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ABSTRACT

A significant amount of research is being done and has been published on the
subject of wheeled mobile robots (WMR's). A great deal of this work is dedicated toward
the development of -control strategies for tracking WMR's and for the generation of path
planning techniques (mostly for the purposes of collision avoidance). A funda_mentai part
of any research in this area involves some way to track the WMR's position and
orientation. Most researchers have used kinematic models to accomplish this task

_arguing that because of the low speeds, low accelerations, and lightly loaded conditions
under which WMR's operate, these kinematic models are valid. However, as we advance
to the future of WMR's, dynamic modeling of these vehicles becomes increasingly
important as wheeled mobile robots are designed to perform heavy duty work and travel
at higher speeds. |

This research investigates the importance of dynamic modeling of differentially
and conventionally steered wheeled mobile robots. The Tethered Mobile Robot (TMR)
designed for the purposes of automated highway crack sealing operations is the vehicle
which is modeled and simulated in this work. In this paper, a dynamic model including
an accurate tire representation is developed for both differentially and conventionally
steered TMR's. In addition to these dynamic models, kinematic and simplified dynamic
models are also developed for each of the TMR configurations. The simplified dynamic
model utilizes greatly simplified tire representations instead of the complex tire model
used by the dynamic model. Through the use of simulation, the limits of validity of each
of the models is found for the purposes of determining which model is appropriate for a
given application. Additionally, the accuracy of the dead reckoning vehicle tracking

process is investigated.
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EXECUTIVE SUMMARY

A significant amount of research is being done and has been published on the
subject of wheeled mobile robots (WMR's). A great deal of this work is dedicated toward
the development of control strategies for tracking WMR's and for the generation of path
planning techniques (mostly for the purposes of collision avoidance). A fundamental part
of any research in this area involves some way to track the WMR's position and
orientation. Most researchers have used kinematic models to accomplish this task
arguing that because of the low speeds, low accelerations, and lightly loaded conditions
under which WMR's operate, these kinematic models are valid. However, as we advance
to the future of WMR's, dynamic modeling of these vehi¢les becomes increasingly
important as wheeled mobile robots are designed to perform heavy duty work and travel
at higher speeds. A few researchers have derived and made use of dynamic models for
WMR's. However, as these models were derived, the methods for modeliﬁg tires were
restrictive and potentially inaccurate when considering large, 'working' vehicles and the
situations they are designed to encounter.

This research investigates the importance of dynamic modeling of differentially
and conventionally steered wheeled mobile robots. The Tethered Mobile Robot (TMR)
designed for the purposes of automated highway crack sealing operations is the vehicle
which is modeled and simulated in this work. The configurations of general wheeled
mobile robots along with the specific differentially steered and conventioﬁa]ly steered
tethered mobile robot configurations are introduced. The kinematic equations for both
the differentially and conventionally steered TMR's are then derived for the purpose of
comparison to the other dynamic models. In a similar manner, the simplest possible
dynamic model equations are derived for both the differentially and conventionally
steered TMR's. This simple dynamic model uses no tire models to predict the tire forces
produced by the tires (actually, a very simple tire model had to be used on the front wheel

iv
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of the conventionally steered TMR). The reason for doing this is due to the fact that
much of the complication of the dynamic model comes from the use of an accurate tire
model, and we wanted to establish when it is necessary to use a complex tire model or
when simpler methods may be sufficient.

The Dugoff tire friction model which is used to predict the tire forces in the
subsequeht dynamic models is then introduced and explained. With the tire model
established, the dynamic equations for the differentially steered TMR are derived which
incorporate the Dugoff tire representation to provide the tire forces. Simulations are run
which compare the dynamic model to the kinematic and simplified dynamic models in
order to find the limits of validity of each of the differentially steered WMR models.
Additionally, the accuracy of the dead regkoning vehicle tracking method is investigated
for differentially steered WMR's when driving wheel speeds are used.

In a similar manner, the dynamic equations for the conventionally steered TMR
are derived which incorporate the Dugoff tire representation to provide ‘the tire forces.
Simulations are run which compare the dynamic model to the kinematic and simplified
dynamic models in order to find the limits of validity of each of the conventionally
steered WMR models. Again, the accuracy of the dead reckoning vehicle tracking
method is investigated for conventionally steered WMR's.

