devices, not just grippers.

Grippers are usually associated with industrial robots. Grippers can perform pick-and-place
operations or hold tools during other operations. In most cases, grippers are designed to perform
grasping operations through the use of magnets, suction cups, or articulated mechanisms. The
gripper must also be able to grasp objects and hold them without damaging them, so the gripper
system must be designed to perform without exerting excessive force.

Many gripper designs perform four actions: parallel-jaw, two-finger, and multi-fingered
gripping. Parallel-jaw grippers contact the work piece over a relatively large area, bringing two
flat surfaces together on opposite sides of the object being grasped (see Figure 5.5).

For both the pick-and-place and clipping operations, simple parallel-jawed type grippers are
used. The PUMA robot is the test bed for the demonstration and the design of the grippers are
subject to the constraints of this system. One constraint is a maximum weight of the gripper and
payload of 5 Ibs.. The other determining factor for operation is the use of a pneumatic actuator
for the gripper.

33
Copyright 2011, AHMCT Research Center, UC Davis

5.2.4.1 The Pick-and-Place Gripper

This pick-and-place operation for the demonstration requires the gripper to pick-up 1.25 inch sq.
blocks, yet a gripper with more versatility is preferable. As such, an existing Robohand Inc. RP-
100 pneumatic actuator is used for this operation because it has a linear stroke motion, as
opposed to two and three bar linkage actuators. The RP-100 uses a pneumatic cylinder as the
primary actuator which rotates two spur gears. The two spur gears in turn move the jaw mounts
in a linear horizontal motion (see Figure 5.5). As a safety factor, the maximum force the
actuator can deliver is 7 Ibs. at the jaws. This ensures that the object being grasped will not be
damaged during the pick-and-place operation.

34
Copyright 2011, AHMCT Research Center, UC Davis

Figure 5.5 The Pick-and-Place Gripper

In the interest of versatility, adapter plates have been built to allow adjustability of the jaws an
extra 1 inch. This effectively gives the gripper a total stroke of the 2 inches by means of extra
bolt holes for the 0.25 inch slots in the base of the jaws.

The jaws are very similar to those used on the Schilling Titan grippers (see Appendix A). These
type of jaws are tapered at the end, or at the tip of the fingers, which gives greater sensitivity for
small objects being moved. Small grooves are milled in the faces of the jaws to enhance the
gripping friction between the opposite sides of the object being grasped. The jaws are mounted
to the adapter plates which are mounted to the actuator.

Unfortunately, the RP-100 actuator can not be directly attached to the PUMA robots wrist
therefore, design of an adapter base is necessary. The adapter base simply is a mechanical
interface between the two bolt patterns for the actuator and robot. A clearance of 0.80 inches is
necessary between the bottom of the actuator and the top of the robot wrist for tooling clearance.

35
Copyright 2011, AHMCT Research Center, UC Davis

With the gripper assembled and the air lines from the robot attached, the gripper performs its
operations satisfactorily. Although the gripper design for the pick-and-place operation is straight
forward, the clipping operation utilizes a parallel-jaw mechanism with shearing edges instead of
flat edges.

5.2.4.2 The Clipper

For the clipping operation, another type of end effector or gripper type system needs to be
designed. In this case, a simple shear type device will serve the purposes of the demonstration.
As such, the clipper design is very similar to that used in industrial robots for grasping. This
clipper utilizes a three-bar linkage to close the jaws (see Figure 5.6).

The jaws are simply two offset plates with steel cutting edges, very similar to everyday scissors.
The jaws are connected to the actuator linkage by two small intermittent linkage bars. Due to
the relatively small stroke of the pneumatic actuator, the linkage bars are designed so that the
jaws will open to approximately 1.5 inches (see Figure 5.6).

The actuator used is modified from an old gripper design. The decision to modify the actuator
was made based on the interests of time and fabrication. With a total stroke of only 0.38 inches,
the jaw radius and linkage bar lengths are optimized so that the jaws will open as wide as
possible. Similarly, the angles through which the jaws and linkage bars swing limit the shearing
force to approximately 10 lbs.

The limited shearing force is in the interest of safety and dictated by the limited stroke of the
actuator. As such, the clipper effectively shears small twigs and small, yet low strength,
members effectively.

Some question has been posed as to the further development of a clipping end-effector in that
another type of shearing mechanism could be designed. This question is based on the amount of
dexterity the operator must have in order to cut objects consistently in a plane. With this in
mind, an end effector with multiple shearing edges or a rotating blade is an alternative that
would solve part of the dexterity problem. However, another possible solution could be that the
software would limit the motion of the clipper to a pre-defined plane, thereby reducing the level
of dexterity of the operator so that he can concentrate on higher order functions.

36
Copyright 2011, AHMCT Research Center, UC Davis

Copyright 2011, AHMCT Research Center, UC Davis

Figure 5.6 The Clipper

37

5.3 System Software
The telerobotics testbed is controlled by a set of programs that run on the Unimate controller and

the host computer. This section describes the source files that comprise the testbed software and
shows how to start the telerobotics demo. The complete source code is listed in Appendix C.

5.3.1 The Unimate Programs

The Unimate programs reside on the Unimate controller. These programs. provide an interface
between the 1486 computer and the Puma robot. Using a serial link the following programs
communicate with the i486 computer by accepting commands to move the Puma arm and actuate
the end effector. The three VAL II programs are:

o usercd.pg - interrupt driven serial I/O routines (machine code)

» pcg.pg - background process that sends and receives commands over the serial line

 main.pg - initializes variables, starts pcg.pg, and executes the main control loop

5.3.2 The Host Programs

The Host programs reside on the i486 computer. These programs enable the user to manipulate
the Puma arm with the Schilling miniature arm. The telerobotics programs are divided into two
modules: the device driver and the application. The device driver provides low-level routines to
read the potentiometers on the Schilling arm and to communicate over the serial line. The
application program provide the high-level user interface by accessing the device driver.

The device driver consists of several source files that are described as follows:

e ddi.h - device driver interface header file

e ddi.c - device driver interface

e ddiinit.c - device driver initialization (loader)

« intentry.asm - software interrupt interface to application programs

o drivers.h - header file that lists the different devices available

¢ adcdrv.h - ADC (Schilling arm potentiometers) device driver header file

o adcdrv.c - ADC (Schilling arm potentiometers) device driver

38
Copyright 2011, AHMCT Research Center, UC Davis

e comdrv.h - serial communications device driver header file

e comdrv.c - serial communications device driver

¢ ibmcom.h - serial communications core routines header file

e ibmcom.h - serial communications core routines

Besides the ddiinit program which contains all of the device drivers, there are two additional
device driver programs.

e ddicheck.c - determines whether or not the device drivers are loaded

e ddiquit.c - disables the device drivers

All three programs given above can be built using the "makefile". Simply type:
make

This will generate ddiinit.exe, ddicheck.exe, and ddiquit.exe.

The application program consists of the following source files:

robot.h - general robot data structures

kingen.h - forward kinematics for the Puma 560

trinput.c - the telerobotics application program

trinput.mak - the application program makefile

As with the device drivers the application program can be built with the makefile, "trinput.mak".
Simply type:

make -f trinput.mak

This will generate tinput.exe.

39
Copyright 2011, AHMCT Research Center, UC Davis

5.3.2 Using the Programs

The programs are easy to use, but you must start the programs in the correct order. Here are the
steps needed to run the telerobotics testbed software.

First, you must start the programs on the Unimate controller. To do so, first bring up VAL and
make sure that the programs, usercd.pg, pcg.pg, and main.pg are currently loaded. To start the
VAL programs first type:

ex usercd

Then type:

ex main

This will enable the Unimate controller to accept command from the i486 computer. Now we
must start the programs on the 1486. First we need to load the device drivers by typing:

ddiinit
Then we simply run the application program by typing:
trinput

You will be presented with a menu of commands that control system. The commands are
straightforward.

40
Copyright 2011, AHMCT Research Center, UC Davis

5.4 Testbed Demonstration

The pictures in this page and the next show the testbed in action. The remote manipulator is
equipped with the clipper. The pictures illustrate the operator using the Schilling input device to
clip a branch.

41

Copyright 2011, AHMCT Research Center, UC Davis

w

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 6
Conclusions and Future Research

In this study, we have investigated the benefits and feasibility of applying telerobotics technology
to highway maintenance automation. The primary goal of automation is to improve safety by
removing workers from the hazards of roads, and to perform maintenance tasks quicker, better,
and more economically. A survey of Caltrans' Highway Maintenance Manual shows that
telerobotics technology is compatible with the following maintenance operations: roadside
tree/bush trimming and brush removal, long range roadside weed control, sign and guide marker
washing, and safe pickup and disposal of hazardous materials. Experimental investigations with a
laboratory testbed have demonstrated that tree/brush trimming tasks can be implemented using a
telerobotic system.

Important mechanical structure parameters that are required by an ideal telerobotic maintenance
system are defined: they are payload, mobility, workspace agility, accuracy, structural stiffness,
environmental resistance, and economics. A survey of commercially available systems has been
made to assess their capabilities. Based on the survey data, it is evident that no complete "off the
shelf” telerobotic system exists for the highway maintenance parameters defined. The existing
commercial systems either are very precise but lack high payload capacity, highway mobility, and
large workspace or they are powerful and economical but lack computer control.

It is clear that a hybridized system can be constructed in the interest of retaining the parameters of
an ideal telerobotic highway maintenance system while not sacrificing economics. One possible
way to hybridize construction and industrial robotic systems is through the use of existing
hydrodynamic fluid drive systems. These systems use a electro-servo hydraulic valve to control
the hydraulic actuator. The valve is computer controlled and the position of the actuator is fed
back into the computer/controller (see Figure 6.1). This type of system is versatile and adaptable
to existing construction systems because the existing hydraulic systems do not need modification.

Another possible hybridization of construction and industrial systems is a hydrostatic fluid drive
system. A servo motor drives a gear type fluid pump which moves the actuator. A position
sensor monitors the actuator motion and feeds information back to the computer. The computer
keeps track of the actuator position and the pump, it then sends information to the controller that
operates the servo motor (see Figure 6.2). This type of system would allow an industrial
controller to be modified to work with a construction manipulator much like that of a
hydrodynamic fluid drive system. Through the gear type fluid pump, the hydraulic actuators
force, acceleration, and position can be controlled very accurately.

Both of hydrodynamic and hydrostatic fluid drive systems enable a large construction manipulator
to operate like an industrial robot. Similarly, the basic controller from an industrial controller
system could be adapted to make the system telerobotic. With the combination of industrial

43
Copyright 2011, AHMCT Research Center, UC Davis

controllers and a hybridized construction manipulator, a system could have all the attributes of the

ideal telerobotic system.
Computer/
Controller

Manual ®
Controlld

Pump
(Const. Rpm)

Pump |
Motor

Sum

Figure 6.1 Hydrodynamic Fluid Drive System

Computer/
Controller

® Manual

Controller

=z Position Sensor

] Gear
DC Servo |_qul Typ_e
Motor Fluid Hydraulic Actuator
Pump

Figure 6.2 Hydrostatic Fluid Drive System

Copyright 2011, AHMCT Research Center, UC Davis

One foreseeable problem is the compliance of the truck or mobile platform the system is mounted
on. Even though the manipulator is rigid and the accuracy and repeatability are high, the mobile
platform is not rigid. During operations requiring high accuracy, the global accuracy is dependent
on that of the telerobotic manipulator and mobile platform's compliance.

A solution to this problem is an end effector that is basically another small robot manipulator with
an inertially stabilized platform at its base (see Figure 6.3). This intelligent robotic platform
would allow the smaller robot's end effector to remain in a fixed position relative to the ground
(globally) and not relative to the mobile platform.

2R
|| Inertially Stabilized Platform

Manipulator

l : : l Mobile Platform

Figure 6.3 Intelligent Platform System

The base of the intelligent platform would incorporate an inertial sensing system that would
counteract the unwanted motions of the rest of the system as illustrated in Figure 6.4. In effect,
the system's compliance is reduced by active feedback control.

The actual inertial sensing is obtained from accelerometers. They "sense” the accelerations of the
base of the platform and cancel out or reduce the motion at the end effector. This kind of system
has the capability of high accuracy, with the inertially stabilized platform. The overall system also
has high payload capabilities.

Another important problem to be considered is vehicle stability. Instability would occur if the
center of gravity of the systems goes outside the vehicle platform. Therefore the reach of the
robotic arm must be constrained by the payload associated with the robotic end effector. Using a
main-in-the-bucket system as a reference, the maximum payload would be around 400 Ibs. This
limits the maximum extensions of the robot arm in various directions that are permissible in order
to maintain vehicle stability (assuming vehicle stabilization feet are deployed when they are
available). These limits can be conveniently maintained by control software.

45
Copyright 2011, AHMCT Research Center, UC Davis

Global position is
unchanged

Intelligent Inertially
Stabilize Platform

Manipulator

Figure 6.4 Intelligent Platform Ilustration

Research by others at MIT [Dub92] have been concerned with similar problems for the past 10
years. They have proposed specific solutions and made demonstrations for NASA and the DOE.
Their program has been running at a level of about $500K/year for the last 10 years, illustrating
the difficulty of the problem from their approach. Their method relies on sensors placed at the
base of the mobile platform. The sensors provide feedback used to compensate the position of
the mobile base relative to the robot end effector. We have alternative concepts which show that
the problem can be solved in a more sophisticated and less expensive manner.

46
Copyright 2011, AHMCT Research Center, UC Davis

Bibliography

[AS89] R. J. Anderson and M. W. Spong, "Asymptotic Stability for Force Reflecting
Teleoperators with Time Delay," in Proceeding of the IEEE International
Conference on Robotics and Automation, pp 1618-1625, 1989.

[BT90] P. G. Backes and K. S. Tso, "UMIL: An Interactive Supervisory and Shared
Control System for Telerobotics," in Proceedings of the IEEE International
Conference on Robotcs and Automation, pp. 1096-1101, 1990.

[Bej87a] A. K. Bejczy, "Man-Machine Interface Issues in Space Telerobotics: A JPL
Research and Development Program," in Proceedings of the Workshop on Space
Telerobotics, pp. 361-369, 1987.

[Bej87b] A. K. Bejczy, "Teleoperators,” in Encyclopedia of Artificial Intelligence, pp.
1100-1101, New York: John Wiley & Sons, Inc., 1987.

[BKVI0] A. K Bejczy, W. Kim, and S. Venema, "The Phantom Robot: Predictive Displays
for Teleoperation with Time Delay," in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 546-551, 1990.

[Ben90] G. D. Benson, The PUMA 560 IBM PC/AT Control Environment, Tech. Rep.
RRL-91-2, Robotics Research Laboratory, Department of Electrical Engineering
and Computer Science, University of California, Davis, June 1990.

[BHSE] D. G. Bihn and T. C. Hsia, "A Universal Six Joint Robot Controller," in IEEE
Journal of Robotics and Automation, vol. 8, pp. 31-36, Feb. 1988.

[BoHag8] P. T. Boissiere and R. W. Harrigan, "Telerobotic Operation of Conventional
Manipulators,” in Proceedings of the IEEE International Conference of Robotics
and Automation, pp. 576-583, 1988.

[CFGM88] G. Clement, R. Fournier, P. Gravez, and J. Morillon, "Computer-Aided
Teleoperation: From Arm to Vehicle Control,” in Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 590-593, 1988.

[Cra85] J. J. Craig, Introduction to Robotics: Mechanics and Control. Reading,
Massachusetts: Addison-Wesley, 1 ed., 1985.

[Dub92] S. Dubowsky, "On the Dynamics and Control of Mobile Telerobotics Systems in
Unstructured Environments,” Seminar, MAME Dept., University of California,
Davis, Dec. 4, 1992.

47
Copyright 2011, AHMCT Research Center, UC Davis

[FDS90]

[FDB86]

[FGL87]

[FP91]

[Han&9]

[HV89]

[(HLTBL90]

[HHI.89]

[Hog89]

[HHL92]

[Jen85]

P Fischer, R. Daniel, and K. Siva, "Specification and Design of Input Devices for
Teleoperation," in Proceedings of the IEEE International Conference on Robotics
and Automation, pp 540-545, 1990.

C. P. Fong, R. S. Dotson, and A. K. Bejczy, "Distributed Microcomputer Control
System for Advanced Teleoperation," in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 987-995, 1986.

K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision,
and Intelligence. New York: McGraw-Hill, 1987.

J. Funda and R. P. Paul, "Remote Control of a Robotic System by
Teleprogramming,” in Proceeding of the IEEE International Conference on
Robotics and Automation, addendum, 1991.

B. Hannaford, "Stability and Performance Tradeoffs in Bi-lateral
Telemanipulation,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp 1764-1767, 1989.

S. Hayati and S. T. Venkataraman, "Design and Implementation of a Robot
Control System with Traded and Shared Control Capability,” in Proceedings of the
IEEE International Conference on Robotics and Automation, pp 1310-1315,
1989.

S. Hayati, T. Lee, K. Tao, P. Backes, and J. Lloyd, "A Testbed for a Unified
Teleoperated-Autonomous Dual-Arm Robotic System,” in Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 1090-1095,
1990.

G. Hirzinger, J. Heindl, and K. Landzettel, "Predictive and Knowledge-Based
Telerobotic Control Concepts," in Proceedings of the International Conference on
Robotics and Automation, pp. 1768-1777, 1989.

N. Hogan, "Controller Impedance at the Man/Machine Interface," in Proceeding
of the IEEE International Conference on Robotics and Automation, pp.
1626-1631, 1989.

T. C. Hsia, K. Han, and T. A. Lasky, "A Simple Robust Cartesian Space
Controller for Robot Manipulators," in Submitted to IEEE International
Conference on Robotics and Automation, (Nice, France), 1992.

L. M. Jenkins, "Telerobotics Work System - Space Robotics Application,” in

Proceedings of the IEEE International Conference on Robotics and Automation,
pp 804-806, 1985.

48

Copyright 2011, AHMCT Research Center, UC Davis

[JC71]

[Las91]

[KTES87]

[KS89]

[KaSa87]

[Lum89]

[MBB89]

[MMYAZ86]

[Pen86]

[PS85]

[Riv87]

[She85]

E. G. Johnson and W. R. Corliss, Human Factors Applications in Teleoperator
Design and Operation. New York: John Wily & Sons, Inc., 1971.

T. A. Lasky, "Progress Toward a Compliant Robot Controller,” Tech. Rep.
RRL-91-1, Robotics Research Laboratory, Department of Electrical Engineering
and Computer Science, University of California, Davis, Oct. 1991.

W. S. Kim, F. Tendick, S. R. Ellis, and L. W. Stark, "A Comparison of Position
and Rate Control for Telemanipulators with Consideration of Manipulator System
Dynamics," IEEE Journal of Robotics and Automation, vol. 3, pp. 426-436, Oct.
1987.

W. S. Kim and L. W. Stark, "Cooperative Control of Visual Displays for
Telemanipulation,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 1327-1332, 1989. ‘

I. Kato and K. Sadamoto, Mechanical Hands Illustrated, Hemisphere Publishing
Corporation, 1987.

R. Lumia, "Space Robotics: Automata in Unstructured Environments', in
Proceedings of the IEEE International Conference on Robotics and Automation,
pp- 1467-1471, 1989.

O. Y. Ming, D. V. Beard, and F. P. Brooks, Jr., "Force Display Performs Better
than Visual Display in a Simple 6-d Docking Task", in Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 1462-1466, 1989.

F. Miyazaki, S. Matsubayashi, T. Yoshimi, and S. Arimoto, "A New Control
Methodology Toward Advanced Teleoperation of Master-Slave Robot Systems,"
in Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 997-1002, 1986.

J. Pennington, "Space Telerobotics: A Few More Hurdles," in Proceedings of the
IEEE International Conference on Robotics and Automation, pp 813-816, 1986.

L. Pao and T. H. Speeter, "Transformation of Human Hand Positions for Robotic
Hand Control," in Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 1758-1763, 1989.

E. Rivin, Mechanical Design of Robotics, McGraw-Hill, 1987.

T. B. Sheridan, "Human Supervisory Control of Robot Systems," in Proceedings

of the IEEE International Conference on Robotics and Automation, pp. 808-812,
1985.

49

Copyright 2011, AHMCT Research Center, UC Davis

[SCMRS8]

[She88]

[SKT88]

[Sto85]

[Wam88]

[WR88]

T. B. Sheridan, L. Charny, M. B. Mendel, and J. B. Roseborough, "Supervisory
Control, Mental Models and Decision Aids," in Workshop on Shared Autonomous
and Teleoperated Manipulator Control, (Philadelphia, PA), IEEE International
Conference on Robotics and Automation, 1988.

T. B. Sheridan, "Teleoperation, Telepresence, and Telerobotics: Research Needs
for Space”, in Workshop on Shared Autonomous and Teleoperated Manipulator
Control, (Philadelphia, PA), IEEE International Conference on Robotics and
Automation, 1988.

L. W. Stark, W. S. Kim, and F. Tendick, "Cooperative Control in Telerobotics," in
Proceedings of the IEEE International Conference on Robotics and Automation,
1988.

K. Stonecipher, Industrial Robotics: A Handbook of Automated Systems Design,
Hayden Book Company, 1985.

C. Wampler, "Teleoperator, Supervisory Control," in International Encyclopedia
of Robotics, pp. 1740-1747, New York: John Wiley & Sons, Inc., 1988.

J. G. Webster and B. Ravani, "Teleoperator, Control Using Telepresence,”, in

International Encyclopedia of Robotics, pp. 1710-1718, New York: John Wiley &
Sons, Inc., 1988.

50

Copyright 2011, AHMCT Research Center, UC Davis

Appendix A Commercially Available Systems Survey Data

Schilling Dev.
Titan II, Titan 7F, and Gamma 7F

Kawasaki
EH-120, UZ100

Panasonic
AW-8100, AW-8060, and AW-8030

Motoman Inc.
60S, K100S, and K150S

IMT Inc.
20017, 2115, and 6425

51
Copyright 2011, AHMCT Research Center, UC Davis

-

Eo

18§82,

~33104

iy
Bugpoaysy

el

GENERAL DESCRIPTION

Modes of Operation RANGE OF MOTION Hardware
Master/Slave Position Controlled.....................standard Range
Cartesian/Tool Frame Controloptional WISt YW oo

Force Control optional SHOUIAET PItCA ..o

Bilateral Force Feedbackcc.occon.......... OPtiONA Elbow PHCD ..o e 270°

Input Devices WSt PHON <o, 1807
Passive Master Armccccoceveevevrveeennenenen.n. Standard WHSTYAW ..o eeecenseeeseneeneienes 180°
Cartesian Controller............ .optional Wrist Rotate

Force-Reflecting Master Armoptional SIAVED oo 970"
Graphical Interface and Trajectory Generation .. optional ContinuouS «.voveeeeeeeeeeeeee vreeenn 0-55 1pM
Degrees of Freedom

SIX PIUS GIP ceveeeeeeceeeeene ..standard HYDRAULIC REQUIREMENTS

Tool Interchange et reens optional Fluid TYPE o.veveveveereeeeereece .. Hydraulic Ol
Power System Optional Fluid ceereeeneeneeenns, GONSUN Factory

Hydraulicoocc....... Multiple fluid compatible Flow s 1.510 5 gpM
STANDARD DIMENSIONS AND SPECIFICATIONS Pressureccecoeeeveeeevevnene.... 3000 psi nominal

Maximum Reach........... 7630 E| ECTRICAL AND TELEMETRY REQUIREMENTS
Lift Capacity (maximum)cccocvverveeeerereennenn. 120010

Lift Capacity (full extension)eevreeeserseen. 240 b GONSUIL Factory

Wrist Torque e 19 TE=1D (peK)

Jaw Capacityceevennennn. 400N, Description and specifications are subject to change without notice.
Contact Schilling Development for latest information.
1751 ® 1992 Schilling Development, Inc.

Plan View

80.24

Elevation

NS I St

ONE SQUARE = $ INCHES

|
T
Tt
1

ONE SCUARE + 4 INCHES

T
T
T

Elevation

AT RN Bkt #
N uplidE Ll

DEVELO®PMEN Plan View

1632 DA VINCI COURT, DAVIS, CA 95616
Copyrie}g 0] 1758 YFTERescarqingermtyC7R345092

~Dimension 6 force/torque controf ball, reproduced with permission of CIS Graphics. Inc.

GENERAL DESCRIPTION

Mode of Operation..

Input Device

Number of Functions

Power System (TITAN 7F) Qil Hydraulic

: (GAMMA 7F) Multi Fluid Compatible

DIMENSIONS AND SPECIFICATIONS

SLAVE ARM
Maximum Reach 78 inches
Lift capacity at Full Extension . 250 Ibs.
Jaw Capacityooeveeeeeenrenreine 4.0 inches (standard)
Jaw Closure Force 350 Ibs. max.
Weight in Air 147.0 Ibs.
Weight in Water 113.0 Ibs.

MASTER CONSOLETTE
10.0 inches
6.0 inches
19.0 inches
10.0 Ibs.

4.0 inches
7.5 inches
16.0 inches
27.0 Ibs.
14.5 Ibs.

PERFORMANCE

Max. Slew Rate
Waist Yaw 90°/sec.
Shoulder Pitch 90°/sec.
Elbow Pitch » 90°/sec.
Wrist Pitch ceeneen.n. 4000°/s8C.
Wrist Yaw 400°/sec.

Wrist Rotate
Slaved

Continuous..... 0 to 55 rpm
Wrist Torque 70 ft. Ibs. (peak)

HYDRAULIC REQUIREMENTS
3000 psi - 3.0 gpm nominal

ELECTRICAL REQUIREMENTS
25 watts nominal powered by 120/240 VAC or 20-30 VDC

TELEMETRY REQUIREMENTS

RS-422 type media - Single twisted wire pair;
RG-108 or equivalent

OPTIONS
Contact Schilling Development, Inc. for details.
Available in single and dual manipulator configurations.

YIH Y ENT,
WoWpl s

1L
7 T .-/ Moo e B e B .

O-EVELOPMENT

1832 DA VINCI CT., DAVIS, CA 95616
(916) 7536718 ¢ FAX 753-8092

Copyright 2011, AHMCT Research Center, UC Davis

Side Elevation View

Plan View

Description and specifications are subject to change without
notice. Contact Schilling Development for latest information.