Finally, conclusions and suggestions are made which explain which model is
appropriate for.a given application. Furthermore, recommendations for extensions of this

work which would provide valuable contributions to this area are described.
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CHAPTER 1. INTRODUCTION

1-1. Applications of Wheeled Mobile Robots.

Applications for Wheeled Mobile Robots (WMR's) have grown significantly in
the last few years and will continue to expand in the future. The potential for the use of
these unmanned vehicles to handle inherently hazardous situations or tedious tasks is
nearly unlimited. Safety of human life is perhaps the most important advantage for using
a WMR in any application.

Wheeled Mobile Robots have been used, in one form or another, to perform
janitorial office tasks, to disarm bombs, to clean up hazardous chemical spills, to aid in
research, and much more. As the technology is developed, their uses will become
widespread and common. WMR's are now being developed for such applications as
automated highway transportation, and as is discussed in this paper, automated highway
maintenance and repair.

Conceptually developed at the University of California, Davis in conjunction with
the California Department of 'Transportation as part of the Advanced Highway
Maintenance and Construction Technology program is the Tethered Mobile Robot
(TMR). The TMR is a differentially steered, self-propelled robot which works in close
proximity to a support vehicle designed as an integral part of automated highway crack
seal'}ng operations. The TMR will house such items as a pavement router and sealant
dispenser and Will be tethered to the support vehicle by a passive linkage. The passive

- lihkage will serve as a means for delivering supplies and power from the support vehicle
to the TMR as well as a means for accurate measurement of the robot's position relative
to the support vehicle. A wheeled mobile robot of this configuration has the potential for
a wide variety of applications including highway maintenance tasks (pavement crack

sealing and painting), toxic waste clean-up, etc.
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1-2. Literature Review.

Due to the broad range of potential applications for wheeled mobile robots, a
significant amount of research is being done and has been published on the subject.
Many researchers have reviewed and investigated different WMR configurations. Most
recently, Gentile (1992) reviewed nine different WMR configurations and analyzed the
stability and dexterity of each configuration as well as the number of actuators necessary
to control and propel the WMR. Many different configurations of WMR's have also been
built, including such mobile robots as Newt, the Stanford Cart, Neptune, Rover, and
many more. The general configuration of the tethered mobile robot has already been
developed and is classified as a differentially steered, conventionally wheeled mobile
robot which will be modeled as a three degree of freedom vchiclé.

A great deal of the published research is dedicated to developing control strategies
for tracking WMR's and for the generation of path planning techniques (mostly for
purposes of collision avoidance). A fundamental part of any research in this area
involves some way to track the WMR's position and orientation. Most researchers have
used kinematic models to accomplish this task, a proccés called dead reckoning. Dead

" reckoning is the process of measuring the rotations of the wheels and using rigid body
kinematics to determine the WMR's position and orientation. Segovia, Rombaut,
Preciado, and Meizel (1991) used a simple 3 degree of freedom kinematic model to
predict the position and orientation of a WMR in their study of path generation methods.
Alexander and Maddocks (1989) developed the kinematics and inverse kinematics of
WMR's for use during low-speed maneuvering. It was assumed in this study that pure
rolling takes place until the inertial forces from accelerations saturate the available
frictional forces produced by the tires. Using this method however, errors due to wheel
slippage and lack of sensitivity to external forces and inertial effects can accumulate and

become significant.
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A few researchers have derived dynamic models for wheeled mobile robots.
Hemami, Mehrabi, and Cheng (1990) formulated the vehicle dynamic equations in a
study of new control strategies for tracking WMR's. This study made use of a linear non-
dynamic tire model with the assumption that slip angles are less that 5 degrees. It was
also assumed that the forward velpcity of the vehicle remained constant, so longitudinal
tire forces were neglected. Hamdy and Badreddin (1992) derived the dynamic model for
a wheeled mobile robot called RAMSIS. Their rhodel accounted only for slip and forces
in the longitudinal direction, while side slip was assumed zero and lateral tire forces were
neglected. As these dynamic models were derived, the methods for modeling tires are
potentially inaccurate when considering large, 'working' vehicles and the situations they

are designed to encounter.
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1-3. Problem Statement

Most wheeled mobile robots in existence are small and lightweight and operate at
low speeds, low accelerations, and under lightly loaded éonditions. Because of this,
modeling the vehicle dynamics when developing control strétegies for WMR's has been
considered relatively unimportant (Smith and Starkey, 1991). However, Vas we advance to
the future of WMR's, dynamic modeling of these vehicles becomes increasingly
important as wheeled mobile robots are designed to perform heavy duty work and travel
at higher speeds (eventually reaching highway speeds). Additionally, a dynamic model
must also be accompanied by a reasonably accurate tire model to correctly predict the
forces produced by the tires. A dynamic model which utilizes a poor tire representation is
potentially inaccurate when operated under conditions which approach the saturation
level of the available tire forces.

Most generally, WMR's can be broken up into two categories: differentially -
steered and conventionally steered. Differentially steered vehiéles have two separately
controlled driving wheels, and directional control of the vehicle is based on the rotational
speeds of the two driving wheels. One or more caster type wheels are used for stability.
Conventionally steered vehicles have ‘one or more driving wheels and one or more
actively steered wheels. Directional control of the vehicle is based on, of course, steering
the steered wheel(s), as in today's automobiles.

The differentially steered vehicle which will be considered in this paper is the
Tethered Mobile Robot designed for the purposes of automated highway crack sealing
operations. The differential steering will give it the high maneuverability needed to
follow crack paths. The TMR is expected to weigh in excess of 2225 N (500 Ibs.) and it
is being designed to perform heavy duty pavement routing and sealing tasks. Such tasks
exert very large external forces on the TMR and will inevitably influence its path and

direction. For these reasons, a kinematic model is not sufficiently accurate to predict the

Copyright 2011, AHMCT Research Center, UC Davis



~ behavior of the TMR. Figure 1-1 depicts an overhead view of the configuration of the

differentially steered TMR.

Driving Wheels

Pa_ssivé Linkages

FIGURE 1-1 ,
Overhead view of general configuration of the differentially steered TMR.

In order to inve.stigate the dynamics of conventionally steered WMR's, the
differentially steered TMR is easily modified to become a conventionally steered TMR.
The front caster wheel is replaced by an actively steered wheel, and the rear wheels are no
longer independently controlled. Most all vehicle parameters between the differentially
and conventionally steered TMR's are identical.

In this paper, the importance of dynamic modeling is investigated and the limits of
validity of kinematic and simplified dynamic models are found. Chapter 2 introduces
general wheeled mobile robot configurations along with the differentially steered and
conventionally steered tethered mobile robot configurations. Then in Chapter 3, the

kinematic equations for both the differentially and conventionally steered TMR's are
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derived for comparison to other dynamic models. In a similar manner, the simplest .
possible dynamic model equations are derived in Chapter 4 for both the différentially and
conventionally steered TMR's. In this chapter, no tire models are used to predict the tire
" forces produced by the tires (actually a very simple tire model had to be used on the front
wheel of the conventionally steered TMR). The reason for doing this is due to the fact
that much of the complication of the dynamic model comes from the use of an accurate
tire model, and we wanted to establish when it is necessary to use a complicated tire
model or when a simpler method may be sufficient. Chapter 5 introduces the Dugoff tire
friction model which is used to predict the tire forces in the subsequent dynamic models.
In Chapter 6 the dynamic equations with the Dugoff tire model for the differentially
steered WMR are derived. Simulations are also run in this chapter to compare and find
the limits of validity of each of the differentially steered models. Similarly, in Chapter 7
the dynamic equations with the Dugoff tire model for the conventionally steered WMR
are derived. Simulations are run which compare and find the limits of validity of each of
the conventionally steered models. Finally, Chapter 8 sums up the results and makes

recommendations for determining which model is appropriate for a given application.
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CHAPTER 2. WHEELED MOBILE ROBOT CONFIGURATIONS

Wheeled mobile robots can be classified into numerous different configurations
and types. Campion (1993) classified a large number of WMR configurations into 5
types while Gentile (1992) summarized and compared 9 different WMR architectures.
Because of the large number of possible configurations, it is not feasible to try to model
and compare every possible type of WMR. However, most all WMR's with conventional
wheels can be classified in one of the two following categories: Differentially steered and
conventionally steered.

A differentially steered WMR has two separately controlled driving wheels, and
directional control of the vehicle is based on the rotational speeds of the two driving

~wheels. One or more caster type wheels are used for stability.