O 'SEIHLSMONT AAYEIM

IHNVVSVYMNY A

&>

Robots focusing on the 21st century

in Japan, Kawasaki Heavy Industries was the pioneer in the
field of industrial robots, and has 20 years experience in their
development and manufacture.

Robots aim to liberate people from tedious, repetitive work,
heavy labor and work under disagreeable conditions, and at
the same time are effective in improving productivity.

In recent years our robots have been accepted throughout
industry, and today are fulfilling their early promise. Kawasaki
is prepared to meet a variety of needs with the four series
which form the core of our product line.

The powerful “Kawasaki E series” has a large working en-
velope and high level path control functions, and is designed
for all types of handling and welding work.

The “Kawasaki P series” has flexible action similar to that
of the human hand and can be readily adapted to assembly
and numerous other jobs.

The “Kawasaki J series” can be mainly adapted to assemb-
ling and arc-welding.

The new “Kawasaki U series” can be applied in wide varie-
ty of applications including handling, spot-welding, transport
between pressing machines.

An outline of the Kawasaki Robot line is given in this cata-
log, but what we are aiming for is not only to take over the

work of human beings. We are also working to expand hori-
zons and technology, and to develop robots to do work which
humans cannot.

For example, robots are being applied in fields such as
assembly of ultra-precise, ultra-miniature devices in super
clean rooms, jobs relating to nuclear power utilization and
medical therapy support tasks. .

Kawasaki has been steadily making progress. For instance,
we have completed a class 10 clean specification assembly
robot, and in the medical field have developed a robot to aid
in rehabilitation.

While striving for harmonious coexistence between people
and robots, and focusing on the kinds of robots that are truly
necessary, Kawasaki is constantly reviewing its technology so
that we may realize our goal of being the world's leading
maker of industrial robots.

To provide overseas customers with after-sales and tech-
nical services, we have established a worldwide network in-
cluding Kawasaki Robotics {USA)}, Inc. in Detroit and Bourne
End Robot Office in London.

Kawasaki is marching steadily into the world and the 27st
century.

of ultra-precise, ultra-miniature to handling of heavy cargo

ES65 @

Withstand
sure-fource.
Series-stud-welding.

Performing a double role by tool
changing.

large counter-pres-

EE10

Apply to both “Spray painting”
and “Sealant Dispensing”

Large envelope.

Traversing devices are available.

65 kgf 10kgf
=1Tmm +0.5mm
Rotation: 60°sec.
Out-in: 55°/sec. 2,000 mm/sec.
Up-Down: 55%sec.
1,390 kgf 580 kgf
PH260-CR

PH260

Kls program commands sim-
nlify operation.
Compact and light-weight.

L NN

KL's program commands sim-
plify operation.
Satisfying class 10.

Reversible arm enables efficient
operations in the back side. In-

Features stallation on ceiling possible.
Wide variety of applications,
such as handling and spot-
weiding.

Payload 100 kgf

Repeatability +0.3mm
Rotation: 120%/sec.
Max, Speed Qut-in: 200%/sec.
Up-Down: 110%/sec.
Weight 1,300 kgf
PH561-CR Remarks

2 Spot welding

rc welding
‘Assembling

Spray painting
Sealant dispensing
£ Handling

KL’s program commands sim-
plify operation.
Satisfying class 10.

Suit for small-precision-parts’ Suit for use in all of the clean
handing. rooms.
1kgf 1kgf 2.5kgf (5kgf)
+0.05mm +£0.05mm +0.1mm
500 mm/sec. 500 mm/sec. 1,000 mm/sec.

1,450 mm/sec.

1,450 mm/sec.

2,700 mm/sec.

15 kgf

% T.W.C.=Typical Working Configuration, F.0.C.=

20kgf

i Out Configuration

U

Copyright 2011, AHMCT Research Center, UC Davis

120 kgf

—[Kawasaki has impeccable records and technologies

Brief History as of April 1991 Nations with export records
1968 e Kawasaki takes the lead in Japan in manufacture of industrial Australia Mexico
robots. Brazil Singapore

1970 e Exclusive robot plant set up. Canada South Africa

e Domestic sales started. China Spain
ggg : gxs;ogts Stzrtetﬁi o 1000 Finland Taiwan (R.0.C.)

obot production reached 1,000.

1981 e Production of P-series robots started. &:;:any Eu};key
1983 ¢ Electric robot E-series developed. | T
1986 e Robot production reached 5,000. taly USA.

@ Detroit Robot Center opened. Korea (R.O.K.) USSR
1989 e J-series robot developed. Malaysia
1980 e Robot production reached 10,000.

8 Kawasaki Robotics (USA), Inc. in Detroit.
1991 @ Bourne End Robot Office established.

e U-series robot developed.

Kavyvasa’ki Roboty

“JS“TO”

Copyright 2011, AHMCT Research Center, UC Davis

— fullline-up of models for any type of work, from assembly

EX30/40

Versatile robot with medium
payload and medium size.

EX100/120/150

Wide envelope, less backward
dead space.

Features Large motion angle of each axis Internally housed piping of cool-
performs wide operation en- ing water and air for welding
velope. gun.

Payload 30/40 kgf 100/120/150 kgf

Repeatability +0.3mm =0.5mm .
Rotation: 110°/sec. Rotation: 80/110/90%sec.
Max. Speed Out-in: 110°/sec. Out-In: 90/110/90%/sec.
Up-Down: 110%sec. Up-Down: 90/110/90%/sec.

Weight 850 kgf 1,600/1,800/1,800 kgf

Compact size robot with high
speed, high accuracy and wide

Js-6

Easy to teach and operate arc-
welding robot with high accura-

Horizontally rotating axis is
adopted as the third axis.

Small side-and-backward dead
space enables high density lay-
out.

120 kgf
=0.5mm

Rotation: 90%/sec.
Qut-In: 90%/sec.
Up-Down: 80°%sec.

1,500 kgf

envelope. cy and wide envelope. Eeature
Features Advanced controller “A08” hav- Advanced controller "A22" hav- eatares
ing high level programming lan- ing high level programming lan-
guage “AS". guage “AS”.
Payload 10 kgf Skgf Payload
Repeatability =0.1Tmm +=0.1mm Repeatability

Max. Speed

5,000 mm/sec.

1,500 mmi/sec. {in air-cut motion]
100 mm/sec. {in welding motion)

at T.W.C.

Max. Speed REOC

Weight

150 kgf

140 kgf

Weight

Copyright 2011, AHMCT Research Center, UC Davis

B Kawasaki

Kawasaki Robot

LINE UP

KAWASAKI HEAVY INDUSTRIES, LTD.
ROBOT DIVISION

Tokyo Head Office ’
World Trade Center Bldg., 4-1 Hamamatsu-cho 2-chome, Minato-ku, Tokyo
105 Japan
Phone: Tokyo (03) 3435-6908
Telex: (NTT) 242-4371 KAWAJU J
Fax: (03) 3578-1573
Akashi Works
1-1 Kawasaki-cho, Akashi 673 Japan
Phone: (078) 921-1551)

Telex: (NTT) 5628-951
Fax: (078) 923-6548

OVERSEAS OFFICES

Beijing Office

Room No. 2602-05, China World Tower, China World Trade Center, No. 1,
Jian Guo Men Wai Avenue, Beijing 100004, People's Republic of China
Phone: (1) 505-1350 Telex: 22385 KHI CN

Fax: (1) 505-1351

Taipei Office

15/F, Fu-Key Bldg., 99 Jen-Ai Road, Section 2, Taipei
Phone: (2) 322-1752 Telex: 28393 KH! TPE
Fax: (2) 322-5009

Bangkok Office

20th Floor, Thaniya Plaza Business Complex No. 52, Silom Road, Bangkok,
10500, Thailand

Phone: (2) 231-2360~2 Telex: 82800 KAWAJU TH
Fax: (2) 231-2363

Manila Office

20th Floor, Metrobank Plaza Bldg., Sen. Gil J. Puyat Avenue, Makati, Metro
Manila, Philippines :

Phone: (2) 818-2786

Fax: (2) 818-2787

Jakarta Office

7th Floor, Skyline Bidg., Jalan M.H. Thamrin 9, Jakarta, Indonesia
Phone: (21) 320737 Telex: 61549 KAWAJU 1A
Fax: (21) 321049

Sydney Office
Suite 6, Level 8, Barrack House, 16-20 Barrack Street, Sydney, N.S.W. 2000,

Australia
Phone: (2) 262-4412 Telex: 177443 KAWAJU AA

Fax: (2) 262-4409

Cairo Office

Sth Floor, Abu El Feda Bldg., 3 Abu El Feda Sireet, Zamalek, Cairo, Egypt
Phone: (2) 3411361 Telex: 92653 KAWAJU UN

Fax: (2)3411358

OVERSEAS SUBSIDIARIES

Kawasaki Heavy Industries (USA), Inc.

599 Lexington Avenue, Suite 2705, New York, N.Y. 10022, U.S.A.
Phone: (212) 759-4950 Telex: 237004 KHINY UR .
Fax: (212) 759-6421

Houston Branch
Suite 3670, 601 Jefferson Street, Houston, Texas 77002, U.S.A.
Phone: (713) 654-8981 Telex: 2033089 KHI UR
Fax: (713) 654-8187

Kawasaki do Brasil industria e Comercio Ltda.

Avenida Paulista, 1294/1318-5 Audar, Sao Paulo, CEP 013010 Brazil
Phone: (11) 289-2388 Telex: 1122171 KAWA BR
Fax: (11) 289-2788

Kawasaki Heavy Industries (UK) Ltd.

4th Floor, 3, St. Helen's Place, London EC3A 6EB, United Kingdom
Phone: (71) 628-9915~7 Telex: 886303 KAWAJU LNG
Fax: (71) 628-8907

Kawasaki Heavy Industries GmbH

5th Floor, Wehrhahn Center, Oststrasse 10, 4000 Dusseldorf, F.R. Germany
Phone: (211) 350441 Telex: 8587421 KHI D

Fax: (211) 161844

Kawasaki Heavy Industries (Europe) B.V.

7th Floor, “River Staete”, Amsteidijk 166, 1079LH Amsterdam, Netheriands
Phone: (20) 6446869~70 Telex: 15115 KHI NL

Fax: (20) 6425725

Kawasaki Heavy Industries {Singapore) Pte, Ltd.
6 Battery Road, No. 18-04 Singapore 0104
Phone: 2255133~4 Telex: 25487 KAWAJU RS

Fax: 2249029

Kawasaki Heavy Industries (H.K.), Ltd.

16th Floor, Jardine House, Connaught Road, Central, Hong Kong
Phone: 522-3560 Telex: 75690 KHIHK HX
Fax: (845) 2905

KAWASAKI ROBOTICS(USA), INC.

Head Office

24402 Sinacola Court, Farmington Hills, M1 48331
Phone: (313) 474-6100

Fax: (313) 474-6101

KAWASAKI HEAVY INDUSTRIES (UK), LTD.

Bourne End Robot Office

1 Dukes Meadow, Millboard Road, Bourne End, Bucks SL8 5XF, England
Phone: (0628) 851288/851388

Fax: (0628) 851352 :

* Materials and specifications are subject to change without notice.

AGENT

* Kawasaki Robot is equipped with plenty of safety features; however, the surely measures for the operating staff should be taken by each customer concerned by
taking into account each specific working environment, installation conditions, application requirements, etc.

Copyright 2011, AHMCT Research Center, UC Davis

Cat. No.3L1484 May. '92@
Printed in Japarj

Lifting capacities

6'4"(1.93 m) 10,000 Ibs. (4,536 kg)
8 (2.44m) 8,000 lbs. (3,629 kg)
10’ (3.05 m) 6,400 Ibs. (2,903 kg)
15’ (4.57 m) 4,250 Ibs. (1,928 kg)
20" 4" (6.20 m) 2,950 Ibs. (1,338 kg)
25'8"(7.82m) 2,200 1bs. (998 kg)
31'.(9.45m) 1,500 1bs. (680 kg)

Copyright 2011, AHMCT Research Center, UC Davis Minimum 26,500 b. (12,020 kg) GVW chassis

6425

IMT’s 6425 offers lift capacities from 2,200 1bs.
at 25’ 8" to 10,000 lbs. at 6’ 4". The optional
manual 64" extension to 31’ handles up to 1,500

Ibs. at over 40’.

For traveling and maximum payload space, the
6425 stores compactly between cab and body in a

figure-four position.

Specifications

Crane rating
Standard boom length
Max. horizontal reach
Max. vertical lift
Mounting space
Crane weight

Stowed height
Rotation

Outrigger span
Outrigger style
Working pressure
Pump capacity

RBM required

64,000 ft.-lbs. (8.85 ton-ny
25" 8"(7.82 m)

31" (945)

40" 3" (12.27 nn

307(76.2 cnn)

3,950 lbs. (1,792 kg

11 2" (3.40m1)

3707 (6.46 rad.)

12" 3"(38.73 m)

Out and down

2,750 PSI (193.3 kg/cm™)
9 GPM (34 liter/min.)
900,000 in.-lbs. (10,373 kg-m)

| Panasonic

Industrial Robot

6 axis
Amculated arm robot

T

s

HMCT Research Center, UC Davi
o ~eSufficient care for safety.

Specification Specification
Model YAB101AM Position repeat accuracy Within =04 mm
Structure Multiple articulation Position detector Absolute encoder
Degree of freedom 6 axis Rotation 45 KW (AC servo motor)
Rotation *+150° (Front standard) Arm | Upper arm | 36 kW (AC servo motor)
! Arm Upper arm | +65°~60° {Vertical standard) Drive . Fore arm 36 kW (AC servo motor)
gﬁe'eam“ Front arm +30°-115° (Horizontal standard) Rotation 16 kW (AC servo motor)
g Rotation +240° Wrist | Bending 1.6 KW {(AC servo motor)
Wrist | Bending +190° (Front arm standard) Twisting 1.6 kW (AC servo motor)
) Twisting *350° Brake All axis with brake
Arm operation 36m2x360° Ambient temp. & humidity 0-45°C, 20-90%RH (no dew)
sectional area : 1. Soft fimit
Work Arm fore-back +480 ~ +2420mm (From rotation axis center to bending | | Operational limit protection 2. Hard limit (rotation axis)
enveiope operation distance | axis center) -
n - 3. Mechanical stopper (Standard axes)
Arm up-down ~57 ~+2580mm (From robot bottom to bending axis - —
operation distance | center) Operation lamp Lighting when servo ON
Rotation 112%sec Installation Horizontal floor, hanging from ceiling
Arm | Upper am | 112%sec Quter dimensions See the dimensional diagram
Momentary Front arm 112%sec Grounding Exclusive Class 3 grounding for robot via control unit.
max. speed Rotation 140560 Total weight of main unit 1600 kg
Wrist | Bending 140%sec
Twisting 240%sec
Max. pay load 100 kg
Rotation 60 kgm 150 kgfm?
Wrist allowable load -
Moment/inertia Bending 80 kgm 150 kgtm?
Twisting 36 kgm 80 kgim?
Specification Specification
Mode! YAB102AC 1. ?!aét 2. Stop S.n!érgeégésmp o
- : 4. Job reserve cal . Error release
Teaching system Teaching playback - - Input 6. Infence operation 7, Teaching permit
Route con-trol system PTP A& ce ngear or crrcular. interpolation) }g?\ét){%geie 8. Teaching select 9. Operation mode select
Control Control axis 6 axis. Option: external 6 axis (FTP) use 1. During operation 2. During stop
system Position detection Absolute encoder Output 2‘ 8uring‘ emerga stop
— — . Operation mode
Position control ngstal closed loop system i s;:]et:&al 5. Teaching mode 6. Mode selectable
Speed control Linear speed constant control (in CP control mode)
- Inputfoutput | Input Photocoupler (DC 24V 12 mA ON/OFF)
Memory system IC memory (battery back-up) putoulp
- specification | Output Relay contact (Contact Spec. DC24V 1A)
Standard 4000 points (2000 steps, 2000 sequences) E = Opton (RS232C
Memory capacity Possible to increase up to 16,000 points (8000 xternal communication | Option (RS232C)
steps, 8000 sequences) by optional unit. Analog output 2 ports {condition 1, 2}
1. Operation 2. Teaching 1. Hold end 2. Trouble 1 3. Trouble 2
Operation mode 3. Editing 4. System Setting Input 4. Chip sticking 5. Step up
5. Cassette Printer 6. Control Data : Welding 6. Insufficient water pressure
—— Welding ; tout
Memory Program divisions 254 control inputioutp Output 1. Weld start 1, 2, 4, 8
Display Job divisions 127 _ . 2. Gun pressure _
Edit protecting function Provided (write inhibit mark) Welding sequence setting | 15 types of welding start sequence are stored as library
Operation X 1. Mechanical stopper 2. Soft fimit
i panel 9-inch CRT & LED 3. CPU trouble monitor
5 r%esg:gyd Teaching o 4. lg):«;ble connection monitor
: 3-digit x 2-digit display & LED rotection function 5. Power trouble
box g o dispiay (Self diagonosis) 6. Panel temp. abnormal
External memory Specified ¢ recorder, floppy disc (option) 7. Servg troublrzla (%v)erspeed. overcurrent, detector
- Printer interface (option) trouble, overloa
Printer Printer (option, specified printer) 8. Welding trouble
: " 1. Linear 2. Circular (3-dimensional plane) S. Operation esror
Interpolating function | 3, PP 4. Palietizing (option) Structure Box ype hermetic
Coordinate system 1. Joint 2. Cylinder 3. Cartesian Cooling systern Indirect air cooling
selection 4. Tool 5. User Ambient temp. & humidity | 0-45% 20-80% RH (no dew)
. 1~999 mm/s {direct figure) or 1~99(%) 5-step 3-phase AC 200/220V £10% 50/60Hz 15 kVA or
Teaching | Speed sefting method | direct selection and detail setting possible in aput power supply over (Tap change needed for 220V)
teaching Grounding Exclusive Class 3 grounding for robot
Welding menu selection Welding start sequence 15 types (selectable from Structure Quter dimensions 700x560x1600 (WxDxH)
_ teaching box) Weight approx. 180 kg (Teach pendant, exclusive cable
Welding gun Gun ON & OFF g included.)
Pitch feed 05, 10, 20, 50. 10 mm/pitch Robot cable Exclusive cable 5m (option 10m) with conector
‘(35 tt)ypest) YT Teaching cable 7rn (option 10 m) (from CRT console)
. ’ ob unit, program unit, step uni - - g
Operation unit Uni-structural with control unit
peration u Address search CRT console Separable by option (with cabies)
Checking On-line fine adjustment 1. Speed 2. Condition output 1 & 2 (analog output)
operation Step forward/backward Step forward & step backward
" . -1 1. Change (Position, Speed, weld sequence)
Correcting function 2, Addition 3. Deletion
1. Output 2. Branch
3. Counter processing
Type of command & 4. Time waiting 5. Sub-routine
Edition = 8. Others
s . opy. division, connection, deletion, addition,
Editing function change, etc.
¥ ooy . Edition of job/program except those in operation is
Edit during operation possible
gfmeﬁm condition Job, program, robot lock, inputioutput fock
. Stop condition command | Job, program, step
Operation Reserve function Up 1o 16 jobs which are not in operation or reserve
Control function No. of job executions, robot operation time
In-fence operation Speed can be conirolled in the safety speed
changeover 1-300 misec.
Job select input 7-bit input system (max. 127 selectable)
Eg:’et:gf’ Inputioutput for | input 16 points (64 max. by option)
general use ['Output | 16 points (64 max. by option)
Japan: Matsushita Industrial Equipment Co., Ltd. o) D U
1-1, 3-chome, Inazu-cho, Toyonaka OSAKA 561 JAPAN u BJ ECT T
TEL: 06(862)1121 FAX.06(866)0709 EXPO RT O Printed in Japan

Copyright 2011, AHMCT Research Center, UC Davis

Panasonic

ial Robot

Industr

6 axes

lated arm robot

icCuU

Art

-
o

.

.

-

Specification Specification
Model YA-8061AM Position repeat accuracy Within £0.2mm
Structure Multiple articulation Position detector Absolute encoder
Degree of freedom 6 axes Rotation 3.6KW (AC servo motor)
Rotation +150° {Front standard) Arm Upperarm | 3.6kW (AC servo motor)
Arm | Upperarm | +90°—75° (Vertical standard) Drive po Fore arm 3.6kW (AC servo motor)
Operation Frontarm__| +90° —130° (Horizonal standard) 6 power Rotation | 1.2kW (AC servo motor)
range Rotation = 240° Wrist | Bending 1.2KW (AC servo motor)
Wrist | Bending +190° {(Front arm standard) Twisting 1.2kW (AC servo motor)
Twisting *190° Brake All axes with brake
?é?ﬁgﬁgfitﬂgg 4.2m2 x 300° Ambient temp. & humidity ?—g::ti”zn:)i;—got’/oHH (no dew)
Z‘{‘%‘:Iope g;g‘r;?{;b da;(s:tl;nce ;(}’szg;n;goso mm (From rotation axis center tobending | | oparational limit protection 2. Hard limit (rotation axis)
Arm up-down ~ 200 ~ +2640m (From robot bottom to bending axis - 3. Mechanical stopper (except for wrist axis)
operation distance | center) . Operation lamp Lighting when servo ON
Rotation 120%sec Painting color Munsell 10R5/12 (semi-lustered orange), partially
Arm | Upperarm | 120%sec - — Mur?sell NS (black) . —
Momentary Front arm 120%560 2) et n__ Honzonta-l ﬂoor..hanglr}g from ceiling
max. speed Rotation 140%500 Gu er :{mensxons See thg dimensional dnag‘ram i i
wrist |Bending 16097560 g ort::a e'in?, ! i Exclusive Class 3 grounding for robot via control unit.
Toisting 240%500 ght of main unit 1,300kg
Max. pay load 60kg
Wrist aflowabie foad Rotation 35kgm
i gwatie 024 [Bending | 2ok
Twisting 20kgm

Rated Snecificalion/Coniroiier

Specification Specification
Model YAB0B1AC 1. Start 2. Stop 3. Emerg. stop
15. E |
i i 4, Job reserve cancel 5. Error release
Teaching system Teaching playback Inoutiodtout input 6. In-fence operation 7. Teaching permit
Route control systemn PTP & CP (Linear or circular interpotaiton) fgfg x::)ltj san/] N 8. Teaching select 9. Operation mode select
Controt - use 1. During operation 2. During stop
system Control axes 6 axes. Option: external 6 axes (PTP) i
¥ External Output 3. During emerg. stop
Position detection Absolute encoder control P 4. Operation mode 5. Teaching mode
Position control Digital closed loop system 6. Mode selectable
Speed control Linear speed constant control (in CP control mode) Input/output | Input Photocoupler (DC 24V 12 mA ON/OFF)
Memory system IC memory (battery back-up) specification Output Relay contact DC 24V 1A
Standard 4000 points (2000 step, 2000 sequence) External communication Option (RS232C)
Memory capacity Possible to increase up to 16000 points (8000 step, Analog output 2 ports (condition 1, 2)
8000 sequence) by optional unit. 1. Hold end 2. Trouble 1 3. Trouble 2
1. Operation 2. Teaching . Input 4. Chip sticking 5. Step up
! 3, Editing 4. System setting , Welding 8. Insufficient water pressure
Operation mode 5. Cassette printer Welding inputfoutput :
3 e p 1. Welding start 1,2,4, 8
6. Control data control Output 2. Gun pressure
Memory Program divisions 258) ! 15 types of welding start sequence are stored as
Display Job divisions 127 Welding sequence setting Iibrgr‘; 4 9 q
Edit protecting function | Provided (write inhibit mark) :13: ggﬁﬁf&f}?ggﬁgf' Soft limit
Operation y 4. Cable connection monitor
Display panel 8-inch CRT & LED Pratection function g Eg\ra‘v:’r‘g?nupblgbn ormal
method g‘eachmg 3-digit x 2-digit display & LED (Self diagonasis) 7. Servo trouble (over-speed, overcurrent,
X detector trouble, overload)
External memory Specified cassette recorder, floppy disc (option) 8. Welding trouble
Printer Printer interface (option) 9. Operation error
Printer (option, specified printer) Structure Box type hermetic
: : 1. Linear 2. Circular (3-dimensional plane) Cooling system Indirect air cooling
interpolating function v
z 2 9 3. 5792 Péi”et'z‘““ 5 Ambient temp. & humidity | 0—45° 20—90%RH (no dew)
oordinate system 1. Joint 2. Cylinder 3. Cartesian N +109 KVA
selection 4.Tool 5. User Input power supply . S e eaecion tor oty . 12 A or
1--999 mm/s (direct figure) or 1 —99(%}) i : ;
T . Speed setting method §-step direct selection and detail setting possible Grgupdmg Exclusive Class 3 grounding for robot
eaching in teaching Structure Painting color Munsell 5Y8/1
R) Welding start sequence 15 types Outer dimensions 750 x 600 x 1520 (W x D x H)
Weiding menu selection | (soiactable from teaching box) Weight Approx. 80 kg (teaching box, cable included)
Welding gun Gun ON & OFF Robot cable Exclusive cable 5m with connector
Pitch feed 0.5, 1.0, 2.0, 50, 10mm/pitch Teaching cable 7m (from CRT console)
5 types) I : i
(CHT console Uni-structural with controf unit
Operation unit Job unit, program unit, step unit Separable by option (with cables)
Address search
Checking | omme o T Speed 2. Condionouui 152 fiobot Bedy/Culer Dimensions & Work Envelope
! S ljustment i tput
operation 5 (analog output)
tep 2800
forward/backward Step forward & step backward
Correcting function kd%ﬁ;\g; (g&s{;ﬂgg, speed, weld sequence) 2.
1. input 2. Branch
3. Counter processing
Type of command 3 4. Time waiting 5.Sub-routine
Edition 6. Others
Editing function gtzpy, division, connection, deletion, addition, change, -
— n - — 2
Edit during operation Sg’st;?!;:f job/program except those in operation is ~
cogrﬁﬁg?‘g condition Job, program, robot lock, input/output fock
Opera- Stop condition command | Job, program, step
tion Reserve function Up to 16 jobs which are not in operation or reserve
Control function No. of job executions, robot operation time
In-fence operation Speed limit possible in the range of safety speed
changeover 1-—-300m/sec.
E ' Job select input 7-bit input system (max. 127 selectable)
cg(;?rrgla Inputioutput | Input__| 16 points (64 max. by option)
for general use | Qutput | 16 points (64 max. by option)

Japan: Matsushita Industrial Equipment Co., Ltd.
Overseas Department '
1-1, 3-chome, Inazu-cho, T%onaka OSAKA 561 JAPAN

CopyrighER006,(@dEIMEA Ré5axt

ged2y,144i Davis

Panasonic.