A conventionally steered WMR has one or more driving wheels and one or more
actively steered wheels. If the vehicle has more than one driving wheel, then the driving
wheels are normally allowed to turn at different rates, but are supplied with equal torques.
This is often accomplished through the use of a single driving motor which transfers
power to the driving wheels through a differential. This can also be done with two
‘separate motors which supply equal torques to each of. the driving wheels. The
directional control of the vehicle is based on the actively steered wheel(s). If multiple
steered wheels are used, then it is important that they both steer about the same kinematic
center of curvature (Ackermann Steering) or excessive wheel scrub will occur and
directional control will be inconsistent. The steered and driving wheels need not be

separate, but a single wheel may be both steered and driven.
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2-1. The differentially steered wheeled mobile robot.

The differentially steered WMR which will be considered in this paper is the
Tethered Mobile Robot designed for the purposes of automated highway crack sealing
operations. An overhead view of the differentially steered TMR with all of the forces and

moments which are exerted upon it is depicted in Figure 2-1.

i XpU

xXocxa-H

FIGURE 2-1
Differentially Steered Tethered Mobile Robot

Denoted in Figure 2-1 are the following forces and torques:
F,,F,, F,, F,; Longitudinal and lateral driving wheel tire forces.
P,, P,: Longitudinal and lateral forces produced by the router.

Lg, Ly Longitudinal and lateral forces produced by the passive linkage (due to
accelerations).

L,: Torque produced by the passive linkage (due to friction in the joint).

Fip Fip Lonhgitllldinal and lateral rolling resistance produced by the front caster
wheel.
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2-2. The conventionally steered wheeled mobile robot.

The conventionally steered wheeled mobile robot which will be considered in this

paper is nearly identical in configuration to the differentially steered TMR. The front

caster wheel is replaced by an actively steered wheel, and the constraint of equally

applied torques is imposed on the two rear driving wheels. An overhead view of the

conventionally steered TMR with all of the forces and moments which are exerted upon it

is depicted in Figure 2-2.

wat
P
wa
I3 xf
¢ \
A ll\a
lzlv a
FIGURE 2-2

Conventionally Steered Tethered Mobile Robot

14X, U

A0cCcxoH

Similar forces as noted in Figure 2-1 are denoted here, with the following exceptions:

F,; F,; Longitudinal and lateral front tire forces (WRT tire orientation).

Linkage forces and torques (Lg, Ly, L,) are not included in this model.
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CHAPTER 3. KINEMATICS OF WHEELED MOBILE ROBOTS

Most all models for wheeled mobile robots have used a simple kinematic model to
describe the motion of a WMR on a plane. The kinematic model assumes that no tire
slippage occurs, so the motion of the WMR can be described using simple rigid body
kinematics. In this chapter, the kinematic equations for both differentially steered and

conventionally steered wheeled mobile robots are derived.

3-1. Differentially steered wheeled mobile robots.

Using kinematics, it is assumed that no tire slipﬁage occurs, so for the
differentially steered TMR, the inputs to the system are left and right wheel angular
" velocities ®; and , respectively. With the assumption of no lateral or longitudinal tire

slip, the linear velocity of the left wheel, V,, can be expressed as

V. =o,Rj, (3-1)

where R, denotes the tire radius.

.For the cart rigid body we have

o o T, 2
V, =V, +rk, X (-bi, —?]2)
T (3-2)
= ui, +vj, + r;’i; —rbj,

where V denotes the velocity vector of the center of mass (point G), r is the vehicle yaw
velocity, b is the distance from the rear axle to the center of mass, 7, is the wheel track
(center to center distance between the two driving Qheels), and u and v are the forward
and lateral velocity of the center of mass (point G) of the vehicle respectively.

From (3-1) ‘and (3-2), the following relations for forward and lateral velocity, u and v, are

written as
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1,
ad Y (3-3)
v=rb. (3-4)
Similarly, for the right wheel linear velocity V, we have
V. =R, | (3-5)

Examination of rigid body kinematics provides the following expression

V. =V, +rk, X (-bi, +%jz)

(3-6)
2 4 T; ® 5
=ui, +vj, — r;z2 —rbj,
and again the forward and lateral velocities can be written as
T
u=oR +r-- (3-7)
2
v=rb same as (3-4).
From (3-3) and (3-7), the TMR forward velocity is obtained
u= (o, +o) %, (3-8)
, 2
From (3-3) and (3-7) again, the vehicle yaw velocity can be expressed as
. R
rz?’(())l—())r). ’ (3-9)

r

Substitution of (3-9) into (3-4) yields the following expression for the vehicle lateral

velocity

v="1(0, - 0,). (3-10)
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The integral of the yaw velocity is the yaw angle, y, which is expressed as
w=_[rdt. (3-11)

In the world coordinate system, the velocity of the linkage connection point V, of the

TMR is
V, =Ui +Vj, (3-12)
U =ucos(y) — vsin(y) — ersin(y) (3-13)
V = usin(y) + vcos(y) + ercos(y) (3-14)

and the position of the linkage connection point R, in the world coordinate system is

R,= Xlz; + Yl-;l (3-15)
X,=[Udt (3-16)
Y, =[va. (3-17)

3-2. Conventionally steered wheeled mobile robots.