Industrial Robot

Printed in Japan

Panasonic

Industrial Robot

6 axis

Articulated arm robot

30

Specification

Specification
Model! YABO31AM Position repeat accuracy Within +0.15 mm
Structure Multiple articulation Position detector Absolute encoder
Degree of freedom 6 axis Rotation 2.5 kW (AC servo motor)
Rotation +180° (Front standard) Arm | Upper arm | 25 kW (AC servo motor)
. Arm | Upper arm | +150°-75° (Front standard) Drive " Fore arm 25 kW (AC servo motor)
gﬁeféﬂ‘"“ Front arm +135°-110° {Horizental standard) Rotation 0.72 kW (AC servo motor)
g Rotation +240° Wrist | Bending 0.72 kW (AC servo motor)
Wrist | Bending +190° (Front arm standard) Twisting 0.72 kW (AC servo motor)
Twisting *350° Brake All axis with brake
Arm operation 39m2x360° Ambient temp. & humidity 0-45°C, 20-809%RH (no dew)
sectional area 1. Soft limit
Work Arm fore-back 1400~ +1565mm (From rotation axis center to bending | | Operational limit protection 2, Hard fimit (rotation axis)
envelope operation distance axis center} 3. Mechanical stopper (except for wrist axis)
Arm up-down =770~ +2295 mm (From robot bottom to bending axis n — ppe P
operation distance | center) Operation lamp Lighting when servo ON
Rotation 120%sec Instaliation Horizontal floor, hanging from ceiling
Arm | Upper arm | 120%sec Outer dimensions See the dimensional diagram
Momentary Front arm | 120%sec Grounding Exclusive Class 3 grounding for robot via control unit.
max. speed Rotation 200%sec Total weight of main unit 600 kg
Wrist | Bending 200%sec
Twisting 300%sec
Max. pay load 30 kg
Rotation 25 kgm 40 kgim?
Wrist allowable load ~
Momentfinertia Bending 15 kgm 30 kgim?
Twisting 12 kgm 20 kgim?
Specification Specification
Model YAB032AC 1. ?tagt 2. Stop 3. Err;esrgEStop
- ; 4. Job reserve cancel 5. Error release
Teaching system Teaching playback - - - Input 6. Infence operation 7. Teaching permit
Route conFrol system PTP A& cP (anear or c:mula{ interpolation) ;ggtétigﬂggé 8. Teaching select 8. Operation mode select
Control Control axis 6 axis. Option: external 6 axis (FTP) use 1. During operation 2. During stop
system Position detection Absolute encoder 3. During emerg. stop
Position control Digital closed loop system External Output 4. Operation mode
- - control 5. Teaching mode 6. Mode selectable
Speed control Linear speed constant control (in CP control mode)
Input/output | Input Photocoupler (DC 24V 12 mA ON/OFF)
Memory system IC memory (battery back-up) putoutp
- specification | Output . Relay contact (Contact Spec. DC24V 1A)
Standard 4000 points (2000 steps, 2000 sequences) e Goton (BS2320
Memory capacity Possible to increase up to 16,000 points (8000 External commurication | Option (RS232C)
steps, 8000 sequences) by optional unit. Analog output 2 ports (condition 1, 2)
1. Operation 2. Teaching 1. Hold end 2. Trouble 1 3. Trouble 2
Operation mode 3. Editing 4. System Setting Input 4. Chip sticking 5. Step up
5. Cassette Printer 6. Control Data Welding Welding 6. Insufficient water pressure
Memory Program divisions 254 control inputioutput 7 1. Weld start 1, 2, 4, 8
Display Job divisions 127 P __| 2 Gun pressure
Edit protecting function Provided (write inhibit mark) Welding sequence setting | 15 types of welding start sequence are stored as library
Operation . 1. Mechanical stopper 2. Soft limit
| panel @inch CRT & LED 3. CPU trouble monitor
Display - 4, Cable connection monitor
mehtod Teaching | 3_gigit x 2-digit display & LED Protection function 5. Power trouble
box (Self diagonosis) 6. Panet temp. abnormal
External rmemory Specified ¢ recorder, floppy disc (option} 7. Servg trouble;:‘ (od\;erspeed. overcurrent, detector
) Printer interface (option) trouble, overloa
Printer Printer (option, specified printer) 8. Welding trouble
1. Linear 2. Circular (3-dimensional plane) 9. Operation etror
Interpolating function 3 TP 4. P.alleq?zing {option) P Structure Box type hermetic
Coordinate system 1. Joint 2. Cylinder 3. Cartesian Cooling system Indirect air cooling
selection 4. Tool 5. User Ambient temp. & humidity | 0-45% 20-90% RH (no dew)
. 1~999 mm/s (direct figure) or 1 ~99(%) 5-step 3-phase AC 200/220V +10% 50/60Hz 15 kVA or
Teaching | Speed sefting method | direct selection and detal sefting possible in Input power supply over (Tap change needed for 220V)
teaching ’ Grounding Exclusive Class 3 grounding for robot
Welding menu selection | Welding start sequence 15 types (selectable from Structure | Outer dimensions 700x560x1600 (WxDxH)
) teaching box) Weight approx. 180 kg (Teach pendant, exclusive cable
Welding gun Gun ON & OFF €9 inciuded.)
Pitch feed 05, 10, 20. 50. 10 mmipitch Robot cable Exclusive cable 5m (option 10m) with conector
35 ;ypei) T . Teaching cable 7m (option 10 m) {from CRT console)
. . ob unit, program unit, step uni : - "
Operation unit Uni-structural with control unit
perat Address search CRT console Separable by option (with cables)
Checking On-line fine adjustment 1. Speed 2. Condition output 1 & 2 (analog output)
operation Step forward/backward Step forward & step backward
. " 1. Change (Position, Speed, weld sequence)
Correcting function 2. Adition 3, Deletion
1. Qutput 2. Branch
3. Counter processing
Type of command s 4. Time waiting 5. Sub-routine
Edition = 8. Others
™ . opy, division, connection, deletion, addition,
Editing function change, etc.
Edit during operation ggg»s?aeof job/program except those in operation is
ggme:ggg condition Job, program, robot lock, inputioutput lock
. Stop condition command | Job, program, step
Operation "Reserve function Up 1o 16 jobs which are not in operation or reserve
Control function No. of job executions, robot operation time
In-fence operation Speed can be controlled in the safety speed
changeover 1-300 misec.
Job select input 7-bit input system (max. 127 selectable)
Sg},ﬁ:&a’ Inputioutput for | Input 16 points (64 max. by option)
generaiuse "Ouiput | 16 points (64 max. by option)
Japan: Matsushita Industrial Equipment Co., Ltd. Panasonic

Overseas Department

11, 3-chome, Inazu-cho, Toyonaka OSAKA 561 JAPAN
TEL: 06(862)1121 FAX.06(866)0709

Industrial Robot

Printed in Japan

Copyright 2011, AHMCT Research Center, UC Davis

U e et

- MOTOMAN SERIES—CONSTANTLY A

+Floar, celling & apfional wall
mount,

«Floor, ceiling & optional wall -

mount.
«integroted arc welding package.

*Floor, wall or ceiling mount.

sinfegrated orc welding
peckage

Spec:ﬂcaﬁons h Manlpulator K3$. Monlpuloor K8SB <% i Manlpidator K108
Arc Weldlnq APPLICABLE APPLICABLE APPLICABLE
Assemply APPLICABLE APPLICABLE APPLICABLE
| D‘ié;‘;‘“e‘éisinq”‘ APPLICABLE APPLICABLE
1wl
|2 j{’;‘g“ggfﬁ‘aﬁ;‘mgm o APPLICABLE APPLICABLE
2 [Watorial Handiing APPLICABLE APPLICABLE APPLICABLE
<|. Moteriol Removal APPLCABLE o
| Spot Welding ' "
,Surrcce Finlshing : APPLICABLE o
“ APPLICABLE APPLICABLE

sFast cycla rates 2.5m/s i
98.4"/s »Optional extended reoch MS) | «Optional extended reach (MS) _
+Small footprint 0.11m? 1.2612 | version 1775mm &9 version 2577mm 101.5 1
8 degrees of freedom, vartical | 6 degrees of freedom, verticat | 6 degress of freédom. vortlcad | 7
jointec-arm type jointed-arm typa Jointed-arm type i
$-axis suning: $-axis turning: S-axis furning: 5
340%, 2.6110d/3 (18Q°/9) 340°, 1,81 rad/s (110°/9) 3407, 2.09 10d/5 (120°/%) 3
Arm L-oxis lower arm movement: L-axis lower arm movement: | L-axis fowef arm movement: L
240°, 3.48 rad/s (200°/9) 240°, 1,57 wd/s (90°/5) 240°,°2.09 rad/s (120°/3) 2
U-0xls upper arm movement: U-axis upper arm movement: Y-axis upper arm movement: y
-1 Maximum Motion 260°, 3.49 rad/s (200°/%) 270, 1.82 rd/s (110°/5) 275%, 2.09 red/s {120°/5) 2
Range ond Speed R-axis tolf: R-axis roll: R-axis toll: ' "
. 3609, 4.89 rad/s (280°/8) 360°, 4.19 rod/s (240°/8) | 360°, 4.59 rad/s (263°/9) n
wrist | B-Gxis pitch/yaw: B-axis pitch/yaw: B-axls pltch/yaw: _':
270°, 4.88 rod/s (280°/8) 270°, 4.19 rad/s (240°/s) 270°, 4,59 red/s (?.63°/s)]
T-axig fwist: T-axis twist: T-axls Twist: z
A) 400°, 7.33 rud/s (420°/8) 400°, 6.98 rad/s (400°/9) 400°, 6.98 rad/s (400°/5)
" | Reach - 859mm 33.82” 1322mm 52.01” 1555mm 61.227 1
. | Repatitve Positioning Accurncry| 0.1 mm £0.004° 0.1 mm +0.004" +£0.3 mm £0.004" :
CopynghpranMCT Research Center, qyu;@@ss) 5kg13ib 10Kkg22 1 :

AR o mAw L

SAM L 88T ik

T Al e S e E T

Manipulator KH}'QS,‘ :

" . Manipulaior X305 .| | Manipulator K80S
. , APPLICABLE
S | APPLICABLE
APPucAa'LEI.; - APPLICABLE
Lo APPLICABLE : APPLICABLE APPLICABLE -
d &th & 7th Axes for cumng 'APPLICABLE {APPLICABLE 'APPLICABLE
using » _APPLICABLE APPLICABLE .
| fioor or wall moum‘ "APPUCABLE APPLICABLE APPLICABLE -
*APPLICABLE

' Mnx Speed ,

pe | Dimensions |
1210 30 mm'
; BUULEE-) 9 m/ min
ioc) $$g§z o, 389, 8”/mm
eyt Working %807“) §5m/min
. . . . » 0

Range 98.47/mi

*Floor, wun or celling mount
*Durablg cycloidal wiist design,

.| *Opiona exténded reach (WS)

version 1971mm 77.66”

»Durable cycloldal weist deslgn.

«Optionaf shelf mount version,

*Optimized medium paylood
design (Versus “Modular™).

+Durable cycloidal wrist design,
*Opfional sheif mount version.

of fraedom, vanicul
m type ‘

6 degrees of freedom, vertical
lolnted-grm iype

8 degress of freedom, verifeat
jolnt ed-arm type

B degrees of freadom, vertical
Jotated-arm typa

nge
19 rad/s (120°/8) ..

| S-axis tumning:
.| 300°, 2.09 rad/s (1209/%)

 $-axis tuming:

3007, 2.00 rad/s {115°/s)

S-axis tuming:
300°, 1.82 rad/s (110°/5)

or arm movetent:.
19 rad/s (120°/8y - .

P L-axis Jower arm movement;

240°, 2.09 rad/s (120°/5)

L-gxls fower.arm movament:
1159, 2.00 rad/s (115°/9)

L-axis lower arm movement:
115°, 1.92 rod/s (110°/3)

8 arm movement; ¢
)9 rad/s (120°/S) S

U-axis upper arm movement:

[260°, 2.09 rad/s (120°/5)

U-oxis upper arm movement:
1409, 2.00 rad/s (115¢°/%)

U-axls upper arm movement:
140%, 1.92 rad/s (110°/s)

| Reaxis roli: R-oxis roll: R-0xls roli:
;9 fad/s (263°/5) 450°, 3.49 rqd/s {200°/3) 380°, 2.79 rad/s (160°/8) 3809, 2.44 rad/5.(140°/s)
' ' .| B-axis pifch/yow: 8-axls pitch/yaw: B-oxls pitch/yow:

h/ ows C © 1 270°,°3.49 rad/s (200°/9) 270°, 2,79 10d/s (160°/s) | 260°, 2.44 rad/s (140°/s)
,9 ?cxd /s (263° /s)‘ Lo T-axis twist: T-Qxis twist: T-xls twist: :

- 700%, 5.24 rad/s (300°/5) 700°, 4,18 rod/s (240°/5) 700°, 4,19 rad/s (240°/3)
51537 1787mm 70.35" 2003mm 78.86" [,,.<' [2387mm 93.88* 7,7«
| %0.004” | 0.2 mm £0,008" +0.3 mm =0.012" *0.5 mm £0.020"
b 30.%0 66,1, 60 kg 132 I 100 kg 221 1b

, ‘Copyuright 2011 AHMCT Research.C
13 1b o

a00 kn 1223 b

QAN ke 21RO th

TRON kn ANDT Th

Ceiling

. Manlpulator K1 508 s

- Manipulafor K2055B

Munlpn@!

APPLICABLE |

vartical Jointed-arm 'ype

vertical jolinted-arm. fype

vesticol jointed-arm fype

) - APPLICABLE APPLICABLE JAPPL
. APPLICABLE :- APPLICABLE JAPPL
| APPLIGABLE - APPLICABLE ! AppL
A ;'A#?SUCABLEL};’; - APPLICABLE . -APPL
umbt@ cyc!aidai wns! -Durabie cycloidal wrist sFloor and ¢eiling mount. sCompact §(
esign. i design. *Fast eyole rotes 1.5 séc *Modular wii
e ptimized arfonpance for | slargest payload In lis class.| in/out *High § Vai
S payload efS,US, MWU‘O" «Optimized performancs for | sDurable dedicated design.
(’55'9"‘) i poyoad ersus “Modular”
‘ gn)'
i 6 dagrees ot !reedom § degrees of freedom, § degrees of freetiom, ".| 4 degrees of

| horizontat jole

11 §-0xs tuming: -
: ;-,;:300" 1,75 1ad/s (100°/3)

$-axis tuming:
300°, 1.57 rad/s (80°/s)

S-axis tuming:
270°, 2,61 md/s (150°/5)

- [L-0is Tover arm' movement;
- 1118%; 1,78 rad/s €100°/5)

L-oxs lowsr arm movament:
118°, 1.57 rad/s (90°/9)

L-Gxis lowes orm movement:
759, 1.95 md/s (112°/5)

o {U-axis. upper arm movemant:

1409, 1. 75 fod/s (?00"/3)

U-gxis upper orm roverment:
140°, 1.57 rad/s (90°/5)

U.axis upper arm movement:
90°, 2.43 rad/s (139.5°/5)

1 Reauis ol
| 11:380°, 2.44 rad/s (140°/s)

R-axis roft:
380¢, 2.44 rd/s (140°/5)

L Beaxis p;fch/yaw

260°, 2,84 1od/s (?46"/3)

B-axls plich/yaw:
260°, 2,44 mad/s (1409/7%)

8-axis piteh/yow:
90°, 3.25 rad/s (186°/9)

T-oxis twist

T-axls twist:

T-axis twist:

Maximum Motion
ange;ond Speed

S-axis horizon

210°, 1.681

L-axis herzon
98°, 1.68

U-axis varfieal

150 mm 5.9

256 mm/s

R-axls tuming

7000 4,]9 fﬂdfs (2400/3) 7000’ 4,19 rd/s (240°/3) 360°, 4,14 r0d/$ (2370/3) : 4509, 2.09 1
11,2387 mm 93.98" © 2387 myn 93.98”- 1670 mm 65.75" Roach , 1315mm 51,
- £0.8 mm’20.020” £0.5 mm % 0.020" 0.3 mm =0.012 Repetifive Positioning Acourgey | =0.2 mm
R AR A e pene A0 NS S 20 kg 4. Poyloud 50kg 110 1
i|7630kg 36021 -~ [1600 kg 3536 b 700 ka 1543 b Weiaht 420 ko 926

Lifting capacities

6’4" (1.93 m) 10,000 Ibs. (4,536 kg)
8 (244 m) 8,000 Ibs. (3,629 kg)
10’ (3.05 m) 6,400 Ibs. (2,903 kg)
15" (4.57 m) 4,250 Ibs. (1,928 kg)
20’ 4" (6.20 m) 2,950 Ibs. (1,338 kg)
25' 8"(7.82 m) 2,200 Ibs. (998 kg)
31' (9.45m) 1,500 Ibs. (680 kg)

Copyright 2011, AHMCT Research Center, UC Davis Minimum 26,500 Ib. (12,020 kg) GVW chassis

b .

6425

IMT’s 6425 offers lift capacities from 2,200 Ibs.
at 25’ 8" t0 10,000 Ibs. at 6’ 4”. The optional
manual 64" extension to 31’ handles up to 1,500
Ibs. at over 40’.

For traveling and maximum payload space, the
6425 stores compactly between cab and body in a
figure-four position.

Specifications

Crane rating 64,000 ft.-1bs. (8.85 ton-m
Standard boom length 25'8"(7.82m
Max. horizontal reach 31'(9.45m.
Max. vertical lift 40" 3" (12.27 m)
Mounting space 30"(76.2 cm)
Crane weight 3,950 Ibs. (1,792 kg)
Stowed height 11" 2" (3.40m)
Rotation 3707 (6.46 rad.)
Outrigger span 12" 3"(3.73 m)
Outrigger style Out and down
Working pressure 2,750 PSI (193.3 kg/cm?)
Pump capacity 9 GPM (34 liter/min.)
RBM required 900,000 in.-lbs. (10,373 kg-m)

Copyright 2011, AHMCT Research Center, UC Davﬁs

Designed for trucks one ton and larger, the
2115 handles up to 3,500 lbs. at 6'. Additionally,
it has a standard boom reach of 15’ where it will
handle up to 1,400 lbs.

Smooth lifting and handling are accomplished
with the 2115’s hydraulic power system and the
high degree of articulation allows for extremely
close-in load placement.

Standard features include remote control with
25-foot cable, dual outriggers, a 36 inch hydraulic
boom extension, and a full 400 degree rotational
system.

Lifting capacities

6’' (1.83 m) 3,500 Ibs. (1,590 kg)
12’ (3.66 m) 1,750 Ibs. (795 kg)
15’ (4.57 m) 1,400 1bs. (636 kg)

Minimum 11,500 lb. (5,216 kg) GVW chassis

!
!

2115

Specifications

Crane rating 21,000 ft.-1b. (2.91 ton-m)
Standard boom length 15" (4.57 m)
Max. horizontal reach 15’ (4.57 m)
Max. vertical lift 23" 1"(7.03 m)
Mounting space 22" (55.9 em)
Crane weight 1,200 lbs. (544 kg)
Stowed height 8'2"(2.49m)
Rotation 400° (6.96 rad.)
Outrigger span 8'10"(2.69 m)
Outrigger style Out and down
Working pressure 2,350 PSI (165.2 kg/cm?)
Pump capacity 3 GPM (11.4 liter/min.)
RBM required 290,000 in.-lbs. (3,342 kg-m)

Copyright 2011, AHMCT Research Center, UC Davis

With lift capacities ranging from 24,000 lbs. at
8’ to 11,500 lbs. at 17, the 20017 is IMT’s heavy-
duty tirehandler.

Teamed-up with the IMT Tirehand #12, the
20017 will handle 36:00 x 51 tires weighing up
to 7,700 lbs.

Standard crane features include hydraulic out-
riggers with 15’ of stability, operator controls on
both sides of the crane for operator convenience
and optimum load visibility, and hydraulic 370

degree rotational system.
Lifting capacities
8' (2.44 m) 24,000 bs. (10,886 kg)
10’ (3.05 m) 20,000 Ibs. (9,072 kg)
13' 8’ 4.17m) 14,500 Ibs. (6,577 kg)
17 (5.18 m) 11,500 Ibs. (5,216 kg)

Minimum 54,000 1b. (24,494 kg) GVW chassis

i

Specifications

Crane rating
Standard boom length
Max. horizontal reach
Max. vertical lift
Mounting space
Crane weight

Stowed height
Rotation

Outrigger span
Outrigger style
Working pressure
Pump capacity

RBM required

200,000 ft.-Ib. (27.66 ton-m
17 (518

17" (56.18

28" 2"(8.59

36" (914 e

7,630 lbs. (3,467 kg
122371 w

370 (6.46 rad

15" (4.57

Fold-ove

2,500 PSI (175.7 kg/cm?
16 GPM (60.61 liter/min
3,000,000 in.-lbs. (34,575 kg-ir

Appendix B Puma End Effector Working Drawings

Gripper

Clipper

52

Copyright 2011, AHMCT Research Center, UC Davis

=3 Hw K]
€ 7 22E/ ¢ i - <
/ EXEpN~]
/'ég ok dh X«
—] sty YIddizS
o ' . v
25/ 9—{‘/;9"0 WIAZINIONZ G /) SIAEG IV wiNTOITE D) FO KLISAINING

Copyright 2011, AHMCT Research Center, UC Davis

CIv 2 g o
{ avIger 'y
] AT fakdbnll=}
7] ’
R mef T 2EddZS
(5
242/ Z«_:_\ IIIZINIIVG T /) SIAEG 30 wINTOIHTE D FO KLISZININGT

a3z (Z)
I uU-1909 [Tiu 1] TS
M~

F =
o WO —E=—= &)
| A —te»-ent
| grofe
640 —
i G 7] et
y
2773 SIS
PN
oo ol
acn‘] | oe/ > e S/
I
|
|) u

Copyright 2011, AHMCT Research Center, UC Davis R

e fv e

/ Y
2 2 VOO Q.
/Ij"l 2 NI
= DSUE, M/ ISR ‘2Q<‘<H?Jy -
P Y
24/ 7 . WIXFINONT (T /) SIAEQ 0 wiNBOHTE D FO KLISAIAING
gy (z)
Nl 10O UN ! FWDS
IS w09,y 4
THNAT WK 1O
‘\——>sz‘osz‘0 e
= T
—0-0-8-—— o #O——— T
—_—,) — @ — t y oL ,@-—"—‘—'@
ST
avid MG ZS\Q#-—/ l—fs:aa-
- pra——— §0] —— B

~—— a¥ ——

N DL~ OO Tl 1 NS

-1 g~

MRLLIY BIQ SOy po
27d + 127 g 21

L X% 4

_

S0

e g/ —

Copyright 2011, AHMCT Research Center, UC Davis

b

|
Qj/

Al VA

51~

O3HL AL Wiz £/

JM“#”*—_*~*¢ﬁ==;======;==
| ‘ TECHNICAL DATA _ s

_________._GBIPPERRP-SOEM

SPECIFICATIONS DIMENSIONS
RP-50P | RP-100P RP-50P | RP-100P
o Maximum Air Pressure 100 psi 100 psi Af 2.000 2.750
1.
. Gripping Force @ 80 psi | 20 Ibs. 30 Ibs. B 3/8 5/16
R 1A 11250 o X .
_\ g3 ap x 3008 |y eiaht 50z 80z C] 184 2.34
— Stroke 1/2 1 D] 875 1125
8 = ? J — 8 Displacement A0cu.in. }.22cu.in. E 1/2 1
|8 T L s Cylinder Bore 58 | Fl 375 | 600
t G 220 197
=2 \ % Al dowel hole diametersare SF. | H| 300 | 422
- A N\ 25 omxsneoe Locations are held to +.0005.
AR :o‘g'l?g "L 9/16 34 rﬂ.
| i"'_"—‘
o 2 S E ENCODER | :
ke (OPTIONAL) :
. ‘ SOREWS r§_1 el OPTIONAL) ,
5 DO NOT ! ' > t |
! overtighten. A . pom by
Q 1 Zero or very iittle ; N\!
; { - foj‘cobr:r‘;\l:r\ded ' \j
< S | rL_ J—j
.::"—'““ A@' ! e 3 T N
i S s;:; i i Ll i ~-———; = . ;i*u: =)
! ; - L g _SENSOHS Y ig. 112
L“?. FE e FEF D-peie e
STROKE ; 11116
i RP-100 ONLY /
" riNGERS sHow oPeN To Order, Please See Other Side of This Page
GRIPPING FORCE F/2 GRIPPING FORCE RP-50 F/2 GRIPPING FORCE RP-100 MAXIMUM
Gripping force is proportionalto LBS. § 80 bsi | ALLOWABLE
air pressure. 10 = LBS. 80 psi FINGER LENGTH
15
60 psi .
73 P 60 psi WARNING WARNING
i " WARNING WARNING
40 psi
5 40 psi
7 DO NOT EXCEED
20 psi , MAXIMUM
2 3 20 psi , ALLOWABLE FINGER
LENGTH AS SPECIFIED
" - " " ON CHARTS AT LEFT.
& & T e g 312 1T 212°31/2° 474 112" EyoreDING THE
At80 PSI air pressure FINGER LENGT FINGER LENGTH VALUES CAN CAUSE
RP-50P F=201Ibs. F/2=101bs. PRE-MATURE WEAR.

RP-100P F=30ibs. F/2=151bs.

Robohandin. AUTOMATION ACCESSORIES 171 Spring Hill Road, Trumbull, CT 06611 « Tel.: 1-800-ROBOHAND

!!opyngﬂt 5 R AT cscarch !!enter, ”E gaws

LI~/
//vs e -4
ot Ty sOISZ Sy o0 TS =) -
2579?;;: Sy, S 2o ———
/
° XIZNIONT ao SR 3T ST S g ,(1@79 e
XA IN)

os’/

Copyright 2011, AHMCT Research Center, UC Davis

~ :"Gﬁi PAE-]
220, -
1 Y=l e By
A3 fakdht =4
=) AIdd/ T Hlbg M2 9
- N ¥R
= g?"Z 5 IWRAIINIONT (/) SIAKG 30 wI/NDTOHTE D FO KLISAIAING

R

! DoLtNLIY -

| > u.frwns/vo/‘_—"’

—_—

/

{.
S

BoANIT AAG e
\

Z. 5/} 2

e

Copyright 2011, AHMCT Research Center, UC Davis

73 £ PE]
2205 =
/ 3/‘/.9977 =%
A3, NP IS
777 dAHUL L FHG T DTFIAT)
NN, -y T3S
14/02&_‘ v WIAZINIONZ (D7 SIAEG 0 wINDOHITE D FO RLISHINING
aesz ¢ p
I UL= DO, ILit/ 7l EeS

(o vy) LAY XS]

‘G772 2 AL
& . — 4rM2Q 2E-D

|
|
|

S
@Cf €V7a 7 dbéFs
— — ST 25-8

e

SZOw & , 47

Ve DL~ DQD ULty ISPANE 1" o~

50T e b OG T

‘€214 Z
— xAso$azxs

/ VAT g S1°C

(D
A\
]
i
|
Xy | iV Jroe-D WA IE'C

-
——

CO3ML

/— na w2 370

L

.
|(§;
'
”
1

[LJW/#-I(/A

- g 1T

-
o
§f

9'2 ' i b~

lﬁ
|

Copyright 2011, AHMCT Research Center, UC Davis

$3° &
220,

S>g

h. X
FMEEC) '

23 Jakdal [«

= MY~ R D,
EH2S ; —

2ot/ | IAZINIOVT T D) SIAEG 30 wINIOHTE D) FO KRLISXININGT

dozz (2)
S Tl 1D UL 1!/ /57_6’75

SV SO QL

SRy 433 BE ‘@

ISIN HSTTZS '
SBRIT 17y REDBUZ 7

ALDTS FO Ty

sﬁzé/\/
45w
— = OS U = v 2€-8 THET
3
€7 'o-——-{: }-
¥ = 3L w2 FC
™ Ysre
g o)
(| $20 T
—+3 —?'* !
2z (97 ! , ;
‘ . ! A
=y LN “
lm | E o8’/
o= o —@;———L t
i :
szo =~ | i ‘ i i
N I | i)
.
e
, ok

Copyright 2011, AHMCT Research Center, UC Davis

Appendix C Source Code

Copyright 2011, AHMCT Research Center, UC Davis

53

usercd.pg

plist usercd
.PROGRAM usercd

*

*

o We Mo Ne N5 %a we Ne we %E Se ws Se wa

Wed Nov 25 06:18:52 1992

AR AR AR AR AR AR R R AR R AR R AR R R AR AR AN KRR AR ARR AN AN AR AR

"USERCD" : zpoke Program

*
* This program is used process receive /send *
* interrupt . While Initialize or 2erxo , to exe_ *
* cute it. It is written In zpoke instructions , *
* so be care . *
*
*
*

* March 20 , 1992 . by Wang Xiaoxi

RARKNRR R AR AR R R AR KRR R RA R R AR KRR AR AR R RN AR RN RN AR AR

sInitialization program of poking the receive/send interrupt code
;into memory and setting handware addresses , vectors , buffers for

; rec/snd , and etc .

;You can use the following communication ports for sending or

sreceiving between VAL _II and supervisor.

- =

| port addr | interrupt vector addri port |
; : 176520 : 320 | ACCESSOTY#I:
; : 176600 : 340 : DIGIMIG :
; : 176610 : 350 : SUPBRVISOR:
; : 176620 i 360 : ALTER :
; : 176630 : 370 { ACCESSORY!2:
i
i
H

HARDWARE addresses:

hw = ~176520; ACCESSORY #1
recsta = hw;Recelve status port

rechw =

hw+2;Port for receilving data

sndsta = hw+4;Send status port
sndhw = hw+6;Port for sending data

~a e

HARDWARE interrupt vector addresses

intvector = ~320;ALTER port
recintvec = intvector;Receive vector addr
sndintvec = intvector+4;Send vector addr

7 SYMBOLS:

del = ~377
dle = ~220
stx = ~202
etx = ~203

H
;RAM addresses:

start = ~67000;start address

’
’

Variables and buffers of receiving / sending data

var = start+450;begin address

sndptr = var;Pointer to current sndbuf

recptr = var+2;Pointer to current recbuf

dleflag = var+4;Byte to control sending second DLE

cntrlbt

= var+6;Used as control byte during receiv

dmpwd = var+8;Jmp to proper entrance

char =

var+l0;Temporary unit for datum receive

checkin = var+l12;Checksum for receiving
Cepyipght 2y]A;HMCQ_" Research Center, UC Davis

reg0 = var+l6;Save RO

realend = var+l8;Real send end

sndbuf = var+20;Send buffer , 128 bytes
sndend = var+150;End of send buffer

recbuf = var+152;Receive buffer , 128 bytes
recend = var+280;End of receive buffer

r
;PROGRAM addresses:
entrnc = start;Table of jmp to proper task
;durlng recelving data
recv = start+10;Entrance of receive interrupt
sndv = start+300;Entrance of send interrupt

.
1
.
’
.
’
.
’

H
.
7

i
.
’

7
’

Poke in the receive interrupt service routine

Set entrances for respective task

ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

Beginning of
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

Entrance for
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

ZPOKE
ZPOKE
ZPOKE

ZPOKE

ZPOKE
ZPOKE
ZPOKE
ZPOKE

Entrance for
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

entrnc = recv+l8;Entrance for handing DEL DLE
entrne+2 = recv+50;Entrance for recelving STX
entrnc+4 = recv+100;Entrance for processing <data>
entrnc+6 = recv+150;Entrance for checking second DLE
entrnc+8 = recv+202;Entrance for checking checksum

receive interrupt : recv

recv = ~113737

recv+2 = rechw;Get datum from ACCESSORY #1
recv+4 = char

recv+6 = ~10037;Preserve RO

recv+8 = regq0

recv+1l0 = ~13700

recv+l2 = Jjmpwd

recv+l4 = ~170;Jump to the proper entrance
recv+l6é = entrnc

receiving DEL DLE : recv+18

recv+18 = ~123727;DLE ?

recv+20 = char

recv+22 = dle

recv+24 = ~1410;Yes , to recv+42
recv+26 = ~123727

recv+28 = char;Then 1f DEL ?
recv+30 = del

recv+32 = ~1403;Yes , to recv+40
recv+34 = ~152737

recv+36 = ~2;Set format error
recv+38 = cntrlbt

recv+40 = ~556;Exit to recv+262
recv+42 = ~12737;Set next entrance for receive STX
recv+4qd = ~2

recv+46 = jmpwd

recv+48 = ~552;Exit to recv+262

recelving STX : recvt50

recv+50 = ~123727

recv+52 = char;STX ?

recvt54 = stx

recv+56 = ~1364;No ,Jjmp to recv+34 set err
recv+58 = ~12737

recv+60 = recbuf;Set recptr

recv+62 = recptr

recv+64 = ~5037

recv+66 = recbuf+d

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

163
164

166
167

168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
130

’

~

ZPOKE
ZPOKE
ZPOKE
2POKE
ZPOKE
ZPOKE
ZPOKE
2POKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

ZPOKE
ZPOKE
ZPOKE
ZPOKE

Entrance for
2POKE
ZPOKE
ZPOKE
ZPOKE

ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

ZPOKE
ZPOKE
ZPOKE

ZPOKE
ZPOKE
ZPOKE
ZPOKE

Entrance for
field :
2POKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

Wed Nov 25 06:18:52 1992

recv+68
recv+70
recv+72
recv+74
recv+76
recv+78
recv+80
recv+82
recv+84
recv+86
recv+8s
recv+90

recv+92
recv+94
recv+96
recv+98

processing

recv+100
recv+102
recv+104
recv+106

recv+108
recv+110
recv+112
recv+114
recv+116
recv+118
recv+120
recv+122
recv+124
recv+126
recv+128
recv+130
recv+132

BoRoNo® B B o0 B W

i

recv+134 =

recv+136
recv+138
recv+140

recv+142
recv+l44
recv+146
recv+148

checking

recv +150

recv+150
recv+152
recv+154
recv+l56
recv+158
recv+160
recv+162
recv+tl64
recv+l66
recv+168
recv+170
recv+172

oW

i

[S A I]

L}

Honou

~5037
recbuf+6
~5037
recbuf+8
~5037
recbuf+10
~5037
recbuf+l2
~5037
recbuf+l4
~5037
checkin;Zero checksum

~12737

~4

jmpwd;Set next entrance
~521;Exit to recv+262

<data field> :recv+100
~1237217

char;DLE in the data field ?
dle

~1421;Yes jmp recv+142 set next entrance

~113777;No ,then reserve this datum
char

~510; (recptr}

~63737

char;Calculate checksum

checkin

~23727;Data over ?

recptr

recbuf+l6

~2404;No to recv+l36

~152737;Yes set data overrun error
~3

cntribt

*477;8xit to recv+262

~5237
recptr;Inc recptr
~474

~12737

~6

Jmpwd

~470;Exit to recv+262

f there is second DLE in the data

~123727

char;DLE ?

dle

~1467;Yes ,to recv+268

~123727

char;ETX ?

etx

~1004;No, to recv+174 to set err
~12737

~10

jmpwd; Set next for receiving checksum
~454;Exlt to recv+262

Copyright 2011, AHMCT Research Center, UC Davis

191
192
193
194
195

i97
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
2217
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

ZPOKRE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
2POKE
ZPOKE
ZPOKE
i
;Entrance for
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

ZPOKE
;DEL DLE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

~

ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

ZPOKE
ZPOKE
ZPOKE

ZPOKE
ZPOKE
ZPOKE
ZPOKE

recv+174
recv+176
recv+178
recv+180
recv+182
recv+184
recv+186
recv+188
recv+190
recv+192
recv+194
recv+196
recv+198
recv+200

checking
recv+202
recv+204
recv+206
recv+208
recv+210
recv+212
recv+214

recv+216

recv+218
recv+220
recv+222
recv+224
recv+226
recv+228
recv+230
recv+232
recv+234
recv+236

recv+238
recv+240
recv+242
recv+244
recv+246
recv+248
recv+250
recv+252
recv+254
recvt256
recv+258
recv+260

recv+262
recv+264
recv+266

recv+268
recv+270
recv+272
recv+274

~152737

~5;Set PROTOCOL err

cntrlbt

~123727

char

8tx;STX ?

~1320;No, to recv+92 to set err
~12737

recbuf;Yes,maybe another package coming
recptr;Set recptr

~1527317

~q

cntrlbt;Too many messages err
~711;Goto recv+92 receive data fleld

checksum :rect202

= ~123737

= char;Checksum error ?

= checkin

= ~1403;No , to recv+21ié

= ~152737;Yes , set checksum err
= Al

= cntribt

= ~12737;Reset entrance for receive

~0

Impwd

133727

recbuf;control byte = 0 ?
~377

~1004;No , to recv+238
~133727

entrlbt;Any error ?

~7

~1414

@8 80w o8 8w o8n

~413
recbuf+4; then zero alter data
~5037
recbuf+6
~5037
recbuf+8
~5037
recbuf+10
~5037

= recbuf+l2
= ~5037

= recbuf+l4

[

LI I S |

= ~13700;Recover RO
= regl
= ~2;RTL

= 712737
= A4

= 4mpwd
= ~654

249 :Poke in the send interrupt service routine

250
251
252
253
254

.

’
;Begining of send interrupt :sdnv
sndv = 7~23727;DLE in the fileld ?

ZPOKE
ZPOKE
ZPOKE

sndv+2 =
sndvtd =

dleflag
~1

usercd.pg Wed Nov 25 06:18:52 1992 3

255 ZPOKE sndv+6 = ~1006;No to sndv+20 319 ;
256 ZPOKE sndv+8 = ~12737;Yes ,send second DLE 320 ZPOKE sndv+128 = ~2;RTI
257 2POKE sndv+10 = dle 321 ;
258 ZPOKE sndv+12 = sndhw 322 ;
259 ZPOKE sndv+14 = ~5037;Clear dleflag 323 ;HARDWARE interrupt vector addresses :
260 ZPOKE sndv+16 = dleflag 324 intvector = ~320
261 ZPOKE sndv+18 = ~2;RTI 325 recintvec = intvector;Receive vector address
262 ; 326 sndintvec = intvector+4;Send vector address
263 ZPOKE sndv+20 = ~117737;Send this datum 327 ;
264 ZPOKE sndv+22 = ~176; (sndptr) 328 ;Set up the vectors:
265 ZPOKE sndv+24 = sndhw 329 ZPOKE recintvec = recv;Start addresses of receive
266 ZPOKE sndv+26 = ~10037;Preserve RO 330 ZPOKE recintvec+2 = ~30340;KERNAL mode
267 ZPOKE sndv+28 = temp 331 ZPOKE sndintvec = sndv;Start addresses of send routine
268 ZPOKE sndv+30 = ~23727;< Position of data field ? 332 ZPOKE sndintvec+2 = ~30340;KERNAL mode
269 ZPOKE sndv+32 = sndptr .END
270 2POKE sndv+34 = sndbuf+4 .
271 ZPOKE sndv+36 = ~2420;No ,to sndv+70
272 ZPOKE sndv+38 = ~13700;> Position of data field ?
273 ZPOKE sndv+40 = realend
274 2POKE sndv+42 = 2162700
275 ZPOKE sndv+44 = *3
276 ZPOKE sndv+46 = ~23700
277 ZPOKE sndv+48 = sndptr
278 ZPOKE sndv+50 = ~3011;to sndv+70
279 ZPOKE sndv+52 = ~117700
280 ZPOKE sndv+54 = ~136; (sndptr) icurrent byte =>R0
281 ZPOKE sndv+56 = ~60077;Calculate checksum
282 ZPOKE sndv+58 = ~154; (realend)
283 ZPOKE sndv+60 = ~120027;DLE ?
284 2POKE sndv+62 = dle
285 ZPOKE sndv+64 = ~1002;No , to sndv+70
286 ZPOKE sndv+66 = ~5237
287 ZPOKE sndv+68 = dleflag;Set dleflag
288 ;
289 ZPOKE sndv+70 = ~13700;Recover RO
290 ZPOKE sndv+72 = temp
291 ZPOKE sndv+74 = ~5237;Inc sndptr
292 ZPOKE sndv+76 = sndptr
293 ZPOKE sndv+78 = ~123727;Having send DEL ?
294 2POKE sndv+80 = sndptr
295 2POKE sndv+82 = sndbuf+2
296 ZPOKE sndv+84 = ~1006;No , to sndv+98
297 ZPOKE sndv+86 = ~153737;Yes ,set control byte
298 ZPOKE sndv+88 = cntrlbt
299 ZPOKE sndv+90 = sndbuf+5
300 ZPOKE sndv+92 = ~142737;Clear control byte
301 ZPOKE sndv+94 = ~7
302 2POKE sndv+96 = cntrlbt
303 ;
304 ZPOKE sndv+98 = ~23737;End of send data ?
305 2POKE sndv+100 = sndptr
306 ZPOKE sndv+102 = realend
" 307 ZPOKE sndv+104 = ~3413;No ,to sndv+128,RTI
308 ZPOKE sndv+106 = ~12737
309 2POKE sndv+108 = sndbuf+l;Reset sndptr
310 ZPOKE sndv+110 = sndptr
311 ZPOKE sndv+112 = ~12737;Reset sndend
312 ZPOKE sndv+114 = sndbuf+22
313 ZPOKE sndv+116 = realend
314 ZPOKE sndv+118 = ~105037;Clear error byte
315 ZPOKE sndv+120 = sndbuf+5
316 ZPOKE sndv+122 = ~42737
317 sndv+124 ~100;Close send interrupt

318 Cmmwts}ﬁiw ﬁﬂmiﬁwrch Center, UC Davis

Pcg.pg

~e Ne e

DO

u e Ne

Wed Nov 25 06:18:52 1992 1

The Process Control Program ’pcg’ handles the communications
and ALTOUT alter data to the Robot Control Program ‘main’

ALTOUT 0, dx, dy, dz, rx, ry, rz

ZPOKE sndbuf+4 = rexcptn

tmpv = ({rexcptn BAND ~377)*256) BOR HAND
ZPOKE sndbuf+6 = tmpv

~ e

ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE
ZPOKE

~

Send the current (XY 2 O A T) or 6 joint value to HOST

sndbuf+8 = x[0]*32

sndbuf+10
sndbuf+12
sndbuf+14
sndbuf+16
sndbuf+18
sndbuf+22

™
=
=
=
=
=

x[1}*32
X[2]*32
x[3]*32
x[4]*32
®x[5]*32
0;2ero checksum

IF (ZPEEK(recptr) == recbuf+16) AND (mready == 0) THEN
2POKE recptr = rechuf
excptn = ZPEEK (recbuf) BAND ~377
oxmess = ZPEEK (recbuf+2)
handst = oxmess BAND ~377

oxXmess =

dx
dy
dz
rx
ry
re
mr
vr
END

(oxmess/256) BAND ~377

= ZPEEK (recbuf+4)

nous

ZPEEK {recbuf+6)
ZPEEK (recbuf+8)
ZPEEK {recbuf+10)
ZPEEK (recbuf+12)

= ZPEEK (recbuf+14)

eady = ~1
eady = 1

ZPOKE sndbuf+4 = vrxeady
ZPOKE sndsta = ~100;Turn on send interrupt

WAIT

IF STATE(l) <> 7 THEN
extstate = TRUE

END
UNTIL exts

tate

Copyright 2011, AHMCT Research Center, UC Davis

main.pg Wed Nov 25 06:18:53 1992 1

H H 6] OX byte | hand byte | 2
; H | |
; Communication Data ; 813 1 (or X)) or X offset | 4
; i | |
dx = 0 ; 10132 (or v) or Y offset | 6
dy = 0 ! |
dz = 0 1213_3 (or 2) or 2 offset | 8
rx =0 | |
ry = 0 1413 4 (or 0) or X rotation 110
rz = 0 | |
excptn = O 16/3_5 {(or A) “or Y rotation 112
oxmess = 0 | |
handst = 0 18{3_6 (or T) or 2 rotation [|14<~-~end
; | - |
; Communication Data (Real) 201 ETX I DLE |
; used in MAIN control loop i [{
; end-->22| DLE | checksum |
rdx = 0
rdy = 0 Control byte:
rdz = 0 From VAL_II: bit0=1/0: Cumulative/Non_ cumulative
rrx = 0 bitl=1/0: World / Tool mode
rry = 0 bit2=1/0: Include location data / Not
rrz = 0 bit3=1/0: Transformation/joint angle
rexcptn = 0 bit4=1/0: Enable /Disable path_modify
roxmess = 0 Initial :Cumulative(l)+World(2)+Enable (16)=19
rhandst = 0 To VAL II : = 0: No change

= 1: Switch to TOOL mode

; locks and flags = 2: Swltch to WORLD mode

; =-1: Exit
mready = 0 Exror byte:
vready = 07 From VAL II: 0: Noerror
trmode = FALSE bit7 = 1:
H bit0=1/0: 1st joint error / no
i =0; bit1=1/0: 2nd Jjolnt error / no
FOR 1 = 0 TO 5 bit2=1/0: 3rd joint error / no
trp(i] = 0 bit3=1/0: 4th joint error / no
END bit4=1/0: Sth joint error / no
H bit5=1/0;: 6th Jjoint error / no
; Joint limit values bit7 = 0:
i bit0-~2:error of the communication as to VAL_II
11imit (0] = ~158 bité = 1:
11imit (1] = ~226 both .

1limit (2] = -51 To VAL_II: =0 : no error
1limit (3] = -108 1 : checksum error
11limit[4) = ~99 2 : framing or format error
1limit[5] = ~265 3 : data overrun
H 4 : tool many messages
ulimit {0} = 158 5 : protocol error
ulimit {1} = 42 6 : timeout error
ulimit [2] = 231 7 : location out of range
ulimit {3} = 168 hand byte:
ulimit (4] = 98 from VAL II:current status , to VAL II: reset
ulimit (5] = 265 0000a000 a=0: close ; =1: open
OX byte:

current status(from VAL_II) or reset (to VAL_II)
a8 a7 a6 a5 a4 a3 a2 al =0:0ff; 1l:on

~e waowe

The normal format of the communicatlion between VAL II and the
supervisor is as following:

TE A NE NE e e NE e N4 e hE e e e e e e Wa Ne NE NE NR MR NE Ne e %u e %a MK We Na e N %a wy wa We Na Ss Ne %e e Se e e e s s e % Na we &

’

;sndptr—-—-——— >01 DEL | | ;Initilize communications

; = | | ZPOKE sndptr = sndbuf+l;Set sending pointer

; 21 STX | DLE | 2POKE realend = sndbuf+22

; i | | :Set up the vectors:

; 4] . e i entrl T <=-recbuf ZPOKE recintvec = recv;Start addr of recelve routine
7 COPYrIghtj(ﬁ)]r At Iggsearc}r?%“?er* U¢ i ZPOKE recintvec+2 = ~30340;KERNAL mode

main.pg Wed Nov 25 06:18:53 1992 2

ZPOKE sndintvec = sndv;Start addr of send routine
ZPOKE sndintvec+2 = ~30340;KERNAL mode

ZPOKE jmpwd = 0;Set entrance of receive

ZPOKE recptr = recbhuf

ZPOKE recsta = ~100; Turn on recelve interrupt

Initialize send protocol data and other control information

ne W

ZPOKE sndbuf = ~177400;DEL

ZPOKE sndbuf+2 = ~101220;DLE STX

ZPOKE sndbuf+20 = ~101620;ETX , DLE

ZPOKE dleflag = 0;Control whether send second

.
r

iDLE during sending setpoint data
;start communication
getpoint = TRUE;Control DECOMPOSE be done only
;once every 28 ms
rexeptn = 0;Switch mode
;0: no change 1: TOOL
;22 WORLD 3: open hand
74: close hand ~1: exit
altrmode = 19;cumulative (1) +WORLD (2)
; +enable(16)
extstate = FALSE;WHEN ext_state = TRUE
;When extstate = TRUE ,
;the Robot Control Program ‘main’
sand Process Control Program ’pcg’
jend .
;Read the current location into x[}
HERE #3jnt
DECOMPOSE x{] = #jnt
iRead the HAND status into open_close
IF HAND == 0 THEN
openclose = 0
ELSE
openclose = 8
END
iRead the OX 1--8 into ox_state
oxstate = BITS(1l, 8)
mode = 2200
oxmess = oxstate
r
;Start the Process Control Program "pcg" and internal ALTER
PCEXECUTE pcg, 0, 0O
ALTER (-1, altrmode)
MOVES HERE

rocessing change corresponding to control byte and hand byte
rom coordinator , and obtaln current setpoint value , hand_status
and OX_signals .

DO

P
£

N R R R

IF mready THEN
rexcptn = excptn
TOXMEeSS = OXmess
rhandst = handst
rdx = dx
rdy = dy
rdz =

Irx = rx

rry = ry

rrez = rz

mready = 0

GepyiBkcp b SHMCIBe s Sisnes US N

i

trmode = FALSE
END
CASE rexcptn OF
VALUE 0: ; Do nothing
vready = 0;
VALUE 1: ; Command Mode
NOALTER
VALUE 2: ; Tjoint mode (Teleopertion)
IF NOT trmode THEN
HERE #int
DECOMPOSE trp[] = #jnt
TYPE “getting original point®
trmode = TRUE
END
trp(0)] = trp{0)+rdx/32
trp{l] = trpil)+xrdy/32
trp[2) = trp(2)+rdz/32
trpl{3] = trp[3)+rrx/32
trp{4) = trp(4}+rry/32
trp(5) = trp(S)+rrz/32
FOR 1 =0 TO S
IF trpf{i] < 1limit{i) THEN
trp{i) = 1limit([i}
END
IF trp(i] > ulimit(i] THEN
trpll] = ulimit({i}
END
END
MOVE #PPOINT (trp[0), trp(l}, trp(2], trpl3), trpl{4d}, trpl(5]}
vready = 0;

VALUE 10:

DRIVE rdx, rdy/64, rdz/64
VALUE 11:

MOVE #PPOINT (rdx/32, rdy/32, rdz/32, rrx/32, rry/32, rrz/32)
VALUE 12:

MOVES #PPOINT(rdx/32, rdy/32, rdz/32, rrx/32, rry/32, rrz/32)
VALUE 13:

MOVE TRANS (rdx/32, rdy/32, rdz/32, rrx/32, rry/32, rrz/32)
VALUE 14:

MOVES TRANS (rdx/32, rdy/32, rdz/32, rrx/32, xry/32, rrz/32)
VALUE 15:

TYPE "Exiting Main®
extstate = TRUE
END
CASE rhandst OF
VALUE O ¢ Do nothing
’

VALUE 1: Close Gripper
CLOSE

VALUE 2: ; Open Gripper
OPEN

END
IF rexcptn <> 0 THEN
rexcptn = 0
rhandst = 0

rdx = 0
rdy = 0
rdz =
rrx =
rry =
rrz =

(=Nl eNal

END

HERE #3int

DECOMPOSE x(] = #3nt; Ger current joint values
UNTIL extstate ;Loop untll extstate

main.pg Wed Nov 25 06:18:53 1992

PCEND

Copyright 2011, AHMCT Research Center, UC Davis

ddi.h Wed Nov 25 06:16:43 1992 1

/*

** file: ddi.h

** date: 6/29/92

*k by: Gregory D. Benson

** desc: TSR device driver interface
*k

*/

/* DDI signiture */
#define DDI 0x00

/* User functions */

#define DDI_INIT 0x00
#define DDI_QUIT 0x01
#define DDI_QUIT_ALL 0x10
#define DDI_CHECKDRIVERS 0x11

/* Error codes */

#define DDI_ERR UNDEF 1 /* device driver number undefined */
#define DDI_ERR REINIT 0x10
#define DDI_ERR_REQUIT 0xl11

/* Intexrface INT */

.