For a conventionally steered WMR, the steered angle 8, and the angular velocity
of any one wheel must be specified. For the conventionally steered TMR, the angular
velocity of the right rear wheel ®, will be specified. Relations for the forward and lateral
velocities, # and v, using the right rear wheel angular velocity are derived the same as for

the differentially steered vehicle and are written as
T
u=oR + r;’ (3-D

v=rb. | (3-4)
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Using rigid body kinematics, the velocity of the front wheel V, can be written as

V, =V, +7k, X (ai,)
= ut, +vj, +ar, | (3-18)

=,uiA2 +(v+ ar)fz.

In order to satisfy the no slip conditions at the front wheel, the ratio of the lateral to -

longitudinal velocity must equal the tangent of the steered angle 6

v+ar
tand = (3-19)
u
Substituting in (3-4) for v and rearranging, the yaw velocity can be written as
utand
r= (3-20)
(a+b)

and substituting (3-20) into (3-7), the longitudinal velocity can be written in terms of the
steered angle instead of the yaw velocity as
O, R

1 T tand °
2(a+Db)

u= (3-21)

The integral of the yaw velocity is, once again, the yaw angle, which is expressed as

\|I=ert. o (3-11)

With the forward, lateral, and yaw velocities, along with the yaw angle, the equations for
velocity and position of the conventionally steered TMR in the world coordinate system
are identical to those of the differentially steered model.

In the world coordinate system, the velocity of the linkage connection point V, of

the TMR is

V, =Ui +Vj, | (3-12)

Copyright 2011, AHMCT Research Center, UC Davis

13



U = ucos(y) —vsin(y) — er sin(\y) (3-13)
V =usin(y) + vcos(y) + ercos(y) (3-14)

and the position of the linkage connection point R, in the world coordinate system is

R, = le; + Yl.;l ' V - (3-15)
X, =[Udt o (3-16)
Y,=[Vadt. (3-17)
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CHAPTER 4. SIMPLIFIED DYNAMIC MODELING OF WHEELED
MOBILE ROBOTS
(Dynamic modeling with greatly simplified tire representations)

In order to derive the dynamic equations of WMR's, forces must be summed and
moments must be taken about some point on the vehicle. This includes forces produced
by the tires. Predicting the tire forces is perhaps the most difficult part of the dynamic
modeling of a WMR. Although the use of an accurate (and complex) tire model is
important, it may not always be necessary. A dynamic model without a tire model is
derived here as an example of the simplest possible method of WMR dynamic modeling.
Of course there are many simple tire models - whose accuracy falls between that of a
complex tire model and the example in this chapter with no tire model. This dynamic
(without tire) model will be compared to the dynamic (with tire) model to investigate the
limits of validity of the no tire dynamic model and the conditions when it is important to

use an accurate and sophisticated tire model.

4-1. The body centered frame of reference.

The equations of motion for a wheeled mobile robot are derived in the appendix
using the standard vehicle dynamics body centered frame of reference (Gillespie 1992).
With respect to the body centered reference frame, the force balance equations for the

TMR in the longitudinal, lateral, and vertical directions are expressed as -

ZF; =m(i+gqw—vr) | (4-1)
2 F, =m(v +ur — pw) 4-2)
2 F,=m(W+ pu—qu) (4-3)

where g and p are the pitch aﬁd roll angular velocities, and w is the vertical bounce

velocity.
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Also with respect to the body centered reference frame, the moment equations taken
about the center of mass (point G) about the longitudinal, lateral, and vertical directions

are expressed as

M, =1p-1,(F+pg)+U,—1,)gr (roll) (4-4)
YM, =1g+U -1)pr+I1,(p*—r*)  (pirch) (4-5)
S M, =Li-1,(p—qr+U,~1)pg  (yaw) *-6)

where I, I, and , are the moments of inertia about the i’;, fz, and /22 directions, and I, is
the product of inertia about l; and jz.
For a simple 3 degree of freedom planar model which allows only movement in

the longitudinal and lateral directions along with angular displacements about the vertical

axis (yaw) we have

q=0 (no pitch),
w=0 (no bounce),
p=0 (no roll).