#define DDI_INT_USER 0x61 /* INT Ox6l (Software INT) */

/* Data Structures */
struct ddilist_elm_tag {
char *name;
char *desc;
int (*interface) (Int, unsigned, unsigned, unsigned);
int (*init) (vold);
int (*quit) (vold);
}i

typedef struct ddilist_elm tag DDILIST_EIM;
/* Typedefs */

typedef unsigned char byte;

/* Function prototypes */

int DDIcheck drivers(void);
int DDIsend_message (int driver, int function, void far *packet);

Copyright 2011, AHMCT Research Center, UC Davis

S

ddi.c Wed Nov 25 06:16:27 1992 1

/*

** file: ddi.c

** date: 6/29/92

*x by: Gregory D. Benson

** desc: TSR device driver interface
*h

*/

#include"stdio.h"
#includetdos.h"
#include®ddi.nh"

/*
** DDIcheck_driver - determine if the drivers have been installed
*/
int DDIcheck_drivers ()
{
unsigned far *intptrsegq;
unsigned far *intptroff;
vold far *isrpointer;

intptroff = (unsigned far *) MK_FP (0x0000,0x0184);
intptrseg = (unsigned far *) MK FP (0x0000,0x0186);
/*

printf("DDI: intptrseg = %X, intptroff = $X\n", intptrseqg, intptroff);
*/

isxpointer = MK_FP (*intptrseg, *intptroff);

// printf(“isrpointer = $X\n", isrpointer);

if (isrpointer != RNULL)
return (DDIsend_message (DDI, DDI_CHECKDRIVERS, NULL});

else
return(0);
}
/%
** DDIsend message ~ send a message to a driver
*/

int DDIsend message(driver, function, packet)
int driver;
int function;
void far *packet;
{
int rv;
union REGS regs;

regs.h.al = (byte) driver; /* ADC driver */
regs.h.ah = (byte)} function; /* ADC read function */
regs.x.bx = FP_SEG (packet);

regs.x.cx = FP_OFF (packet);

rv = int86(DDI_INT USER, ®s, ®s);
return (rv});

Copyright 2011, AHMCT Research Center, UC Davis

dd

/*
L]
* %
*k
* ¥
**k
*%
* &
*k

*/
/%

iinit.h Wed Nov 25 06:16:42 1992 1

file: ddiinit.h
date: 6/29/92
by: Gregory D. Benson
desc: TSR device driver routines - data structures and function prototypes
note:

Do not complle with Stack Overflow turned on.

Definitions */

#ifdef _ cplusplus

fel

fen

/*

int
int
int
int
int
int
int

#define _ CPPARGS ...

se
#define __CPPARGS

dif

Function Prototypes */

DDIint_user(void);

DDIinterface (int, unsigned, unsigned, unsigned);
DDIinit (vold);

DDIquit {void);

DDIinit_int(void);

DDIinit_all(veid);

DDIquit_all(void);

Copyright 2011, AHMCT Research Center, UC Davis

ddiinit.c Wed Nov 25 06:16:30 1992 1

/*

#*% file: ddiinit.c

** date: 6/29/92

** by: Gregory D. Benson

** desc: TSR device driver routines {initialization)
*%k

** note:

*k

** Do not compile with Stack Overflow turned on.
*/

char *progname = “ddiinit®;

#include <stdio.h>
#include <stdiib.h>
#include <dos.h>
#include <conlo.h>
#include <alloc.h>
#include <math.h>

#include "ddi.n" /* device driver interface definitions */
#include "ddiinit.h" /* definitions specific to ddiinit.c */
#include "drivers.h" /* the device driver list */

/* Comiler Data */
/* reduce heaplength and stacklength to make a smaller program in memoxry */

//extern unsigned _heaplen = 1024;
extern unsigned _stklen = 2048;

/* External Functions */

void interrupt DDIintentry (void);

/* Global Data */

void interrupt (*DDIint_user_old) (_ CPPARGS);
byte DDIinit flag = 0;
byte DDIquit_flag = 0;

/%
** DDI support routines
*/

/*
** DDIint_user - application interface software INT (DDI_INT_USER)
*/
int DDIint_user{void)
{
unsigned dev, func, xv;
unsigned regAX, regBX, regCX, regDX;

regAX = _AX;
regBX = _BX;
regCx = _CX;
regDX = D¥X;

dev = regAX & OxO00FF;
it = 8 9xgo H
uncCopy(rfg gt%]>1>, A]zﬂ\/fC ese%rch Center, UC Davis

/* make sure that the driver request is in range */
if (dev >= driver count) {
rv = DDI_ERR_UNDEF;
}
else {
/* execute the appropriate driver interface */

rv = (driver_list[dev].interface) (func, regBX, regCX, regDX):

return{xrv);

}

/*
** DDIinterface - DDI interface routine
*/
int DDIinterface(int operation, unsigned regBX,
unsigned regCX, unsigned regDX)
{
switch{operation}) ({

/* current no DDI support routines */
case DDI_INIT:

return(DDIinit () };
case DDI_QUIT:

return (DDIquit ()};
case DDI_QUIT_ALL:

return (DDIquit_all());
case DDI_CHECKDRIVERS:

return (TRUE) ; /* return true */
default:

return{0);

1

/%
** pDDIinit -~ intialize DDI
*/
int DDIinit (vold)
{
/* make sure we haven’t already called DDIinit () */
if (DDIinit_flag) {
return (DDI_ERR_REINIT);
} else {
DDIinit_flag = 1;
}

/* currently no initialization here */

return{0);
}

/*
** DDIquit ~ uninitlalize DDI
*/
int DDIquit (void)
{
/* make sure we haven’t already called DDIquit () */
1f (DDIquit_flag) |
return (DDI_ERR_REQUIT);
} else {
DDIquit_flag = 1;
}

/* reset old interrupt vector */

ddiinit.c Wed Nov 25 06:16:30 1992 2

setvect (DDI_INT USER, DDIint_user_old); /*
** MAIN
/* currently no uninitialization here */ */
int main{(void}
return(0); : {
} unsigned progsize;
/* /* Make sure that the DDI is not already installed */
** DDIinit int - initialize the software INT (DDI_INT_USER) if (DDIcheck _drivers()) {
*/ printf (*DDI: Drivers already installed\n");
int DDIinit_int (void) exit (0);

{ }
/* set up Interrupt vector */
/* install the interface INT vector */
DDIint_user old = getvect (DDI_INT_USER); DDIinit_int();
setvect (DDI_INT USER, DDIintentry);
/* initialize all the drivers */

return (TRUE} ; DDIinit_all();
} /e
/* printf ("_psp = %.4X:%.4X\n", psp, 0);
** DDIinit_all - initialize all drivers in the ’‘driver list’ printf{"_Ss = %,4X:%.4X\n", _SS, 0);
*/ printf("_stklen = %X\n", _stklen);
int DDIinit_all (void) */
{
int i; progsize = (_SS - _psp) + (_stklen >> 4) + 1;
1f (progsize <= 0) {
for (1 = 0; 1 < driver_count; i++) { printf ("\n%s: Error invalid program size (_S$S - _psp)\n",
if ((driver list{i}.init) {(}) { progname) ;
printf ("DDI: Cannot initailize %s\n", exit (0);
driver_list{i].name); }
return (FALSE);
} /* Terminate and Stay Resident */
else { printf ("DDI:; Drivers are now resident\n");
printf ("DDI: %s (%s] initialized\n",
driver list(i}.name, keep (0, progslize);
driver list(1}.desc); return{0);

} }
}
return (TRUE) ;
}

/*
** DDIquit_all - uninitialize all drivers in the ‘driver list’
*/
int DDIquit_all (volid)
{
int i, rv = TRUE;

for (I = 0; 1 < driver count; i++) {
1f ((driver_list[i].quit)()) {
printf (*DDI: Cannot quit %s\n",
driver_list[i].name);
rv = FALSE;
}
else |
printf ("DDI: %s [%s] uninitialized\n",
driver_list([i}.name,
driver list(i].desc);
}
}

return(rv);
} Copyright 2011, AHMCT Research Center, UC Davis

intentry.asm Wed Nov 25 06:16:38 1992 1

file: intentry.asm

I
r
; date: 6/29/92 _DDIintentry PROC
: by: Gregory D. Benson Jmp procstart
; desc: DDI INT interface entry point db ‘ddiint’
: procstart:
push si
push di
.MODEL large push es
push ds
EXTRN _DDIint_user:PROC push bp
mov bp, DGROUP
.DATA mov ds, bp
mov bp, sp
_DDIaxhold dw 0
_DDIbxhold dw 0 ; save current 2?x regs
_DbDIcxhold dw 0 mov DGROUP:_DDIaxhold, ax
_DDIdxhold dw 0 mov DGROUP:_DDIbxhold, bx
mov DGROUP:_DDIcxhold, cx
sstemp dw 0 mov DGROUP: DDIdxhold, dx
_sptemp dw 0
_DDIsshold dw 0 ; swlitch to a new stack
_DbIsphold dw 0 mov bx, DGROUP
hewstack db 1000h dup (?) lea cx, newstacktop
_newstacktop equ $-2 call _DDInewstack
; save old stack segment and pointer
.CODE mov DGROUP;_DDIsshold, bx
mov DGROUP :_DDIsphold, cx
PUBLIC _DDIintentry
PUBLIC _DDInewstack ; restore ?x given at entry
mov ax, DGROUP:_DDIaxhold
H mov bx, DGROUP:_DDIbxhold
; _DDInewstack - switch to a new stack mov ¢cx, DGROUP: DDIcxhold
; mov dx, DGROUP: DDIdxhold
; Input: BX = new stack segment (ss)
; CX = new stack pointer (sp) ; call the DDI interface routine
H ’ call _DDIint_user
; Output: BX = old stack segment (ss)
H CX = old stack pointer (sp) ; save current ?x regs
; mov DGROUP: DDIaxhold, ax
; Global Data: _sptemp, _sstemp mov DGROUP:_ DDIbxhold, bx
; mov DGROUP:_DDIcxhold, cx
mov DGROUP:_DDIdxhold, dx
_DDInewstack PROC
cli ; disable interrupts to change stack ; switch to the old stack
pop si ; get return address for stack mov bx, DGROUP:_DDIsshold
pop di mov cx, DGROUP: DDIsphold
mov DGROUP:_sstemp, ss ; save original stack segment call _DDInewstack
mov DGROUP :_sptemp, sp ; save orlginal stack offset
mov ax,bx ; set new stack segment ; restore the ?x regs returned from _DDIint user
mov ss,ax mov ax, DGROUP:_DDIaxhold
;lea ax,cx ; set new stack offset mov bx, DGROUP:_DDIbxhold
mov ax,cx mov cx, DGROUP:_DDIcxhold
mov sp,ax mov dx, DGROUP:_DDIdxhold
mov bx,DGROUP:_sstemp ; return old stack segment pop bp
mov ¢x,DGROUP:_sptemp ; return old stack offset pop ds
pop es
push di ; put return address on stack pop di
push si pop si
sti ; enable interrupts iret

t . DDIintent ENDP
_DDInewstackCopyéEbgyzm 1, AHMCT Research Center, UC Davis - nrentry

intentry.asm Wed Nov 25 06:16:38 1992

END

Copyright 2011, AHMCT Research Center, UC Davis

drivers.h Wed Nov 25 06:16:41 1992 1

/*
** file:
** date:
XK by:
** desc:
*/

#include
#include
#include

drivers.h

6/29/92

Gregory D. Benson

list of avallable device drivers

“adedrv.h*
"kindrv.nh*
“comdrv.h®

DDILIST ELM driver list{] = {

{
{
{
t
}

"DDI", "Device Driver Interface", DDIinterface, DDIinit, DDIquit },
"ADC", "ADC Driver", ADinterface, ADinit, ADquit },

“KIN", "KIN Driver", KINinterface, KINinit, KINquit },

"CcoM", "COM Driver", COMinterface, COMinit, COMquit }

i

int driver count = 4;

Copyright 2011, AHMCT Research Center, UC Davis

adcdrv.h Wed Nov 25 06:16:43 1992 1

/* /* Data Structures */
** file: adcdrv.h
** date: 6/28/92 struct ad_counts_tag {
*k by: Gregory D. Benson unsigned int data[CHANNELS]);
** desc: ADC driver - header file }:
ekl typedef struct ad counts_tag ADCOUNTS;
*/

struct ad_degrees_tag {
/* User functions */ double data[CHANNEILS]};

b:
#define ADC_START 0x10 typedef struct ad_degrees tag ADDEGREES;
#define ADC_STOP 0x11
#define ADC_GETCOUNTS 0x12 struct ad_radians_tag {
$define ADC GETDEGREES 0x13 double data[CHANNELS];
#define ADC_GETRADIANS 0x14 IH
#define ADC_SETOFFSETS 0x15 typedef struct ad radians_tag ADRADIANS;
#define ADC_SETCONFIG 0Ox16
#define ADC_GETDIG 0x20
fdefine ADC_GETTOGGLE 0x21 /*
#define ADC_SETTOGGLE 0x22 struct adpacket_tag |
#define ADC_GETCOUNTER 0x30 int type;
#define ADC_SETCOUNTER 0x31 union {

ADCOUNTS counts;
/* Error codes */ ADDEGREES degrees;
} pos;

#define ADC_ERR_UNKNOWNFUNC 0%10 }i
#define ADC_ERR_REINIT 0x11 typedef struct adpacket_tag ADPACKET;
#define ADC_ERR_REQUIT 0x12 */

/* Definitions */
/* Function Prototypes */
#lfndef TRUE

#define TRUE -1 int ADinterface(int, unsigned, unsigned, unsigned);
#define FALSE 0 int ADinit (void);
#endif int ADstart (vold);

int ADstop(void);
#define AD_BASE 0x330 int ADquit (vold);

void interrupt ADint_isr(void);
#define AD_LSBCH AD_BASE int ADsend_counts (unsigned, unsigned);
tdefine AD_START AD_BASE int ADsend_degrees{unsigned, unsigned);
tdefine AD_MSB AD_BASE+1 int ADsend radians({unsigned, unsigned);
#define AD_MUX AD_BASE+2 int ADset_offset (unsigned, unsigned);
#define AD DIG AD_BASE+3 int ADset_confilg(unsigned, unsigned);
#define AD_STATUS AD_BASE+8 int ADget_digital (unsigned, unsigned);
#define AD DMAINT AD_BASE+9 int ADget_toggle(unsigned, unsigned);
#define AD PACER AD_BASE+10 int ADset_toggle(unsigned, unsigned);
#define AD_GAIN AD_BASE+11 int ADget_counter (unsigned, unsigned);
#define AD_CNTO AD_BASE+12 int ADset_counter (unsigned, unsigned);
#define AD_CTR1 AD_BASE+13
fdefine AD_CTR2 AD_BASE+14
#define AD_8254 AD_BASE+15
#define AD_FULL_RANGE 4096
#define AD_ORIGIN AD_FULL_RANGE/2
#define AD_INT_ISR OxOF /* INT OxO0A (Hardware INT 0x02) */
#define CHANNELS 6
¥define MAXCHANNELS 6
#define ADC BUTTON1 0x02
f#define ADC_ BUTTON2 0x04
#define

¥ .
mc'ggggggﬁt 2011, Kﬁ?\/ICT Research Center, UC Davis

adedrv.c Wed Nov 25 06:16:31 1992

/k

** file: adedrv.c

** date: 6/28/92

*x by: Gregory D. Benson
** desc: ADC driver

#include<stdio.h>
#include<conio.h>
#include<dos.h>
#include<math.h>
#includeddi.h"
#include"adcdrv.h”

/* Definintions */

#define PI 3.1415926536

/* Global Data */

vold interrupt (*ADint_isr old) ();
void interrupt (*ADint_user_old) ();
byte ADCold_1i8259 mask;

byte ADCi8259bit;

byte ADCdmaint mask;

byte ADCinit_fTag = 07
byte ADCquit_flag = 0;
byte ADCtoggle = 0;
byte ADCtoggle_new = 0;
byte ADCtoggle_old = 0;
byte ADCtoggle mask = 0;
long ADCcounter = Q;

ADCOUNTS adincounts, adincounts_busy;
ADDEGREES adindegrees, adindegrees busy;
ADDEGREES adk, adkold;

ADDEGREES conv_cnt_deg =
ADDEGREES jconfig =
ADDEGREES Offschilling =

{-t.0, -1.0, 1.0, -1.0, -1.0, 1.0}};
{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}};

/* Low Pass Fllter constants */

double a_T = 0.005999;

double a_F = 10.0;

double a_coeff = 0;

/*

** ADinterface ~ INT interface dispatch
*/

int ADinterface{operation, regBX, regCX, regDX)
int operation;
unsigned regBX, regCX, regDX;
{
switch (operation) {

case DDI_INIT:
return (ADinit ());

case DDI_QUIT:
Copyright 2011, Ad e Talessreqh Center, UC Davis

{ 0.079, 0.080, 0.080, 0.084, 0.082, 0.082 }};

case ADC_START:

return (ADstart{));
case ADC_STOP:

return {(ADstop());
case ADC_GETCOUNTS:

return (ADsend_counts (regBX, regCX));
case ADC_GETDEGREES:

return (ADsend_degrees (regBX, regCX)):
case ADC_GETRADIANS:

return (ADsend_radians(regBX, regCX));
case ADC_SETOFFSETS:

return (ADset_offset (regBX, regCX));
case ADC_SETCONFIG:

return (ADset_conflg(regBX, regCX));
case ADC_GETDIG:

return (ADget_digital (regBX, regCX}));
case ADC_GETTOGGLE:

return (ADget_toggle(regBX, regCX));
case ADC_SETTOGGLE:

return (ADset_toggle(regBX, regCX));
case ADC_GETCOUNTER:

return (ADget_counter (regBX, regCX));
case ADC_SETCOUNTER:

return (ADset_counter (regBX, regCX});
default:

return (ADC_ERR_UNKNCWNFUNC) ;

}

/k
** ADinit - intlalize the ADC board and interrupt vector
*/
int ADinit (void)
{
int 4;
byte temp;
unsigned int ch;

/* Make sure we haven’t already initialized */
1f (ADCinit_flag) {
return (ADC_ERR_REINIT);
} else {
ADCinit _flag = 1;
}

/* initiallze global data structures */

for (1=0; 1 < CHANNELS; i++) {
adincounts.data{i] = 0;
adincounts_busy.data{i] = 0;
adindegrees.data{i) = 1.0;
adindegrees_busy.data[l] = 1.0;
}

/* initialize filter */

a_coeff = exp(-2*PI*a_T*a F); /* a=e” (-2*PI*T*F) */

/* initialize AD16JR */

outportb (AD_GAIN, 0x05); /* 0-5V mode */

ch = (unsigned) CHANNELS - 1;
ch <<= 4;

adedrv.c Wed Nov 25 06:16:31 1992 2

/*

ch &= 0xFO;
outportb (AD_MUX, ch); /* Use channels O-CHANNELS */

/* set up interrupt vector */

ADint_1isr old = getvect (AD_INT ISR);
setvect (AD_INT_ISR, ADint_isr);

/* set 18254 timer on AD16JR */
/* set for 1KHz */

outportb (AD_8254, 0x74);
outportb (AD_CTR1, OxF4);
outportb (AD_CTR1, 0x01);
outportb (AD_8254, 0xB4);
outportb (AD_CTR2, 0x02);
outportb (AD_CTR2, 0x00);

/* set ADCi82539bit for interrupt mask */

ADC18259bit = 0x01 << (AD_INT ISR - 0x08);
ADCdmaint_mask = ((AD_INT ISR ~ 0x08) << 4) | 0x83;

/* make sure that interrupts are disabled until ADstart */
ADstop();

return(0);

** ADstart - start the ADC interrupts

*/

int ADstart (void)

{

}

/*

byte tenmp;

disable();

/* Now enable the 8259 for ADC interrupts */
outportb (0x21, inportb (0x21) & ~ADCi8259bit);
outportb (AD_PACER, 0x01);

outportb (AD_DMAINT, ADCdmaint_mask);

outportb (AD_STATUS, 0x00);

enable () ;

return(0);

** ADstop -~ stop the ADC interrupts

*/

int ADstop{void)

{

byte temp;
disable();

outportb (0x21, inportb (0x21) | ADCi8259bit);
out oy [alt }(}klggé)HMG yResearch Center, UC Davis

outpoxtb (AD_DMAINT, 0x00);

enable () ;
return (0);

}

/%
** ADquit -~ disable ADC interrupts and restore old handler
*/

int ADquit (void)

{
/* make sure we haven’t already quit */

if (ADCquit_flag) {
return{ADC_ERR_REQUIT) ;
} else {
AbCquit_flag = 1;
}

/* stop the ADC interrupts */
ADstop();
/* reset old interrupt vector */

setvect (AD_INT_ISR, ADint_isr old);

return(0);
}

/*
** ADint_isr - ADC interrupt service routine
*/
void interrupt ADint_isr{void)
{
int i;
unsigned int msb, lsb, ch;

lsb = (unsigned) inportb(AD_LSBCH);
msb = (unsigned)inportb (AD_MSB);

ch = lsb & OxOF;

1sb &= 0xFO0;
1sb >>= 4;
msb <<= 4;

adincounts_busy.data[ch] = msb | lsb;
adindegrees_busy.datafch] = conv_cnt_deg.data{ch]
* (double) adincounts_busy.data(ch);

adk.data(ch] = (1 - a_coeff)*adindegrees_busy.data(ch]
+ a_coeff * adkold.datafchl;

adkold.datafch] = adk.datafch};

disable();
1f (ch == (CHANNELS - 1))} {

for (1=0 ; 1 < CHANNELS; 1++) {
adincounts.data[l}] = adincounts_busy.data[i];
adindegrees.data{l]) = adk.data(i];

adcdrv.c Wed Nov 25 06:16:31 1992 3

adoutput = MK _FP (regBX, regCX);
/* process button toggle */

disable(};
ADCtoggle new = (inportb(AD_DIG)); for (1 = 0; 1 < CHANNELS; i++) {
ADCtoggle mask = (ADCtoggle old * ADCtoggle new) adoutput->data{i] = jconfig.datall]) *

(adindegrees.data(i] + OffsSchilling.datafi})*

& ADCtoggle_new;
(M_PI / 180.0);

ADCtoggle_old = ADCtoggle_new;

ADCtoggle = ADCtoggle mask ~ ADCtoggle; }
enable () ;

} return{(0);
ADCcounter++; }
enable () ;
/*
outporthb (AD_STATUS, 0x00} ; /* Start conversion for next sample */ ** ADset offset ~ set offset values from regBX:regCX
outporth (0x20, 0x20); /* Send EOI to 8259 */ */
} int ADset_offset (unsigned regBX, unsigned regCX)
{
/* int i;
** ADsend counts - copy current ADC count values to regBX:regCX ADDEGREES far *adinput;
*/

int ADsend_counts(regBX, regCX) adinput = MK_FP({regBX, regCXx);

unsigned regBX, regCX;

{ disable();

for (1 = 0; 1 < CHANNELS; i++)

int i; {
Offschilling.data[l] = adinput->datal(i};

ADCOUNTS far *adoutput;
}

adoutput = MK FP(regBX, regCX); enable () ;
return (0} ;

disable(); }

for (1 = 0; 1 < CHANNELS; i++) |

adoutput~>data{i] = adincounts.data{i]; /*
} ** ADset_config - set config values from regBX:regCX

enable () ; */
int ADset_config(unsigned regBX, unsigned regCX)

return (0} ; {

} int i;
ADDEGREES far *adinput;

/*
** ADsend_degrees - copy current ADC degree values to regBX:regCX adinput = MK FP(regBX, regCX):
*/

disable();
for {1 = 0; 1 < CHANNELS; i++) {
jeonfig.data[l] = adinput->data(i];

int ADsend_degrees (unsigned regBX, unsigned regCX)
{

int 1;
ADDEGREES far *adoutput; }

enable () ;
adoutput = MK FP (regBX, regCX); return(0);

}
disable();
for {1 = 0; 1 < CHANNELS; 1l++) { /*
adoutput~>datali] = jconfig.data{l] * (adindegrees.data{i]} ** ADget digital - get digital input information from ADC board

+ Offschilling.datafi]); */
} int ADget_digital (unsigned regBX, unsigned regCX)
enable{); {
return{0); unsigned char *dig;

}
dig = MK_FP(regBX, regCX);

*

4* ADsend_radians - copy current ADC radian values to regBX:regCX

*

i:t ADsend_radians (unsigned regBX, unsigned regCX)

(int i; ,
ADR&3§§%§gﬁﬁfbfﬁqgﬁﬁﬁEﬁ;Resemch(Smner,UCfDavm i: ADget_toggle - get button toggle information from ADC board

*dig = inportb (AD DIG);

return{0);

adcdrv.c Wed Nov 25 06:16:31 1992

*/
int ADget_ toggle (unsigned regBX, unsigned regCx)
{

unsigned char *dig;
dig = MK FP(regBX, regCX);

disable(};
*dig = ADCtoggle;
enable();

return{0);
}

/*

** ADset_toggle - set button toggle information
*/

int ADset_toggle (unsigned regBX, unsigned regCx)

{
unsigned char *dig;

dig = (unsigned char *) MK_FP (regBX, regCX);

disable();
ADCtoggle = *dig;
enable () ;

return(0);
}

/*
** ADget counter ~ get ADC interrupt counter
*/
int ADget_ counter(unsigned regBX, unsigned regCX)
{
long *count;

count = (long *} MK_FP (regBX, regCX);

disable();
//*count = ADCcounter;
enable () ;

return{ (int) 321 };
}

/*

** ADset_counter - set ADC interrupt counter

*/

int ADset_counter (unsigned regBX, unsigned regCX)
{

long *count;

count = (long *) MK FP(regBX, regCX);
disable();

ADCcounter = *count;

enable{);

return (regBX);

Copyright 2011, AHMCT Research Center, UC Davis

St

comdrv.h Wed Nov 25 06:16:42 1992

/k

** file: comdrv.h

** date: 7/9/92

** by: Gregory D, Benson

** desc: COM driver - header file
* &

*/
/* User functions */

#define COM INSTALL 0x10
#define COM DEINSTALL 0x1l
#define COM_SET SPEED 0x12
#define COM SET_PARITY 0x13
#define COM_LOWER DTR 0x14
#define COM RAISE DTR 0x15

#define COM_TX 0x16
#define COM TX_ STRING 0x17
#define COM_RX 0x18

#define COM_TX_READY 0x19
#define COM_TX_EMPTY 0x1A
#define COM RX_EMPTY 0x1B
#define COM_FLUSH_TX ox1c¢
#define COM_FLUSH_RX 0x1D
#define COM_CARRIER Ox1E

/* Error codes */

#define COM ERR_UNKNOWNFUNC 0x10
f#define COM ERR_REINIT 0x11
#define COM_ERR_REQUIT 0x12

/* Definitlons */

#ifndef TRUE
#define TRUE -1
#define FALSE 0
f#endif

/* Data Structures */

typedef struct {
int parity;
int stop_bits;
} PARITY;

typedef struct ({
union {
int portnum;
int speed;
unsigned char tx;
char *txs;
unsigned char rx;
PARITY par;
} arg; /* arguements */
int xv;
} COM_PACKET;

/* Function Prototypes */

int comMintedrQREEN20LLABMET Basaarsh & enigl LG Dgvis

int COMinit (void);
int COMquit {(void);

comdrv.c

/*
** file:
** date:
** by:
** desc:
*k

*/

comdrv.c
7/8/92
Gregoxy D. Benson

Wed Nov 25 06:16:26 1992

COM driver - serial communications driver

#include<stdio.h>
#include<conio.h>
#include<dos.h>
#include<math.h>
#include¥*ddi.h®
#include”comdrvsh"
#¥include"ibmcom.h"

/* Definintions */

/* Global Data */

byte COMinit_flag = 0;
byte COMquit_flag = 0;

/*

** COMinterface -~ INT interface dispatch

*/

int COMinterface (operation, regBX, regCX, regDX)
int operation;
unsigned regBX, regCX, regDX;

{

COM_PACKET *pkt;

pkt = (COM_PACKET *) MK FP{regBX, regCX);

switch (operation) {

case DDI_INIT:
return ({COMinit ());

case DDI_QUIT:
return (COMquit ()) ;

case COM_INSTALL:
pkt->rv = com_install (pkt->arg.portnum);
return (pkt->rv);

case COM_DEINSTALL:
com_deinstall();
return {0);

case COM_SET_SPEED:
com_set_speed (pkt->arg.speed);
return{0);

case COM_SET_PARITY:
com_set_parity (pkt->arg.par.parity,

pkt->arg.par.stop_bits);

return(0);

case COM _LOWER DTR:

. co!
Copyright 2011,/

lower dtr(

ﬁMQTolﬁsearc})l ;Center, UC Davis

St

case

case

Ccase

case

case

case

case

case

case

case

COM_RAISE_DTR:
com_raise_dtr();
return (0);

COM_TX:
com_tx({pkt->arg.tx);
return {0} ;

COM_TX_STRING:
com_tx_string({pkt->arg.txs);
return(0};

COM_RX:

pkt->rv = (int) com rx(&(pkt->arg.rx));

return (0);

COM_TX_READY:
pkt->rv = com_tx_ready();
return{0);

COM_TX_EMPTY:
pkt->rv = com_tx_ ready();
return (0);

COM_RX_EMPTY:
pkt->rv = com_rx_empty ();
return(0);

COM_FLUSH_TX:
com_f£flush_tx();
return{0);

COM_FLUSH_RX:
com_flush_rx();
return(0);

COM_CARRIER:
pkt->rv = com_carrier();
return(0);

default:

}

/*

return (COM_ERR_UNKNOWNFUNC) ;

** COMinit - intialize the COM driver

*/
int COMinit ()
{

int {;

/* Make sure

we haven’t already initialized */

if (coMinit_flag) {
return (COM_ERR_REINIT);

} else {

COMinit_flag = 1;

}

/* initlalize global data structures */

return{0);

/* no errors */

comdrv.c Wed Nov 25 06:16:26 1992 2

/*

** COMquit ~ disable the COM driver
*/

int COMquit ()

{

/* make sure we haven’t already quit */
if (COMquit_flag) {
return (COM_ERR_REQUIT);
} else {
COMquit_flag = 1;
}

com_deinstall();

return{0); /* no errors */

Copyright 2011, AHMCT Research Center, UC Davis

s

ibmcom.h Wed Nov 25 06:16:41 1992 1

/*kt**t***tt****t***tﬁ*****k***tk*****ﬁ**tt*k************t*******t*******t***t

* ibmcom.h *
*t**ﬁ*********t**k**ti*****t****k****k****t*****k*************tt**********t**
* DESCRIPTION: ANSI ¢ function prototypes and other definitions for the *
* routines in ibmcom.c *
* *
* REVISIONS: 18 OCT 89 - RAC ~ Original code. *

k*t***********i**/

/* Definitions */

#define COM _NONE
#define COM_EVEN
#define COM_ODD
#define COM 2ERO
#define COM ONE

B WN RO

/* Function prototypes */

int com_carrier(void);

vold com_deinstall (void);

void com_flush_rx(void);:

void com_flush tx(void);

int com_install(int portnum);
vold interrupt com interrupt driver();

void com_lower dtr{void);

void com_raise dtr(void);

int com_rx (unsigned char *);

int com_rx_empty (void);

void com_set parity(int parity, int stop_bits);
void com_set_speed (unsigned speed);
vold com_tx{unsigned char};

int com_tx_empty (void);

int com_tx ready (void);

volid com_tx string{char *s);

Copyright 2011, AHMCT Research Center, UC Davis

ibmcom.c Wed Nov 25 06:16:26 1992 1
/*t***t*t*t*********ﬁ***********************k************k*******t********t*t*
* ibmcom.c *
******t**ﬁ*********k****i*********t*t*****ﬁt***********k**k****k**ﬁ**********
* DESCRIPTION: This file contains a set of routines for doing low-level *
* serial communications on the IBM PC. It was translated

directly from Wayne Conrad’s IBMCOM.PAS version 3.1, with
the goal of near-perfect functional correspondence between
the Pascal and C versions.

* % A * ok * ¥

liberal plagiarism of comments from the

Pascal. *
*******k****i**************t*ﬁ*********************t************************/

*

*

*

*

* REVISIONS: 18 OCT 89 - RAC ~ Original translation from IBMCOM.PAS, with
*

*

*

#include <stdio.h>
#include <dos.h>
#include "ibmeom, h®

/********t**k********kt**t*k***t**k********************t****t***************i*
* 8250 Definitions *

*******t************k‘k****k***t***********t***k******'k****i’*****‘k***v\'********/

/* Offsets to various 8250 registers. Taken from IBM Technical */
/% Reference Manual, p. 1-225 */
#define TXBUFF 0 /* Transmit buffer register */

#define RXBUFF 0 /* Recelve buffer register */

#define DLLSB 4] /* Divisor latch LS byte */

#define DLMSB 1 /* Divisor latéh MS byte */
#define IER 1 /* Interrupt enable register */
f§define IIR 2 /* Interrupt ID register */
#define LCR 3 /* Line control register */
#define MCR 4 /* Modem control register */
#define LSR 5 /* Line status register */

6

#define MSR /* Modem status register */

/* Modem control register bits */
#define DTR 0x01 /* Data terminal ready */

#define RTS 0x02 /* Request to send */

#define OUT1 0x04 /* Output #1 */

#define OUT2 0x08 /* OQutput #2 */

#define LPBK 0x10 /* Loopback mode bit */

/* Modem status register bits */
f#define DCTS 0x01 /* Delta clear to send */

#define DDSR 0x02 /* Delta data set ready */

#define TERI 0x04 /* Tralling edge ring indicator */
#define DRLSD 0x08 /* Delta Rx line signal detect */
#define CTS 0x10 /* Clear to send */

#define DSR 0x20 /* Data set ready */

fdefine RI 0x40 /* Ring indicator */

#define RLSD 0x80 /* Recelve line signal detect */

/* Line control reglster bits */
#define DATAS 0x00 /* 5 Data bits */

#define DATA6 =~ 0x01 /* 6 Data bits */

#define DATA7 0x02 /* 7 Data bits */

#define DATAS 0x03 /* 8 Data bits */

#define STOP 0x00 * 1 bit */
#define STO pyr@&zO]l,AHMCT Research (//Fptezr, it(gz)"}ﬂ%s */

#define NOPAR 0x00 /* No parity */

#define ODDPAR 0x08 /* 0dd parity */

#define EVNPAR 0x18 /* Even parity */

#define STKPAR 0x28 /* Stick parity */

#define ZROPAR 0x38 /* 2ero parity */

/* Line status register bits */
#define RDR 0x01 /* Recelve data ready */

#define ERRS 0x1E /* All the error bits */

#define TXR 0x20 /* Transmitter ready */

/* Interrupt enable register bits */
#define DR 0x01 /* Data ready */

#define THRE 0x02 /* Tx buffer empty */

#define RLS 0x04 /* Recelve line status */

/*k*****t*******k***ttt******ﬁ***ﬁ*k************k***h*******t***********t****t

* Names for Numbers *
*******tt******k*****k***t*ﬁﬂ*****t*k*t*******t*****t*******t*k**t*k**t******/

#define MAX_PORT 4

#define TRUE 1
#define FALSE 0

/*****t*************k*#**k*t*****t**t************k****i***t*t***t***k******k**

* Global Data *
********t*****t***k****************t***********************t****k********t***/

/* UART i/o addresses. Values depend upon which COMM port is selected */

int uart_data; /* Data register */

int uart_ler; /* Interrupt enable register */

int uvart_iir; /* Interrupt identification register */

int vart_ler; /* Line control reglster */

int uvart_mer; /* Modem control register */

int vart_lsr; /* Line status register */

int uart_msr; /* Modem status register */

char com_installed; /* Flag: Communications routines installed */
int intnum; /* Interrupt vector number for chosen port */

char i8259bit; /* 8259 bit mask */

char old_18259 mask; /* Copy as it was when we were called */
char old ler; /* Modem register contents saved for */
char old_mecr; /* restoring when we’re done */

void interrupt (*old vector){); /* Place to save COM1 vector */

/* Transmit queue. Characters to be transmitted are held here until the */
/* UART is ready to transmit them. */
#define TX_QUEUE_SIZE 16 /* Transmit queue size. Change to suit */

char tx_queue[TX QUEUE_SIZE];

int tx_in; /* Index of where to store next character */
int tx_out; /* Index of where to retrieve next character */
int tx_chars; /* Count of characters in queue */

/* Recelve queue. Received characters are held here until retrieved by */
/% com rx() */

fdefine RX_QUEUE_SIZE 4096 /* Receive queue size. Change to sult */

ibmcom.c Wed Nov 25 06:16:26 1992 2

char rx_queue[RX QUEUE_SI2E];

int rx_in; /* Index of where to store next character */
int rx_out; /* Index of where to retrieve next character */
int rx_chars; /* Count of characters in queue */

IR AR A KA RR AR AR KA AR R R R R AR AR AR AR R AR R AR AR R AR AR AR AN AR AR N A AN N AR AR AR AR Rk kR ko h

* com_install () *
AARRA AR KRR R R AR R AR R AR R A kKRR AR AR R AR R AR AR AR AR AR AR AR KRR AR R R AR A AN AR RARKR AR AR AR AR

* DESCRIPTION: Installs the communications drivers.
* *
* SYNOPSIS: status = com_install {(int portnum); *
int portnum; Desired port number *
int status; 0 = Successful installation *
1 = Invalid port number *

2 = No UART for specified port *

3 = Drivers already installed *

*

*

*

* * O X %

*

* REVISIONS: 18 OCT 89 - RAC ~ Translated from IBMCOM.PAS
****k*****k*ﬁ**************k********t*****i*******k*************************

/

const int uart_basel}] = { Ox3F8, Ox2F8, Ox3E8, OX2EB };
const char intnums{] = { 0x0C, O0x0B, O0x0D, OxO0B };
const char 182591evels[] = { 4, 3, 5, 4)

int com_install (int portnum) {

if (com_installed) /* Drivers already installed */
return 3;

i1f ((portnum < 1} || (portnum > MAX PORT}} /* Port number out of bounds */
return 1;

uart _data = uart_pase[portnum-1); /* Set UART I/O addresses */

vart_ler = uart_data + IER; /* for the selected comm */

uvart_ilr = vart_data + IIR; /* port */

vart_lecr = uvart_data + LCR;

vart_mcr = uart_data + MCR;
vart_lsr = uart_data + LSR;
uvart_msr = uvart_data + MSR;
intnum = intnuns(portnum-1}; /* Ditto for interrupt */
18259bit = 1 << 18259levels[portnum-1}; /* vector and-8258 bit mask */
old_ler = inportb{uart_ier); /* Return an error 1f we */
outportb (uart_ler, 0); /* can’t access the UART */
if (inportb(uart_ler) i= 0}

return 2;
disable(); /* Save the original 8259 */
old_18259 mask = inportb(0x21); /* mask, then disable the */
outportb(Ole, old_18259 mask | 18259bit); /* 8259 for this interrupt */
enable () ;

/* Clear the transmit and */

com_flush_tx()
) /* recelve gueues */

com_flush rx({

’
’

old_vector = getvect {intnum); /* Save old COMM vector, */
setvect (intnum, &com_interrupt driver); /* then install a new one, */
com_installed = TRUE; /* and note that we did */

outportb (uart_lcr, DATA8 + NOPAR + STOP1); /* 8 data, no parity, 1 stop */

disable(); /* Save MCR, then enable */
old mcr = inportb{uvart mer) /* interrupts onto the bus, */
outportb{opytighc2011, AHMCT Research Center, UC/DaVlﬁctivate RTS and leave */

(old_mcr & DTR) | (OUT2 + RTS)); /* DTR the way it was */
enable();

outportb (uart_ier, DR}; /* Enable receive interrupts */

disable{); /* Now enable the 8259 for */
outportb (0x21, inportb(0x21) & ~18259bit); /* this interrupt */
enable () ;

return 0; /* Successful installation */
} /* End com_install() */

VAR AR R R R L g Ry e s T ey

* com_install{) *
KRR KRR KRR EAR AR AR RN R AR AR AR AR AR R AR AR R AR AR AR AN R R AR AR AR AR RN R R A AR KA AR AR KRR R AR AR

* DESCRIPTION: Denstalls the communications drivers completely, without *
* changing the baud rate or DTR. It trles to leave the *
* interrupt vectors and enables and everything else as they *
* were when the driver was installed. *
* *
* NOTE: This function MUST be called before returning to DOS, so the *
* interrupt vector won’t point to our driver anymore, since it *
* will surely get overwritten by some other transient program *
* eventually. *
* *
* REVISIONS: 18 OCT 89 - RAC ~ Translated from IBMCOM.PAS *

****k**t********************Q*****ﬁt**********************************k******/

void com_deinstall (void) {

if {com_installed) { /* Don’t de-install twice! */
outportb (uart_mcr, old_mcr); /* Restore the UART */
outportb (uart_ier, old ier); /* reglsters ... */
disable();
outportb (0x21, /* ... the 8259 interrupt */

(inportb (0x21) & ~i18259bit) | /* mask ... */
(old 18259 mask & 18259bit));
enable () ;

setvect (intnum, old_vector); /* ... and the comm */
com_installed = FALSE; /* interrupt vector */
} /* End com_installed */

} /* End com_deinstall() */

/***k***********k********k*******************k****t*********k*****************
* com_set_speed () *
AR AR R R AR AR R R R R KRR AR A A AR AR AR R AR A AR AR A AR R A AR R A AR RN AR AN RAN R ARARAAR K

* DESCRIPTION: Sets the baud rate.
*

* SYNOPSIS: vold com_set_speed (unsigned speed);
unsigned speed; Desired baud rate
NOTES: The input parameter can be anything between 2 and 65535,

*
*
*
*
*
*
However, I (Wayne) am not sure that extremely high speeds *
(those above 19200) will always work, since the baud rate *
divisor will be six or less, where a difference of one can *
represent a difference in baud rate of 3840 bits per second *
or more.) *

*

*

*

F Ok R * * X ¥ ¥ ¥

* REVISIONS: 18 OCT 89 -~ RAC - Translated from IBMCOM.PAS
ARKAA AR KR AR KA AR AR AR R AR A AR AR R A AR KA AR AR R A AN R AR AR AR AR AR RARA R AR A AR AR KRR AR AR KA A AL /

void com_set_speed (unsigned speed) {

unsigned divisor; /* A local temp */

ibmcom.c Wed Nov 25 06:16:26 1992 3

if (com_installed) {

if (speed < 2) speed = 2; /* Force proper input */

divisor = 115200L / speed; /* Recond baud rate divisor */

disable(); /* Interrupts off */

outportb (nart_lcr, /* Set up to load baud rate */
inportb (uart_lcr) | 0x80); /* divisor into UART */

outport (uart_data, divisor); /* Do so */

outportb (uart_lcr, /* Back to normal UART ops */
inportb(uart_lecr) & ~0x80);

enable () ; /* Interrupts back on */

} /* End “comm installed" */

} /* End com_set_speed () */

/***********k*********************k******k****ﬁ****#*****t*tk*******t******t**

* com_set_parity() *
KRR AR AR AR AR AR KRR AR R AR AR A A AR Ak Ak R A AR AR AR R A A AR R AR AR AR AR AR KA RA KRR AR AR AR AR R R AR K KR

* DESCRIPTION: Sets the parity and stop bits.
*

* SYNOPSIS: void com_set_parity(enum par_code parity, int stop_bits);

* int code; COM _NONE = 8 data bits, no parity

* COM_EVEN = 7 data, even parity

*

* COM_2ERO = 7 data, parity bit = zero
* COM ONE = 7 data, parity bit = one
* int stop_bits; Must be 1 or 2

*

* REVISIONS: 18 OCT 89 - RAC -~ Translated from the Pascal

*
*
*
*
*
COM_ODD = 7 data, odd parity *
*
*
*
*
*
kkt*kkktk**t*****t***kk***ik***k*****ttt*****************t********k**ﬁk**/

const char ler vals([] = {
DATA8 + NOPAR,
DATA7 + EVNPAR,
DATA7 + ODDPAR,
DATA7 + STKPAR,

DATA7 + ZROPAR

}o;

void com_set_parity(int parity, int stop bits) {
disable(};
outportb(uart_ler, ler_vals[parity] | ((stop_bits == 2) 2 STOP2 : STOP1));
enable () ;

} /* End com_set_parity() */
/***t*********k****k*t*k*******k*t******k***kkk***ﬁ****k**************t***k**k
* com_raise dtr() *
* com_lower_dtr () *

t*i***********k*tt**k***************;*****************i******************

* DESCRIPTION: These routines raise and lower the DTR line. Lowering DTR *
* causes most modems to hang up. *
* *

* REVISIONS: 18 OCT 89 - RAC - Transltated from the Pascal, *
*************k***t*t*i****t**************k*************k******k*t************/

void com lower_dtr (void) {
if (com_installed) {
disable();
outportb (uart_mcr, inportb{uart_mcr) & ~DTR);
enable () ;
} /* End ’‘comm installed’ */
} /* End com_raise_dtr{) */

vold com_raise_dtr({vold) ({

if {(com lnstalled} { .
di sdpaymight 2011, AHMCT Research Center, UC Davis

outportd (uart_mer, inportb(uart _mcr) | DTR

enable () ;

Vi

End ’comm installed’ */
End com_lower dtr() */

*

} /*
} /*
/**t***t***t****k*************t*****tk*ﬁ**k*****tt*kk***t*t****t*t**tt***t***ﬁ
* com_tx ()
* com_tx_string()

*

AR AR KRR AR AR A A AR R AR AR AN A RR AR AR AR R AR AR R AR AR AR AR AR ARAR AR AN KR AR AR AR AR Ak AR Ak hd

* DESCRIPTION: Transmit routines.

com_tx() sends a single character by

* waiting until the transmit buffer isn’t full, then putting *
* the character into it. The interrupt driver will then send *
* the character once it is at the head of the transmit queue *
* and a transmit interrupt occurs. com_tx_string() sends a *
* string by repeatedly calling com_tx(). *
* *
* SYNOPSES: void com_tx (char c}; Send the character c *
* void com_tx_string(char *s); Send the string s *
* *
* REVISIONS: 18 OCT 89 - RAC - Translated from the Pascal *
k*i**************ﬁ********k*******t****ﬂ***k******k****************ﬁ****t*ﬂ**/

void com_tx(unsigned char c¢) {
if (com_installed) {
while (lcom_tx_ready()) ;
disable(};
tx_queue{tx int++] = c¢;

/*
/*
/*

1f (tx_in == TX_QUEUE_SIZE) tx in = 0; /*

tx_charst++;
outportb (uart_ler,

/*
/%

inportb(uart_ier) | THRE);

enable();
}
}

void com_tx string{char *s) {
while (*s) com_tx(*s++);
}

/*
/*
/*

/*
/*

Wait for non-full buffer */
Interrupts off */

stuff character in queue */
Wrap index if needed */
Number of char’s in queue */
Enable UART tx interrupt */

Interrupts back on */
End ‘comm installed’ */
End com_tx{) */

Send the string! */
End com_tx string() */

/************i********************k***k************ﬁ********i******ﬁ**********

* com_rx()
FAERRRA AR KRR KRR R KRR AR AR AR AR AR AR AR AR AR AR KRR IR RARKRARNR KRR AR AR AR A A A AR AR ARk AR Rk kkhhk kK

* DESCRIPTION: Returns the next character from the receive buffer, or a
* NULL character (’\0’) if the buffer is empty.

*

* SYNOPSIS: c = com _rx(};

* char cr
*

* REVISIONS:

Thi

18 OCT 89 - RAC - Translated from the Pascal.

*

*
*
*
*
e returned character *
*
*
*

KRR R KRR RR KRR KRR KRR R KRR KRR Rk R KRR KRR R AR RIAR R KRR KRR R AR R AR AR R AT AR R AR kk kA Ak Kk /

/*

/*

/*
** com _rx -~ modified to return ’\0’ as input.
*/
int com_rx{unsigned char *c) {
int rv;
if (trx_chars || !com installed) {
*c = \0’;
return O;
)
disable();

*c = rx queuelrx out++];
if (rx_out == RX_QUEUE_SIZE}

/*
VA
/*

Local temp */

/* Return NULL if recelive */

buffer is empty */
Interrupts off */

Grab char from queue */
Wrap index 1f needed */

St S

ibmcom.c Wed Nov 25 06:16:26 1992 4
X _out = 0;
r%_chars=-; /* One less char in queue */
enable () ; /* Interrupts back on */
return 1; /* The answer! */
} /* End com_xx() */

/**i*t*****k*ﬁt****ﬁ*t**i*t*k*k*ik*******t*t***t**t*******tk******t**ﬁ*******k

* Queue Status Routines *
AR RE R AR AR AR AR AR R AR A AR AR AN AR R AR A AR RN AR AR A AR A AR AR KA AN AN R RN AR ARNARRR AR AR ANAR AR

* DESCRIPTION: Small routines to return status of the transmit and receive +*

* queues. *
* *
* REVISIONS: 18 OCT 89 - RAC - Translated from the Pascal. *

k*******************l****************ﬁ*****t****k*t*********k*******k#*******/

int com tx_ready (vold) { /* Return TRUE 1if the */

return ((tx_chars < TX_QUEUE_SIZE) || /* transmit queue can */
(fcom_installed)); /* accept a character */
} /* End com_tx_ready() */
int com _tx empty(void} { /* Return TRUE 1f the */
return (Itx chars || (!com_installed)}); /* transmit queue is empty */
} /* End com_tx_empty() */
int com_rx_empty (void) { /* Return TRUE if the */
return (!rx_chars || (!{com_installed)}); /* recelve queue ls empty */
} /* End com_tx_empty() */
/******k*t*t*t*********k*kt****t********k*k********k*t*****************t***k**
* com_flush tx() *
* com_ flush rx() L

k*k*********k*******t*****k*******:k****:***********************k************

* DESCRIPTION: Buffer flushers! These quys just initialize the transmit *
*

and recelve queues (respectively) to their empty state. *
* *
* REVISIONS: 18 OCT 89 - RAC -~ Translated from the Pascal *

****t*********************************)\'*k***********************k***********k/

void com_flush_tx(void) (disable(); tx chars = tx in = tx_out = 0; enable(); }
vold com_flush_rx(vold) { disable(); rx_chars = rx_in = rx _out = 0; enable(); }

/************t*******t**********t**t***k*t************************************

* com_carrier () *
KRERR KK KRR AR AR R R AR KA R TR R R AR R AR AR AR KA RN AR R AR AR RAR AR AR AR AR AR AR AR R AN KA RAARRARARR
* DESCRIPTION: Returns TRUE if a carrier is present. *
* *
* REVISIONS: 18 OCT 89 - RAC - Translated from the Pascal. *

k**k***'kﬁ***********t*‘k***t*****'k******'k*k***********ﬂk****k************t*k**/

int com_carrier(void) {
return com_installed && (inportb(uart_msr) & RLSD);
} /* End com_carrier() */

/*k****t************t********************k**********************************t*

* com_interrupt_driver() *
KRR KRR R KRR R AR KRR IR R AR AR KRR R AR R AR R AR AR AR AR A AN RRR AR RN KR AR RKR AR AR KRR A AR KA

* DESCRIPTION: Handles communications interrupts. The UART will interrupt *
* whenever a character has been received or when it is ready *
* to transmit another character. This routine responds by *
* sticking received characters into the receive queue and *
* vanking characters to be transmitted from the transmit queue *
* *
* - - - *
IR aE e bl TR AV 00 0 M1 e 5000 21 b S OO

N Saigh

vold interrupt com_interrupt_driver() |

char iir;
char [+

/* Local copy i1f IIR */
/* Local character varlable */

/* While bit 0 of the IIR is 0, there remalns an interrupt to process */

while (! ({(iir = inportb(uart_iir)) & 1)) { /* While there is an int ... */

switch (iir) { /* Branch on interrupt type */
case 0: /* Modem status interrupt */
inportb{uart_msr); /* Just clear the interrupt */
break;
case 2: /* Transmit register empty */

/**tttt****ﬁ*kt**t***t*****ttt***t*********k*****k*k*********t********k*******
* NOTE: The test of the line status register is to see if the transmit *

* holding register is truly empty. Some UARTS seem to cause *
* transmit interrupts when the holding register isn’t empty, *
* causing transmitted characters to be lost, *

*******ﬁ******kt**************************************k**********k***********/

if (tx_chars <= 0) /* If tx buffer empty, turn */

outportb (vart_ier, /* off transmit interrupts */
inportb (vart_ler) & ~2);
else { /* Tx buffer not empty */

if {inportb(uart_lsr) & TXR) {
outportb (uart_data, tx_queue[tx_out++]);
if (tx_out == TX_QUEUE_SI2E)
tx_out = 0;
tx_chars--;