"The applicable force and moment equations for the 3 DOF model now become

2 F =m(u—vr) (4-7)
2 F,=m(v+ur) (4-8)
Y M, =1F. (4-9)

Copyright 2011, AHMCT Research Center, UC Davis

16



17

4-2. Differentially steered wheeled mobile robots

In the absence of a tire model, a few assumptions and constraints must be made:

e No lateral tire slip = wheel axle has no lateral velocity.

e Longitudinal tire force is simply some function of the torque applied to the wheel.
Initially it appears that the tire force should simply be the torque applied to the wheel
divided by the tire radius. However, upon closer inspection it is apparent that energy to
accelerate the wheel, gearbox, and motor rotor must be accounted for (the front caster is
assumed to be small and its inertial effects are therefore neglected). Therefore, the tire
force produced is proportional to the applied wheel torque minus the amount of torque
which is used to accelerate the wheel, gearbox, and rotor. The longitudinal vehicle

acceleration including wheel inertia effects is derived here.

D

FIGURE 4-1
Side view of differentially steered TMR

Figure 4-1 shows the side view of the differentially steered TMR. Using kinematics, the

relation between angular and linear acceleration is obtained

u=R,. (4-10)
The torque applied to the wheel is used in two ways: 1. The linear acceleration of the
vehicle and, 2. The angular acceleration of the wheels, gearbox, and rotor: This relation

can be expressed as

N ppiiea =N

app linear

+N

angular (4-11)
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where N, ... 1S the torque applied to the wheel, N

app linear 15 the torque used to linearly

accelerate the vehicle, and N

anguiar 1S the torque used to accelerate the wheels, gearbox,

and rotor.
The linear torque is simply transformed into a longitudinal tire force F,, at the tire/ground

interface and is approximated by

F — linear (4_ 1 2)

=Jlo=—" (4-13)

Combining (4-11), (4-12), and (4-13) yields

Lu
N -
N - N applied
F; = apphedR angular — = Rt . (4_14)

t t

If a distinction is then made between the right and left rear wheels, (4-14) becomes

Li,

applied(R) — R‘
F, = (right wheel) - (4-15)

Rt
and

L,

N applied(L) — -
F_ = L (left wheel). : (4-16)

xrl R‘

where L'tr and Lll are the longitudinal accelerations of the right and left wheel hubs.

Using rigid body kinematics, expressions for these accelerations can be written as
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u=u—r—=— 4-17
. > (4-17)
u=u+ r;. (4-18)

Substitution of (4-17) into (4-15) and (4-18) into (4-16) provides the following

expressions'for the right and left tire forces

T
L(i—7r)
N oo
applied(R) R
F, = ' “-19)
Rl
1, (u+r'£)
Ny
applied(L) 1{‘ .
F, = - : (4-20)

t

For the differentially steered Tethered Mobile Robot shown in Figure 2-1, the

longitudinal forces can easily be summed by inspection yielding

M F,=F, +F

xrl

+ P + fo + Flf (4-21)

and from (4-7) we get

m(u—vr)=F_, +F

xrl

+P +L, +F,. (4-22)

Substituting in for F,,, and F,, from (4-19) and (4-20) and solving for the forward

xrl

acceleration u yields

N, _,. . o+N_ .
applied(R) applied(L) + I)x +fo +Flf + mvr

1) =
m+ R 7

t
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The sum of the moments about the z direction taken about the center of mass of the

vehicle is (equation (4-9))
> M, =1Ir. (4-9)

However, since the lateral tire forces are unknown because a no lateral slip condition is
assumed, the sum of moments must be taken about point Q (centerline of the rear axle)
instead of about the center of mass of the vehicle (point G). The general moment
| equation about point Q is
ZMQ =1 r+pxma, ' (4-24)
where [, is the Moment of inertia about point @, p is the vector from point Q to center of

" mass (point G), and a, is the vector of acceleration of point Q.