}

} /* End ‘tx buffer not empty */
break;
case 4: /* Recelved data interrupt */
¢ = inportb(uart_data); /* Grab received character */
if (rx_chars < RX_QUEUE_SIZE) { /* If queue not full, save */
rx_queue(rx_in++} = ¢; /* the new character */
if (rx_in == RX_QUEUE_SIZE) /* Wrap index 1if needed */
r%_in = 0;
r¥_chars++; /* Count the new character */
} /* End queue not full */
//else { /* overwrite 1f the buffer 1s full */
’/ rx_queue(rx_in++] = c;
/" 1f (rx_ln == RX_QUEUE_SIZE}
/7 rx_in = 0;
/1 if (++rx_out == RX_QUEUE_SIZE)
// rx_out =0;
77}
break;
case 6: /* Line status Iinterrupt */
inportb(uart_lsr); /* Just clear the interrupt */
break;
} /* End switch */
} /* End ’‘is an interrupt’ */
outportb (0x20, 0x20); /* Send EOI to 8259 */
} /* End com_interrupt_driver() */

ddicheck.c Wed Nov 25 06:16:30 1992 1

/*

** file:
** date:
** by:
** desc:

ddicheck.c

6/29/92

Gregory D. Benson

TSR device driver routines (allow DOS to determine 1f drivers exist)

char *progname = "“ddicheck";

#¥include
#include
#include
#include
#include

#include

<stdio.h>
<stdlib.h>
<dos.h>
<conio.h>
<alloc.h>

“ddi.h" /* device driver intexface definitions */

int main{)

{

if (!DDIcheck_drivers()) {

printf ("$s: device drivers not found\n", progname);
return(0);

else {

printf("$s: device drivers found\n", progname);
return(l);

Copyright 2011, AHMCT Research Center, UC Davis

ddiquit.c Wed Nov 25 06:16:30 1992 1

/*
** file:
** date:
*k by:
** descs
*/

ddiquit.c

6/29/92

Gregory D. Benson

TSR device driver routines (quit all drivers)

char *progname = “ddiquit";

#include
#include
#include
#include
#include

#include

int main
{

<stdio.h>
<stdlib.h>
<dos.h>
<conio.h>
<alloc.h>

"ddi.h" /* device driver interface definitions */

0

1f (!DDIcheck_drivers())} {
printf("%$s: device drivers not found\n", progname);
exit (0);

}

if (IDDIsend_message (DDI, DDI_QUIT_ALL, NULL)) ({
printf("%s: unable to quit all drivers\n", progname);
}
else {
printf(“%s: quit all drivers\n", progname);
}

return(0);

Copyright 2011, AHMCT Research Center, UC Davis

S S S

makefile Wed Nov 25 06:17:09 1992 1

¥

file: makefile

data: 6/30/92

by: Gregory D. Benson

desc: DDI (device driver interface)
#

Compiler Info

BCPATH=\pkg\bc
LIB=$ (BCPATH) \1ib\ fp87 $ (BCPATH)}\lib\mathl $(BCPATH)\lib\cl
STARTUP=$ (BCPATH) \1ib\c01l

Object files

DDIIOBJ= ddiinit.ob} intentry.obj ddi.obj adedrv.obj kindrv.obj comdrv.obi \
ibmcom.ob]

DDIQOBJ= ddiquit.obj ddi.obj

DDICOBJ= ddicheck.obj ddi.obj

TSTOBJ= drvtst.obj ddi.obj

ADCTSTOBJ = adctst.obj ddi.obj

Rules

.c.obj:
bece -ml -c $<

.asm.obj:
tasm $<

Dependencles
all: ddiinit.exe ddiquit.exe ddicheck.exe drvtst.exe adctst.exe

ddiinit.exe: $(DDIIOBJ)
tlink @ddiobis, $*, ,$(LIB)

ddiquit.exe: $(DDIQOBJ)
tlink $(STARTUP) $(DDIQOBJ), $*, ,$(LIB)

ddicheck.,exe: $(DDICOBJ)
tlink $(STARTUP) $(DDICOBJ), $*, ,$(LIB)

drvtst.exe: $(TSTOBJ)
tlink $(STARTUP) $(TSTOBJ), $*, ,$(LIB)

adctst.exe: $(ADCTSTOBJ)
tlink $(STARTUP) $(ADCTSTOBJ), $*, ,S(LIB)

ddiinit.obj: ddiinit.c ddiinit.h ddi.h
intentry.obj: intentry.asm
ddi.obj: ddi.c ddi.h
ddiquit.obj: ddiquit.c ddi.h
ddicheck,.obj: ddicheck.c ddi.h
adedrv.obj: adedrv.c adedrv.h
kindrv.obi: kindrv.c kindrv.h
comdrv.obij: comdrv.c comdrv.h
ibmcom.obj: ibmcom.c ibmcom.h
drvtst.obj: drvtst.c
adctst.obj: adctst.c

Copyright 2011, AHMCT Research Center, UC Davis

S

robot.h Wed Nov 25 06:16:44 1992 1

/*

** file: robot.h

** date: 7/14/92

*k by: Gregory D. Bénson

** desc: slmple robot data structures
*/

#define NJOINTS 6

typedef struct {
double J[NJOINTS];
} JOINTS;

typedef struct (
double j[NJOINTS);
} JOINTSDEG;

typedef struct {
double p[3};
double r[3];
} LOCATION;

typedef double IMATRIX([4]([4];
typedef IMATRIX *PIMATRIX;
typedef struct |{
IMATRIX m;
} TMATRIX;
typedef struct {
double a[NJOINTS];
double d[NJOINTS);
} DHPARAMS;
/* Function Prototypes */
void TMatrixPrint (TMATRIX *);

vold DHParamsPrint (DHPARAMS *);
void fkin(JOINTS *, TMATRIX *, DHPARAMS *);

Copyright 2011, AHMCT Research Center, UC Davis

kingen.c Wed Nov 25 06:16:32 1992 1

/*

** file: kingen.c

** date: 7/14/92

** by: Gregory D. Benson

** desc: forward kinematics for the Schilling Miniature Manipulator

#include<stdio.h>
#include<math,h>
#include"robot.h"

/*
** TMatrixPrint - print a transformation matrix
*/
void TMatrixPrint (TMATRIX *t)
{
int i, 3;

for (1 = 0; 1 < 4; i+4)
printf ("%7.21f %7.21f %7.21f %7.21f\n",
t->m[i} (0}, t->m{i}(1}, t->m{1]{2), t->m{i](3]);

/*
** DHParamsPrint - prints a set of D-H parameters
*/
vold DHParamsPrint (DHPARAMS *s)
{
int &;

for (1=0; L<NJOINTS; i++) { -
printf(*a(%d] = %7.21f d{%d] = %7.21f\n",
i, s->a(l], 1, s->d{il);

}

void fkin(JOINTS *jt, TMATRIX *t, DHPARAMS *p)
{

double a2, a3, d2, d4, d6;

double C1, C2, C3, C4, C5, C6;

double S1, 82, 83, S4, S5, S6;

double C23, S23;

double tel, tel, te2, te3;

/* set D-H parameters */

a2 = p->afl];
a3 = p->af2};

d2 = p->d{1];
d4 = p->d{3};
dé = p->d{5];

/* set C and S terms */

Cl = cos(jt->3[0});
Sl = sin(3t->3j(0}1);
cos (Jt->3{11);

=Cospiﬁi&% _Zfﬁ E}}\)I-fMCT Research Center, UC Davis

C23 = cos(jt->3[1]1+3t=->)(2]};
S23 = sin{jt->3[1}+3t->9(2});

C4 = cos (Jt->3[3)):
84 = sin(jt->3(3));

C5 = cos{jt->3[4));
S5 = sin(Jt->3(4}]);
C6 = cos (Jt->3(51)
86 = sin(jt->3[5))

.
L
I3
H

/* compute Nx, Ny, Nz */

ted = C4 * C5 * C6 - S4 * $56;
tel = S23 * S5 * C6;

te2 = S4 * C5 * C6 + C4 * §6;
te3 = C23 * te0 ~ tel;

t->m{0}[0] = C1 * te3 - S1 * te2;
t->m{1]{0)] = 81 * te3 + Cl * te2;
t->m{2] {0} = ~S23 * te0 ~ C23*S5%C6;
t->m(3}1{0] = 0;

/* compute Sx, Sy, Sz */

tel0 = C4 * C5 * S6 + S4 * C6;
tel = §23 * S5 * §6;

te2 = -84 * C5 * S6 + C4 * C6;
te3 = ~-C23 * tel + tel;

t->m{0}[1] = C1 * te3 - S1 * te2;
t->m{1][1] = S1 * te3 + Cl * te2;
t->m{2]{1] = S23 * te0 + C23*S5%S6;
t->m[3][1] = 0;

/* compute Ax, Ay, Az */
te0 = C23*C4*S5+ S23#CS;

t->m{0] [2) = C1 * te0 - S1*S4*85;
t->m[l][2]) = 81 * te0 + Cl*S4%S5;
t->m{2][2] = ~8$23*C4*S5 + C23*C5;
t->m[3](2}) = 0;

/* compute Px, Py, Pz */

te0 = d6*(C23*C4*S5 + S23*C5) + S23*d4 + a3*C23 + a2*C2;
tel = d6*3S4*35 + d2;

t->m{0}[3) = Cl*te0 - Sl*tel;

t->m{1][3] = Sl*tel + Cl*tel;

t->m{2][3]) = d6* (C23*#C5 ~ S23*C4*85) + C23*d4 -~ a3*$23 - a2+*82;
t->m{31{3] = 1;

trinput.c Wed Nov 25 06:16:33 1992

/*

** file; trinput.c

** date: 7/14/92

*k by: Gregory D. Benson

** desc: Telerobotics input interface program - using ADJR16 board

** note:

** Basic telerobotic interface with digital output (buttons)

char *progname = “master";
/* stack slze */

extern unsigned _stacklen = 16386U;

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<ctype.h>
#include<math.h>
#include<blos.h>
#include”ddl.h"
#include®adcdrv.h”
#include"comdrv.h"
#include"ibmcom,.h"

#includetrobot . h"

/* ADC signiture */

#define ADC 0x01
#define KIN 0x02
#define COM 0x03

/* definitions */

$define DEG_TO_RAD M _PI / 180.0
$define RAD_TO_DEG 180.0 / M_PI

#define MAXDIFF 2.0

/* Character Codes */

#define CODE_STX 0x82
tdefine CODE_ETX 0x83
$define CODE_DLE 0x90
tdefine CODE_DEL OXFF

/* Protocol States */
fdefine VAL NUM TRIES 100

fdefine VAL GET DEL
#define VAL GET DLEl
¥define VAL GET_STX
tdefine VAL GET DATA
#define VAL GET DATADLE
$define VAL GET_DLE2
#define VAL GET_ETX

ST RWND PO

#define VAL GRBrpI0M 1, AHMCT Research Center, UC Davis

/* Trajectory definitions */

#define MAX PATH DIFFS 500
#define VAL NO_RECORD 0
#define VAL RECORD 1
f$define VAL _SAFE_OFF 0
$define VAL_SAFE_ON 1

/* Data Structures */

typedef struct {
byte control;
byte error;
byte hand;
byte oxbyte;
int data[6);
} VAIMESSAGE;

typedef struct {
JOINTS config;
JOINTS mag;
JOINTS maxdiff;
JOINTS start;
JOINTS diff([MAX PATH DIFFS];
char hand [MAX_PATH_DIFFS];
long count;
} VALJDPATH;

typedef struct |{
double max{3};
double min{3};
} VALBOX;

/* Global Data */

/* configuration signs */

/* magnification values */

/* maximum joint differences */
/* start of path */

/* joint differences */

/* hand status */

/* number of joint differences */

DHPARAMS DHPumas560 = {{ 0.0, 431.8, -20.32, 0.0, 0.0, 0.0 },
{ 0.0, 149,09, 0.0, 433.07, 0.0, 56.25 } };

DHPARAMS DHSchilling ={{ 0
0.0, 0.0,

JOINTSDEG OffZero = {{ 0.0, 0.0,

.0, 180.0, 0,0, 0.0, 0.0 },

0.0, 180.06, 0.0, 0.0 } };

0.0, 0.0, 0.0, 0.0 }};

JOINTSDEG OffSchilling = {{-158.0, -85,0, -75.0, -168.0, -168.0, -168.0}};

JOINTSDEG VALzero_pos = {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }};

JOINTSDEG VALready pos = {{0.0, -90.,0,

//double jfactor(2}{6} = {{-1.0, 1.0,
// {~-1.0, -1.0,
JOINTS zZero = {{ 0.0, 0.0,
//JOINTS jconfig =

JOINTS jconfig = {{-1.0, 1.0,
JOINTS nconflig = {{ 1,0, 1.0,
JOINTSDEG jmaxdiff = {{ 4.0, 4.0,
JOINTS imag = {{ 1.0, 1.0,

LOCATION lmaxdiff
LOCATION 1lmag

L]

{{ 0.5, 0.5,

VAIMESSAGE val;

90.0, 0.0, 0.0, 0.0 }};

-1.0, -1.0, 1.0, 1,0}, /* forward */
1.0, -1.0, -1.0, 1.0}};/* backward */

0.0, 0.0, 0.0, 0.0 }};

{{(-1.0, -1.0, 1.0, ~1.0, -1.0, 1.0}};/* backward */

-1.0, -1.0, 1.0, 1.0}};/* backward */
1.0, 1.0, 1.0, 1.0 }};
4.0, 8.0, 8.0, 8.0 }};
1.0, 1.5, 1.5, 2.0 }};

{{ 10.0, 10.0, 10.0}, (1.0, 1.0, 1.0 }};

0.5}, {1.0, 1.0, 1.0 }};

trinput.c Wed Nov 25 06:16:33 1992

JOINTSDEG deg;
JOINTS rad, new, old, diff;
JOINTS rimaxdiff;

LOCATION inew, lold, ldiff;
TMATRIX pos;

VALMESSAGE snd, rec;
char val_checksum;
char val_hand;

int engage_stat = 0;

VALJDPATH val_path;

char *valmenuf] = { "Robot Control Menu:",

’
"{1] Puma: Get Current Position",
"{2] Puma: PPmove",
"[3] Puma: Move",
“[4] Puma: Moves",
"{5) Puma: Ready Position”,
*[6}] Puma: Zero Position",
*{7] schilling: Get Current Position",
*[8} Teleoperation -~ Joint-to-Joint",
"[9] Teleoperation ~ Record Joint-to-Joint",
"[A] Teleoperation - Playback Joint-to-Joint",
"{B] Teleoperation - Joint-to-Joint Safe",
“f{?} This menu",
" [Q] Quit",
“[R} Quit - But keep drivers running"
bi
int valmenucount = 16;

/* Function prototypes */

int master_exit (void);
int ADgetdig (int);
int ADgettog(int);

vold sleep(int);

int comtx (unsigned char);
int comrx (unsigned char *);

int GetHandStat (void);
void SetEngageStat (int);
int GetEngageStat (void);

void JointsSet (JOINTS *, double);

vold JointsCopy (JOINTS *, JOINTS *);

void JointsGetD1ff (JOINTS *, JOINTS *, JOINTS *);
vold JointsMaxDiff (JOINTS *, JOINTS *);

void JointsAddTo (JOINTS *, JOINTS *);

void JointsMulTo (JOINTS *, JOINTS *);

void JointsMulTo (JOINTS *, JOINTS *);

void JointsScalerMulTo (JOINTS *, double);

void JolntsPrint (JOINTS *);

vold PrintDegrees (JOINTS *);

void PrintRadians (JOINTS *);

void DegreesToRadians (JOINTSDEG *, JOINTS *);

void RadlanglsReidec0(JQMITSET RESHESPEGntdr; UC Davis

void LocationCopy (LOCATION *, LOCATION *);

vold LocationGetDiff (LOCATION *, LOCATION *, LOCATION *);
vold LocatlionMaxDiff (LOCATION *, LOCATION *);

vold LocationAddTo (LOCATION *, LOCATION *);

void LocationMulTo (LOCATION *, LOCATION *);

void LocationPrint (LOCATION *);

vold ValPrintMessage (VALMESSAGE *);

void ValCopyMessage (VAIMESSAGE *, VALMESSAGE *);
vold ValClearPort (void);

vold Valcomtx (unsigned char);

int ValGetMessage (VALMESSAGE *);

void ValSendMessage (VAIMESSAGE *);

void ValSetHand{int);

int ValIsReady(void);

void ValDecodeTransData(int *, JOINTS *);

vold ValDecodedointData(int *, JOINTS *);

vold ValEncodeTransData (JOINTS *, int *);

vold ValEncodedointData (JOINTS *, int *);

vold ValEncodeLocationData (LOCATION *, int *);
void vValDecodeMessage (VALMESSAGE *, JOINTS *);

void ValQuit (void);

void ValSetCommandMode (void);

void ValSetAlterMode (void);

vold ValJdDMove (JOINTS *);

void ValPPMove (JOINTS *);

void ValPPMoves (JOINTS *);

vold ValJCMove (LOCATION *);

void ValMove (LOCATION *);

vold ValMoves (LOCATION *);

vold ValGetLocation(JOINTS *, LOCATION *);
vold ValSetBox (JOINTS *, VALBOX *, double);
int ValIsInBox(JOINTS *, VALBOX *);

vold ValPrintMenu({char **, int};
vold valGetCommand (void);

void ValSavedDPath (void);
vold ValLoadJDPath{vold);

vold ValTRJMode{int, VALJDPATH *, int);
int ValTRJPlay(VALJDPATH *);
vold ValTRCMode (int);

/*
** MAIN
*/
void main{()

{
COM_PACKET com;
unsigned char toggle;

/* determine if the drivers are installed */

if (!DDIcheck_drivers()) |
printf ("$s: device drivers not found\n", progname);
exit {0);

}

/% initialize Serial Port */

trinput.c Wed Nov 25 06:16:33 1992

com.arg.portnum = 1; /* set com port number */
DDIsend message (COM, COM_INSTALL, &com);

1f (com.rv == 3) {
printf ("COM: com port already installed.\n");
} else 1f (com.rv) {
printf(*com_install() error: %d\n", com.rv);
exit (0);
} else {
DDIsend_message (COM, COM_RAISE DTR, NULL);
com.arg,speed = 19200;
DDIsend message (COM, COM_SET_SPEED, &com);
com.arg.par.parity = COM_NONE;
com.arg.par.stop bits = 1;
DDIsend message (COM, COM SET_PARITY, &com);
DDIsend message (COM, COM FLUSH_RX, &com);
}

/* initialize ADC driver */

DDIsend _message (ADC, ADC_START, NULL);
//DDIsend_message (ADC, ADC_SETOFFSETS, &0ffSchilling);

/* set up scrszen */

printf ("UCD Telerobotics Testbed - Schilling Controller\n");
printf ("\n");

/* test button toggles */

while(!kbhit (}} {
DDIsend message (ADC, ADC_GETTOGGLE, &toggle);
printf ("buttonl = %d button2 = %d button3 = $d\n",
(int) toggle & ADC_BUTTON1,
(int) toggle & ADC_BUTTONZ,
(int) toggle & ADC_BUTTON3 });
}
getch();

/* Process Val Commands */
ValGetCommand{};

/* exit on return */

}

/*

** master_exit - perform all necessary exit code

*/

int master_exit ()

{
DDIsend message (ADC, ADC_STOP, NULL};
DDIsend_message (COM, COM_DEINSTALL, NULL);
exlit (0);

}

/ *
** ADgetdig - get digital information for the AD board
*/
int ADgetdig (button)
int button;
{
unsi@opyrighe20 Lk HMCT Research Center, UC Davis

DbIsend message (ADC, ADC_GETDIG, &dig);

if (dig & ((unsigned char) 0x01 << (button)))
return(l);

else
return{0});

}

/%
** ADgettog - get toggle information for the AD board
*/

int aDgettog{button)

int button;

{
unsigned char dig;

DDIsend message (ADC, ADC_GETTOGGLE, &dig);

if (dig & ((unsigned char) 0x01 << (button)))
return(l});

else
return(0);

/*
** sleep - emulate unix sleep functlon - pause for x seconds
*/
vold sleep(int x)
{
long next;

next = blostime (0, 0);
next += (long) (18.2 * Xx);

while (biostime(0,0) < next) {
/* printf("$lu %lu\n", biostime(0,0), next); */

1f (kbhit {(}) ¢{
getch();
printf ("$s: aborting sleep(%d)\n", progname, x};
break;
}
}
}
/k
** comtx - send a character to COM driver
*/

int comtx(unsigned char c)

{
COM_PACKET pkt;

pkt.arg.tx = c;
DDIsend message (COM, COM_TX, &pkt);
return(pkt.rv);

}

/*
** comtrx ~ recelve a character from COM driver
*/

trinput.c Wed Nov 25 06:16:33 1992

int comrx (unsigned char *c)

{
COM_PACKET pkt;

DDIsend_message (COM, COM _RX, &pkt);
*c = pkt.arg.rx;
return (pkt.rv);

}

/*
** GetHandStat - determine if 3nd button has been pressed
*/
int GetHandStat {(void)
{
static int stateold = 0;
static int toggle = 0;
int statenew;
int xv = 0y

statenew = ADgettog(3);

if (stateold != statenew) {
toggle = ltoggle;
if (toggle) {
rv = 1;
}
else {
v = 2;
}

}
stateold = statenew;

return(rv);

}

/%
** SetEngageStat - set engage status
*/
vold SetEngageStat (int X}
{

engage_stat = x;

}

/*

** GetEngageStat ~ determine if 2nd button has been pressed
*/

int GetEngageStat (vold)

{
statlc int stateold = 0;

int statenew;

statenew = ADgettog(l);

if {stateold != statenew) {
engage_stat = lengage_stat;

}

stateold = statenew;

return(engage stat);

/% .)
** Jointssetopyighteddil, VG TR essasch Center, UC Davis

S

*/
vold JointsSet (JOINTS *3jl, double s)

{
int i;

for (1 = 0; 1 < NJOINTS; i++)
A->3[4) = s;
}

/*
** JointsCopy ~ copy values in j1 to j2
*/
void JointsCopy (JOINTS *#31, JOINTS #32)

{
int i;

for (1 = 0; 1 < NJOINTS; i++) {
j2=>jli) = J1->3(4);
}
}

/*
** JolntsGetDiff - set d equal to j1 ~ 32
*/

void JointsGetDiff (JOINTS *d, JOINTS *J1, JOINTS *32)

{
int i;

for (1 = 0; 1 < NUOINTS; i++) {
d->j[i] = J1->3(4] - J2->3(i};
}
}

/%

** JointsMaxDiff - if abs{d) > max then limit d to max (both pos and neg)

*/
void JointsMaxDiff (JOINTS *d, JOINTS *max)

{
int i;

for (i = 0; 1 < NJOINTS; i++) ({
if (fabs{d->3[1}) > max~>3[1])) ¢

if (d->3j{i} < 0) d=->J[i]) = -max~>]([1];

else d->3[i] = max->J(1];

}

/*
** JointshRddTo - set j1 = j1 + 32
*/
vold JointsAddTo (JOINTS *j1, JOINTS *j2)
{
int i;

for (1 = 0; 1 < NJOINTS; i++)
Ji->3{i) += j2->J[i);
}

/%
** JointsMulTo - set 41 = 41 * 42

*/

vold JointsMulTo (JOINTS *31, JOINTS *3j2)
{

trinput.c Wed Nov 25 06:16:33 1992 5
int i;

for (i = 0; 1 < NJOINTS; 1++)
J1->3{4] *= jJ2->3[i];
}

/-k
** JointsScalerMulTo - set j1 = 5 * j1
*x/
vold JointsScalerMulTo (JOINTS *3j1, double s)
{
int 4;

for (1 = 0; 1 < NJOINTS; i++)
J1->3{i] *= s;
}

/*
** JointsPrint - print a set of joint values
*/
void JointsPrint (JOINTS *jt)
{
int i;

for (i=0; i<NJOINTS; i++) |
printf("j(%d) = %7.21f\n", 1, Jt->3{i});

}
printf ("\n"};
}

/*
** PrintDegrees -~ print an JOINTSDEG structure
*/
vold PrintDegrees (JOINTS *a)
{

int i

JOINTSDEG deg;

RadiansToDegrees (a, °);
for (I = 0; 1 < CHANNELS; i++) {
printf ("%7.31f ", deg.j[i]});
}
printf (*\n");
}

/*
** PrintRadians - print an JOINTS structure
*/
vold PrintRadians (JOINTS *a)
{
int {;

for (i = 0; 1 < CHANNELS; i++) {
printf ("$7.31f *, a->3(1]);:

}

printf {"\n");

/*

** DegreesToRadians - convert JOINTSDEG to JOINTS

*/

voild DegreesToRadians {JOINTSDEG *deg, JOINTS *rad)

{ Copyright 2011, AHMCT Research Center, UC Davis

int 1;

for (1=0; 1 < 6; 1++) {
rad->3{1] = deg->j(i} * DEG_TO_RAD;
}
]

/*
** RadiansToDegrees - convert JOINTS to JOINTSDEG
*/
vold RadiansToDegrees (JOINTS *rad, JOINTSDEG *degq)
{

int &;

for (i=0; 1 < 6; 1++) {
deg~->3 (i) = rad->j[1]) * RAD_TO_DEG;
}
}

/*
** LocationCopy - copy values in 11 to 12
*/ ,
void LocationCopy (LOCATION *11, LOCATION *12)
{
int i;

for (1 = 0; 1 < 3; 1++) {
12->p(i] = Li->p[i];
12->r(i] = 1li->r[i};

}

/t
** LocatlonGetDiff ~ set d equal to 11 ~ 12
*/
void LocationGetDiff (LOCATION *d, LOCATION *11, LOCATION *12)
{
int {1;

for (4 = 0; 1 < 3; i++) {
d->p(i] = 11->p[i] - 12->p[i];
d=->r{i] = 11->r[i] - 12->r[i};

}

/*
** LocatlionMaxDiff - 1f abs{d) > max then limit d to max (both pos and neg)
*/
void LocationMaxDiff (LOCATION *d, LOCATION *max)
{
int 4;

for (1 = 0; 1 < 3; 14+4) {

if (fabs(d->p[i]) > max->p[i]} {
if (d->pl[i} < 0) d->pli) = -max->p(i};
else d->pl[i] = max->pll);