From the parallel axis theorem:
1,=1,+mb’ | | (4-25)
and the vector from QtoGis

p=bi,. | - (4-26)
The acceleration of point Q can be broken up into a longitudinal acceleration, a, , and

a lateral acceleration, ag, > and is written in vector form as
a,= aQwi2 +a,, Jr- B . (4-27)
The longitudinal acceleration of point Q is simply the vehicle longitudinal acceleration

=1 | (4-28)

and the lateral acceleration is strictly centripetal since point Q has no lateral velocity
a, =ur. (4-29)

The moment equation (4-24) now becomes
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Y M, =([(I, +mb*)i + mburlk,. (4-30)

Summing the moments about point Q in the 122 direction on the differentially steered

TMR shown in Figure 2-1 yields:

T
> M, =S (Fa=F,)=(d=b)P +(e+b)L, + L +(@+bF,
(4-31)

and substituting in once again for F,,, and F,,, and solving for the yaw acceleration yields:

T N applied(L) - N applied(R)
2 op % WC2) —mbur —(d —b)P, +(e+b) L, + L, +(a+b)F,

F= >

Iz+mb2+T’—Iz’
2

(4-32)

The longitudinal velocity and the yaw velocity are obtained by simply taking the integral

with respect to time of the longitudinal acceleration and yaw angular acceleration
u= _[u dt (4-33)
r= _[r' dt (4-34)

and the yaw angle is the integral with respect to time of the yaw velocity

v=[rat. (4-35)

Since this model is constrained to have no lateral slip at the tire/ground interface, the
expression for lateral velocity of the center of mass of the thicle, v, 1s simply obtained

through kinematic relations

v=br. ' (4-36)
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With the forward, lateral, and yaw velocities along with the yaw angle, the equations for
velocity and position of the TMR in the world coordinate system are identical to those of
the kinematic model at the end of Chapter 3:

In the world coordinate system, the veloCity of the linkage connection point V, of

the TMR is
V, =Ui +Vj, (3-12)
U =ucos(y) —vsin(y) — ersin(y) (3-13)
V =usin(y) + vcos(y) + er cos(y) (3-14)

and the position of the linkage connection point R, in the world coordinate system is

R, =X +Y%] (3-15)
X, =[Udt (3-16)
Y =_[V dt. (3-17)

- 4-3. Conventionally steered wheeled mobile robots.

For the conventionally steered wheeled mobile robot, identical conditions to that
of the differentially steered TMR are used at the rear wheels (no rear lateral tire slip and
longitudinal tire force a function of the applied wheel torque). Any front tire longitudinal
férce is assumed to be negligible since there is no torque applied to the front wheel. For
the differentially steered TMR, the lateral tire forces never needed to be summed and the
vehicle moments were taken about a point on the rear axle. For these reasons, the rear
lateral tire forces never needed to be found. The same situation applies to the
conventionally steered TMR. However, in this case, there is a front steered wheel which

provides lateral tire forces. Because this wheel is steered, the front lateral tire force will
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enter into the longitudinal force sum equation. Also there is no point from which to sum -

the moments which will always cause all three of the lateral tire forces to drdp out. For
this reason, a very simple tire model must be used to predict the lateral tire force
produced by the front wheel. The simplest tire model available is the linear non-dynamic
tire model, which simply uses a linear relation between the lateral tire force and the slip
angle. To make use of this tire model, the slip angle must first be found. The front slip
angle o is defined as the angle between the velocity vector Vy and orientation of the front

wheel and is shown in Figure 4-2.

—

FIGURE 4-2
Steered front wheel defining slip angle.

The front tire velocity is written as

V, =ui, +(v+ar)j, (4-37)

and writing the front tire velocity with respect to the tire fixed coordinate system (X, s,

Z,) yields

V, =[ucosd + (v +ar)sindJi, +[(v +ar)cosd — usin 5]}'3. (4-38)

From its definition, the slip angle can now be written as
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(v+ar)cosd — usinﬁ}
- (4-39)

o, = tan” : _
| ucoso+ (v+ar)sind

and from the linear non-dynamic tire model, the lateral tire force is the lateral tire

stiffness C,,, multiplied by the slip angle

F,=C

lat

o, (4-40)

The derivation of the rear tire forces is identical to that of the differentially steered

vehicle. The right and left rear tire longitudinal forces are therefore expressed as

1, (= F20)
N 2
applied(R) Rt
F:trr = . (4-19)
RI
I(u+ ’-,E)
Ny
applied(L) Rt
F = . 4-20
xrl R ( )

1

For the conventionally steered TMR shown in Figure 2-2, the sum of the forces (not
including the front longitudinal tire force F,, because it is assumed zero) in the

longitudinal direction yields

N F,=m(i—vr)=F,, +F,

xrr xrl

—F,siné+ P,. ©(4-41)

Substituting in for F,,, and F,, from (4-19) and (4-20), and solving for the forward

acceleration yields
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N ieacry T N oo
applied(R) applied(L) . :
R — F,sind + P, +mvr
U= .
o (4-42)
m+-—
!