}

1f (fabs(d->r{il]) > max->r(i}) {
1f (d->r{i] < 0) d->r(i} = -max->r(i};
else d->r{l] = max->r([i};

trinput.c Wed Nov 25 06:16:33 1992 6

/i
** LocationAddTo - set 11 = 11 + 12
*/
vold LocationAddTo (LOCATION *11, LOCATION *12)
{
int §;

for {1 = 0; 1 < 37 {++4) {
11->p{i] += 12->p[i};
11->r{i} += 12->r{i};

}

/*
** LocationMulTo - set 11 = 11 * 12
%/
void LocationMulTo (LOCATION *11, LOCATION *12)
{
int §;

for (L = 0; 1 < 3; 1+4+) {
11->p(i} *= 12->p[1];
11->rfi] *= 1l2->r{i);

}

/t
** LocationPrint - print a location variable
*/
void LocatlonPrint (LOCATION *1)
{
int i;

printf("%7.31f %7.31f %7.31f %, 1->p(0], 1->p[l], 1->p(2]);
printf(*%$7.31£f %7.31f $7.31f\n", 1->r[0], 1->r[i], 1->r[2]);
}

/*
** ValPrintMessage - Print the contents of a VAL communication message
*/
void ValPrintMessage (VALMESSAGE *v)
{
int i;

printf ("VALMESSAGE:\n");
printf (" control = $2X\n", (unsigned) v->control);

printf (" error = $2X\n", (unsigned) v->error);
printf(® oxbyte = $2X\n", (unsigned) v->oxbyte);
printf (" hand = $2X\n", (unsigned) v->hand);

for (L = 0; 1 < 6; i++4) {
printf (" data{%d] = %4X\n", i, v->data(i]);

}
printf{"\n");
}

/*
** ValCopyMessage -~ Copy the contents of message vl into v2
*/
void ValCopyMessage (VALMESSAGE *vl, VALMESSAGE *v2)
{

int 4;

v2_>gpgypgbtgoaihégﬂﬂggngsaﬂdiCenwr,U(fDavm

v2->error = vl->error;
v2->oxbyte = vl->oxbyte;
v2~->hand = vi->hand;

for (1 = 0; 1 < 6; 1++) {
v2->data{i) = vi->datali];
}

}

/*
** ValClearPort ~ Clear the serial connection between IBM and VAL
*/
void ValClearPort (void)
{
int {;

for (L = 0; 1 < 50; i++) |
comtx (CODE_DEL) ;
}
}

/*

** Valcomtx -~ send a character to COM driver, and send second DLE
*/

void Valcomtx{unsigned char c)

{
COM_PACKET pkt;

comtx{c);
if {c == CODE_DLE) comtx(CODE_DLE);

/*
** ValGetMessage - Get a VALMESSAGE from VAL via the COM driver
**
** State driven to accept message packets
x/
int ValGetMessage (VALMESSAGE *v)
{
int xrv = TRUE;
int done = FALSE;
int state;
int tries;
int count;
int limit;
unsigned char incom;
char *buffer;

state = VAL_GET DEL;

tries = 0;
count = 0;
limit = sizeof (VALMESSAGE);

buffer = (char *) v;
while (i{done) ({
/* only try over VAL_NUM TRIES bytes */
i1f (tries >= VAL _NUM TRIES) {
rv = FALSE;

done = TRUE;
break;

trinput.c Wed Nov 25 06:16:33 1992 7

/* get the next character */ if (incom == CODE_DLE} {
state = VAL_GET DATA;
while{comrx{&incom) == 0) { } else {
/ 1f (kbhit ()) ¢ state = VAL GET ETX;
/! getch(); }
/7 rv = FALSE; break;
// break;
// } case VAL_GET_DLE2: /* DLE2 state */

}
if (incom == CODE_DLE) {
state = VAL_GET_ETX;

/* print out state information */ } else {
triest+;
//printf (*state = %d, incom = %2X\n", state = VAL GET DEL;
// state, (unsigned) incom); . }
break;
switch (state) {
case VAL _GET_ETX: /* ETX state */
case VAL _GET_DEL: /* start state, get first DEL */ if (incom == CODE_ETX) {
state = VAL GET_CHKSUM;
if (incom == CODE_DEL) ({ } else {
state = VAL_GET DLEl; triest+;
} else { state = VAL GET_ DEL;
triest++; }
state = VAL GET DEL; break;
}
break; case VAL_GET_CHKSUM; /* Checksum state */
case YAL_GET DLEl: /* DIE1l state */ val_checksum = incom;
done = TRUE;
if (incom == CODE_DLE) { rv = TRUE;
state = VAL GET_STX; break;
} else {
tries++; default:
state = VAL GET_DEL; triest+;
} state = VAL_GET DEL;
break; break;
}
case VAL GET_STX: /* STX state */ }
/* ValPrintMessage (v); */
if (incom == CODE_STX) { return(rv);
state = VAL_GET_DATA;
} else { }
triest+t+;
state = VAL_GET DEL; /*
} ** ValSendMessage - Send a VALMESSAGE to VAL via the COM driver
break; */
vold ValSendMessage (VALMESSAGE *v)
case VAL _GET_DATA: /* DATA state */ {
int i, 1limit;
if (incom == CODE_DLE) { char *buffer;
state = VAL GET DATADLE; char checksum = 0;
break;
} buffer = (char *) v;
limit = sizeof (VALMESSAGE);
buffer{count++] = incom;
if (count >= limit) { comtx (CODE_DEL) ;
state = VAL GET_DLE2; comt x (CODE_DLE) ;
} comtx (CODE_STX) ;
break;

Valcomtx (v->control);

Copyrighie? 0inlr, AdHMEATRessREch Centoatid Davitate */ Valcomtx {v->error) ;

trinput.c Wed Nov 25 06:16:33 1992 8

Valcomtx (v->hand);
Valcomtx (v->oxbyte) ; for (1 = 0; 1 < 6; 1++) {
out->j[1] = (double) in[i] * DEG_TO RAD / 32.0;

for (1 = 0; 1 < 6; i+4) | }
Valcomtx {(unsigned char} v->data(i] & OXFF); }
Valcomtx { {unsigned char) (v->data{i) >> 8) & OXFF) ;
} /*
** ValEncodeTransData -~ Encode a tranformatlion for VAL
for (1 = 0; 1 < limit; i++) { " x
checksum += buffer(i]; ** For X, Y, 2:
//Valcomtx (bufferi}); *k
} ** double A = A * 32,0
comtx (CODE_DLE) ; **
comtx {CODE_ETX) ; ** For Rx, Ry, Rz:
comtx (checksum) ; *%
** double A = A/PI*32768
/* printf(“checksum = %d\n", (int) checksum); */ kK
*/
} vold ValEncodeTransData (JOINTS *in, int *out)
{
/* int i, 3;
** ValSetHand - set the val_hand variable to open or close the hand on next
LA move for (1=0,3=3 ; 1i<3 ; i++, J++4) |
*/ out[i] = (int) in->4[i] * 32.0;
vold ValSetHand (int x) out{j} = (int} in->j[i] * RAD_TO DEG * 32.0;

{ 1
val_hand = (char) x;
} }

/*
** VallsReady - determine if VAL can recelve a new message /*
*/ ** ValEncodedointData -~ Encode joint values for VAL
int VallIsReady (vold) */
{ vold ValEncodedointData (JOINTS *in, int *out)
//VALMESSAGE val; {
int 1;
//DDIsend_message (COM, COM_FLUSH_RX, NULL};
ValGetMessage {&val); . for (1 = 0; 4 < 6; L++) |
out (i} = (int) (in~>j{i] * RAD_TO _DEG * 32.0) ;
1f (val.oxbyte == Q) { }
return (TRUE} ; }
}
return (FALSE) ; /*
} ** ValEncodelLocationData - Encode a location for VAL
*/
/* vold ValEncodelocationData (LOCATION *in, int *out)
** ValDecodeTransData ~ Decode a transformation from VAL {
*/ int &;
vold ValDecodeTransData(int *in, JOINTS *out)
{ for (1 = 0; 1 < 3; 1++) {
int 1, 3; out[i] = ({int) (in->p[l) * 32.0);
out{i+3] = (int) (in->rx{i] * 182,0444);
for (i=0,3=3 ; 1<3 ; 1++, J++) | }
out->j[i} = (double) in{i) / 32.0; }
out~>j[(J] = (double) in[l] * DEG_TO _RAD / 32.0;
} /%
} ** ValDecodeMessage - Decode a VAL message to get ARM data
*/
/* vold ValDecodeMessage (VALMESSAGE *v, JOINTS *a)
** ValDecodeJointData -~ Decode joint values from VAL {
*/
void ValDecodeJdointData (int *in, JOINTS *out) if (v->control & 0x08) { /* Get Transformation Data */

{) ValDecodeTransData (v->data, a);
int Gopyright 2011, AHMCT Research Center, UC Davis } else { /* Get Joint Values */

trinput.c Wed Nov 25 06:16:33 1992 9

ValDecodeJolntData {v->data, a);

/%
** VYalQuit - Send a quit message to VAL
*/
vold ValQuit (void)
{

int i;

VAIMESSAGE snd;

snd.control = 15; /* control byte for quit */
snd.error = 0;

snd. hand = 07 /* close hand */

snd.oxbyte = 07

for (1 = 0; 1 < 6; 1+4) {
snd.data[i] = 0;
}
ValPrintMessage (&snd);
ValSendMessage {&snd);
sleep(l); /* make sure VAL get the message */
/* before COM interrupts are disabled */

}

/*
** ValSetCommandMode - set VAL to command mode
*/
void ValSetCommandMode (void)
{
int i;
VAIMESSAGE snd;
snd.control = 1; /* control byte for move jdmove */
snd,error = 0;
snd. hand = 0;
snd.oxbyte = 0;

for (1 = 0; 1 < 6; 1++) |
snd.data(i} = 0;
}

ValSendMessage (&snd) ;
}

/*
** ValSetAlterMode ~ set VAL to alter mode
*/
void ValSetAlterMode (void)
{
int i;
VAILMESSAGE snd;
snd.control = 3; /* control byte for alter mode */
snd.error = 0;
snd, hand = 0;
snd. oxbyte = 0;

for (L = 0; 1 < 6; 1i++) |
snd.data[l} = 0;

Copyright 2011, AHMCT Research Center, UC Davis

ValSendMessage (&snd) ;

}

/1\-

** ValJDMove ~ Send a Joint Difference Move command to VAL
*/

void ValdDMove (JOINTS *a)

{
VAIMESSAGE snd;

snd.control = 2; /* control byte for move jdmove */
snd.error = 0;

snd.hand = yval_hand;

snd.oxbyte = 07

ValEncodeJointData (a, snd.data);
/* ValPrintMessage (&snd); *
ValSendMessage {&snd);

/*

** ValPPMove ~ Send a Precision Point Move command to VAL
*/

void ValPPMove (JOINTS *a)

{
VALMESSAGE snd;

snd.control = 11; /* control byte for move #ppoint ()} */
snd,error = 0;

snd.hand = val_hand;

snd.oxbyte = 0;

ValEncodeJdointData (a, snd.data});
ValPrintMessage (&snd);
ValSendMessage (&snd) ;

}

/*
** ValPPmoves ~ Send a Straight Line Precision Point Move command to VAL
*/
vold ValPPmoves {JOINTS *a)
{
VALMESSAGE snd;
JOINTS rad;

snd.control = 13; /* control byte for moves #ppoint() */
snd.error - 0;

snd.hand = val_hand;

snd.oxbyte = 0;

ValEncodeJointData (a, snd.data);
ValSendMessage (&snd);
}

/%
** ValCDMove - Send a Cartesian Difference Data to VAL (for alter)
*/
void ValCDMove (LOCATION *a)
{

VALMESSAGE snd;

o; /* control byte for alter */
0;

snd.control
snd.error

[

Wed Nov 25 06:16:33 1992

snd. hand = val_hand;
snd.oxbyte = Q7

trinput.c

ValEncodeLocationData(a, snd.data);
//ValPrintMessage (&snd);
ValSendMessage {(&snd) ;

/*

** ValMove ~ Send a Move command to VAL
*/

void ValMove (LOCATION *a)

{
VAIMESSAGE snd;

snd.control = 12; /* control byte for move */
snd.error = 07

snd. hand = val_hand;

snd,.oxbyte = 07

ValEncodelocationData(a, snd.data);
ValSendMessage {&snd) ;
}

/1\

** ValMoves - Send a Moves command to VAL
*/

vold ValMoves (LOCATION *a)

{
VALMESSAGE snd;

snd.control = 14; /* control byte for moves */
snd.exror = 07

snd.hand = val_hand;

snd.oxbyte = Q;

ValEncodeLocatlonData(a, snd.data});
ValSendMessage (&snd) ;
}

/*

** ValGetLocation ~ given a set of jolnt angles return a LOCATION

*/
void ValGetLocation (JOINTS *3j, LOCATION *1)
{

TMATRIX T;

fkin(j, &T, &DHSchilling);

1->p[0] = T.m{0] (3];
1->p{l] = T.m({1]{3];
1->p{2] = T.m[2) (3};
1->r{0] = 0.0;
1->r{1} = 0.0;
1->r(2] = 0.0;
}
/*
** ValSetBox ~ setup a safe region
*/
void ValSetBox (JOINTS *7j, VALBOX *b, double radius)

{ .
1nt Copyright 2011, AHMCT Research Center, UC Davis

10

TMATRIX T;
fkin (3, &T, &DHPuma560);
for (i = 0; 1 < 3; i++) {
b->max[i] = T.m{i}[3] + radius;
b->min{i] = T.m{1}([3) ~ radius;
}

/*

** VallsInBox - check to see if the Jjoint values J are in box b

*/
int ValIsInBox (JOINTS *j, VALBOX *b)
{

int rv = TRUE;

int {1;

TMATRIX T;

fkin (), &T, &DHPuma560);

for (1 = 0; 1 < 3; 14+) {
1f (T.m{1]([3}] > b->max([i]) |
rv = FALSE;
break;
}
1f (T.m{i1}[3}] < b->min[i]) |
rv = FALSE;
break;
}
)
return{rv);

/*
** ValPrintMenu - print the robot control menu
*/
void ValPrintMenu(char **menu, int count)
{
int {i;

printf ("\n");

for (1L = 0; 1 < count; i++) {
printf("$s\n", menufi));
}

printf ("\n");
}

/*
** ValGetCommand ~ process user input
*/
vold ValGetCommand ()
{
int i, done = FALSE;
long trecount;
char command[40]};
char first;
JOINTS radtmp;

for (1 = 0; 1 < NJOINTS; i++) {

Wed Nov 25 06:16:33 1992
diff.j(i] = 0.0;

trinput.c

}
DegreesToRadlans (&Jmaxdiff, &rijmaxdiff);

ValPrintMenu(valmenu, valmenucount);
while{!done) {

printf("."});

scanf ("%s", &command);

first = command{0];

switch (tolower (first)) {

case "1’: /* Print Current Position */

DDisend message (COM, COM_FLUSH_RX, NULL);
ValGetMessage (&val);
ValDecodeMessage (&val, &rad);

printf ("Puma: Current Position\n");
printf ("Radians:\n");

PrintRadians (¢rad);

printf ("Degrees:\n");

PrintDegrees {¢rad);

fkin{srad, &pos, &DHPuma560);

printf ("TMatrix:\n");
TMatrixPrint {(spos) ;
break;

case '2’: /* move to ppoint */

printf ("Input 6 Joint Angles (in degrees)\n");
printf(":");
scanf ("$1f $1f $1f %1f $1f %1fv,

&(deqg.j[0]), &(deg.}(1]}), &(deg.j(2]),

11

& (deg.3(3]), &(deg.j(4]), &(deg.][5])});

DegreesToRadians (¢deg, &rad);
printf ("PPmove: “);
PrintDegrees (&rad) ;

printf ("PPmove: ");
PrintRadians (&rad);
ValPPMove (&rad);

break;

//case ‘3’; /* move to transformation */
//break;

//case *4’: /* move to transformation straight-line */
//break;

case '5': /* move to ready position */

printf ("Puma: Moving to ready position\n"});
DegreesToRadians (¢VALready pos, &radtmp);
ValPPMove (4radtmp) ;

break;

ase "6’: /* move to zero position */
Copynght 2011, AHMCT Research Center, UC Davis

printf (*Puma: Moving to zero position\n”);
DegreesToRadians (¢VALzero_pos, &radtmp);
ValPPMove (&radtmp);

break;

//case "7
//break;

case ’8’: /* teleoperation: jJoint-to-joint */

ValTRJMode (VAL_NO_RECORD, NULL, VAL SAFE_OFF};
break;

case ’9’: /* teleoperation: joint~to-jolnt record */

ValTRJMode (VAL _RECORD, &val_path, VAL_SAFE_OFF);
break;

case ‘a’: /* teleoperation: joint—-to-joint playback */

ValTRJPlay (&val_path);
break;

case 'b’: /* teleoperation: joint-to-joint safe */

ValTRJMode (VAL_NO_RECORD, NULL, VAL_SAFE_ON);
break;

case ‘?': /* print the menu */

ValPrintMenu(valmenu, valmenucount);
break;

case "q’: /* quit the program */
ValQuit ();
DDIsend_message (ADC, ADC_STOP, NULL);
DDIsend _message {COM, COM_DEINSTALL, NULL);

done = TRUE;
break;

case ‘r*: /* quit, but leave drivers running */
done = TRUE;
break:

default: /* undefined command */

printf ("Undefined command\n");

break;
}
}
}
/*
** ValTRJMode - Teleoperaction joint-to-joint
*/

void ValTRJOMode {int record, VALJDPATH *jdpath, lnt safe)
{

int done = FALSE;

char hand = 0;

trinput.c Wed Nov 25 06:16:33 1992 12

long trcount = 0;
JOINTS radtmp;
VALBOX saferegion;

/* set zero offsets for the ADC driver */

DDIsend message (ADC, ADC_SETOFFSETS, &CffZero);
DDIsend message (ADC, ADC_SETCONFIG, &jconflg);

/* set up safe reglon */

1f (safe) {
ValGetMessage (&val);
ValDecodeJdolntData (val.data, &radtmp);
ValSetBox (&radtmp, &safereglon, 150.0);
}

/* get start position if in record mode */

if (record) {
DDIsend message (COM, COM_FLUSH_RX, NULL);
ValGetMessage (&val);
ValDecodeMessage (&éval, &radtmp);
JointsCopy (sradtmp, &(jdpath~->start));

}

/* set old and new jolnt values */

DDIsend message (ADC, ADC_GETRADIANS, &new);
DDIsend message (ADC, ADC_GETRADIANS, &old);

/* flush the COM port */

DDIsend message (COM, COM_FLUSH_RX, NULL);
/* make sure we are disengaged */
SetEngageStat (0) ;

while {lkbhit (}} {
while (l!GetEngageStat(}) ({
if (kbhit()) {
done = TRUE;
break;
}
printf ("Paused.\n");
ValSetCommandMode () ;
DDIsend message (ADC, ADC_GETRADIANS, &new);
DDIsend message (ADC, ADC_GETRADIANS, &old);
DDIsend_ message (COM, COM_FLUSH_RX, NULL);
}
if (done) break;

//vwhile(!ValIsReady());// {(printf(“trying\n");}

while(l) {
DDIsend message (COM, COM_FLUSH_RX, NULL);
ValGetMessage (&val);
1f (val.oxbyte == 0) break;

}

DDIsend_message (ADC, ADC_GETRADIANS, (ADRADIANS *) &new);

Copysight 2044+ DY B Reesparshebesntgs i Davis

JointsMaxDiff (&diff, &rjmaxdiff);
JointsAddTo {sold, &diff);
JointsMulTo (&diff, &Jjmag);

//PrintDegrees (&diff);

hand = GetHandStat ();
ValSetHand (hand) ;

1f (safe) {
ValDecodeJointData (val.data, &radtmp);
JointsAddTo (&éradtmp, &diff);
if (valIsInBox (&radtmp, &saferegion)) {
ValdDMove (&diff) ;
}
else {
ValJdDMove (&zero) ;
}
} else {
ValJdDMove (&diff) ;

}
ValSetHand (0);

1f (record) {

JointsCopy (&diff, &(Jdpath->diff(trcount])});

Jjdpath->hand{trecount] = hand;
1f (trcount++ >= MAX_PATH DIFFS) ({

printf ("Path too long to record\n");

break;
}
} else {
trcount++;

)

}
1£f (kbhit{)) getch{);
ValSetCommandMode () ;
printf ("trcount = %ld\n", trcount);
if (record) {
jdpath~>count = trcount;
printf ("Trajectory Recorded\n");
printf ("Start Position:\n");
PrintDegrees (& (jdpath->start));

printf ("Number of via points: %$ld\n®, ijdpath->count);

/*
** ValTRJPlay -~ play back a recorded path
*/

int valTRJPlay (VALJDPATH *Jjdpath)

{

int done = FALSE;
char inchar;
long 1i;

1f (jdpath == NULL) {
printf ("Not a valld trajectory.\n"};
return {FALSE};

}

if (jdpath->count <= 0) {
printf ("No points in trajectory.\n");

trinput.c

Wed Nov 25 06:16:33 1992 13

return (FALSE);
]

printf (*Start position:\n");
PrintDegrees (& (Jdpath->start));

printf (*Press return to go to the start position:\n");
getch();

ValPPMove (& (Jdpath—~>start)};

printf {"Press return start the trajectory:\n");
getch();

printf (“Press return to abort the trajectory:\n");
/* set old and new joint values */

DDIsend message (ADC, ADC_GETRADIANS, &new);
DDIsend message (ADC, ADC_GETRADIANS, &old):

/* flush the COM port */
DDIsend_message (COM, COM _FLUSH_RX, NULL);
for (1 = 0; 1 < jdpath->count; 1++) {

if (xbhit ()} {

inchar = tolower ({char} getch{)};
if (inchar == ’'p’} |{

printf ("Paused: press return to continue:\n"});

while{!kbhit (}};
ValSetCommandMode () ;
DDIsend_message (ADC, ADC_GETRADIANS, &new);
DDIsend message (ADC, ADC_GETRADIANS, &old);
DDIsend_message (COM, COM_FLUSH_RX, NULL);
} else {
printf ("Trajectory aborted\n");
done = TRUE;
break;
}

}
if (dcne) break;
//while(1VallsReady()); // (printf("trying\n");}
while(l) {
//DDIsend_message (COM, COM_FLUSH_RX, NULL);
ValGetMessage(&val);
if (val.error I= 0} {
printf ("Communications Error: %d\n",
{int) val.error);
)

if (val.oxbyte == 0) break;
//printf (*waiting for VAL\n");

//PrintDegrees (& (jdpath->diff[{i)));

ValSetHand ({int) Jjdpath->hand{i]);

Cor RIS RS SELAN U Davis

}
ValSetCommandMode () ;
return (TRUE) ;

}

/*
** ValTRCMode -~ Teleoperation carteslan
*/
vold ValTRCMode (int record)
{
int done = FALSE;
char hand = 0;
long trcount = 0;
JOINTS radtmp;

printf ("Teleoperation: Cartesian\n"};
/* set Schilling offsets for cartesian mode */

DDIsend message (ADC, ADC_SETOFFSETS, &0ffSchilling);
DDIsend_message(ADC, ADC_SETCONFIG, &jconfig);

/* get start position if in record mode */
/* set old and new joint values */

DDIsend message(ADC, ADC_GETRADIANS, &new);
//DDisend message (ADC, ADC_GETRADIANS, &old);

/* flush the COM port */
DDIsend_message (COM, COM_FLUSH_RX, NULL);
/* make sure we are disengaged */
SetEngageStat {0);

while {1kbhit ()} {
if (!GetEngagestat()) {
ValSetCommandMode () ;

while (!GetEngageStat{}) {
1f (kbhit ()} {
done = TRUE;
break;
} else |
printf {"Paused.\n");
}

}
if (idone) {

DDisend_message (ADC, ADC_GETRADIANS, &new);

ValGetLocation{&new, &lnew);
LocationCopy (&lnew, &lold);

DDIsend_message (COM, COM_FLUSH_RX, NULL);

ValSetAlterMode();
}

}
1f (done) break;

while(!VallIsReady{}); /* {printf{"trying\n");} */

//while (1} {

trinput.c

Wed Nov 25 06:16:33 1992 14
//DDIsend_message (COM, COM_FLUSH_RX, NULL);
//ValGetMessage (&val);

//1f {val,oxbyte == 0) break;
17}
DDIsend message (ADC, ADC_GETRADIANS,

{ADRADIANS *)} &new);

//PrintDegrees (&new) ;

ValGetLocation (&new, &lnew);
//LocationPrint {&lnew);

LocationGetDiff (&1diff, &lnew, &lold);
LocationMaxDiff (&1diff, &lmaxdiff);
LocationAddTo(&lold, &ldiff);
LocationMulTo (&ldiff, &lmag);

LocationPrint (s1diff);

hand = GetHandStat ();
ValSetHand (hand) ;

ValCDMove (&1diff);
ValSetHand (0});
1f (record) {
//JointsCopy (&diff, & (jdpath->diff(trcount]));

//3dpath~>hand{trcount] = hand;
//1if (trcount++ >= MAX_PATH_DIFFS) {

// printf ("Path too long to record\n®);
// break;
/7}
} else {
trcount++;

}

}
1f (kbhit()) getch();

ValSetCommandMode () ;
printf {("trcount = $ld\n", trcount);

if (record) {

//3dpath->count = trcount;

//printf ("Trajectory Recorded\n"};

//printf ("Start Position:\n");
//PrintDegrees (& {jdpath->start));

//printf (*Number of via points: $ld\n", jdpath->count);

Copyright 2011, AHMCT Research Center, UC Davis

trinput .mak Wed Nov 25 06:17:35 1992

BCPATH=\pkg\bc
LIB=$ (BCPATH)\1ib\fp87 $ (BCPATH)\lib\mathl ${BCPATH)\lib\cl
OBJ= trinput.obj ddi.obj kingen.obj

trinput.exe: $(OBJ)
tlink $(BCPATH)\1lib\cOl $(OBJ),trinput.exe,,$(LIB}

.c.obj:

bcc -ml -¢ $<
trinput.obj: trinput.c robot.h
kingen.obj: kingen.c robot.h

Copyright 2011, AHMCT Research Center, UC Davis