The moment equation about point Q was derived in section 4-2 and is written as

ZMQ =[(1, +mb2)i‘+mbur]l€2. (4-30)

Summing the moments about point Q in the k, direction on the conventionally steered

TMR shown in Figure 2-2 (also neglecting the longitudinal front tire force F,) yields

xrl xrr

Y M, =%(F —F,,)+F,cosd(a+b)— P,(d—b) (4-43)

and substituting in once again for F,,, and F,, and solving for the yaw acceleration yields

N .. —N__ |
5( ppledld) ___ppled® ) — mbur — (d —b) P, + (a + b) F,; cosd
2 R y

F= . (4-44)

I, +mb* + L 'Ié
2R

t

Just as in section 4-2, the longitudinal velocity and the yaw velocity are obtained by
simply taking the integral with respect to time of the longitudinal acceleration and yaw

angular acceleration

Cu= _[u dt ' (4-33)
r=|idt (4-34)

and the yaw angle is the integral with respect to time of the yaw velocity

y=]ra. (4-35)
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Since this model is constrained to have no lateral slip at the rear tire/ground interface, the .

expression for lateral velocity of the center of mass of the vehicle, v, is simply obtained
through kinematic relations

v=br. (4-36)

With the forward, lateral, and yaw velocities along with the yaw angle, the equations for
velocity and position of the TMR in the world coordinate system are identical to those of

the kinematic model at the end of Chapter 3:

In the world coordinate system, the velocity of the linkage connection point V, of

the TMR is
V, = Ui, +Vj, | o (3-12)
U = ucos(y) —vsin(y) — ersin(y) v (3-13)
V = usin(y) +vcos(y) + ercos(y) (3-14)

and the position of the linkage connection point R in the world coordinate system is

R, =X, +%j (3-15)
X,=[Uadt - (3-16)
Y,=[Var. * (3-17)
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CHAPTER 5. THE DUGOFF TIRE FRICTION MODEL

Chapters 6 and 7 will derive the equations for the dynamic modeling of wheeled
mobile robots when a tire model which provides longitudinal and lateral tire forces for
each tire is used. Before doing this, however, it is necessary to introduce the tire model
which will be used as it is an integral part of a dynamic wheeled mobile robot model.

Dugoff's tire friction model, which utilizes the traditional friction circle concept,
is used as the basis for calculating tire forces in this paper. Gunter and Sankar (1980)
. presented a method of simplifying the calculations required when the Dugoff tire model is
used for simulation purposes (This method will be referred to as the 'simplified Dugoff
tire model'). However, this simplified method is only valid if the vehicle is restricted to
- forward motion and slip angles of less than 90 degrees. Outside of this range, this
simplified method has many inconsistencies associated with it e.g.,

o There are sign errors associated with both longitudinal and lateral predicted tire
forces.

e There are no limits placed on slip or on the dynamic coefficient of friction.

o There are pathological cases which are not checked for.

e There are non-holonomic conditions which exist around a vehicle speed of zero.
To correct these inconsistencies the simplified Dugoff model was modified as follows:

o The slip angle has been eliminated. In its place the lateral and longitudinal
velocity of the wheel axle are inputs to the subroutine. This eliminates the sign
ambiguity associated with the slip angle due to the fact that tangent of the slip
angle is a multivalued function in the range of -w to . Certain equations are
multiplied by the sign of the lateral or longitudinal velocities to predict the correct

values and correct signs for tire forces in any possible vehicle situation.
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e Limits have been placed on both the negative and positive maximum values of the
longitudinal tire slip. Also the dynamic coefficient of friction has been limited to
a minimum value of 70% of the static coefficient of friction. This eliminates the
possibility of friction dropping to zero and actually becoming negative.

e Additional pathological cases are checked for to now include all possible
situations.

e The non-holonomicity which existed around zero velocity has been removed by
checking for an additional pathological case: If the vehicle forward speed is zero,
and there is torque applied to the wheel, then the longitudinal force produced by

the tire is simply N/R, (Where N is the applied torque and R, is the tire radius).

The general procedure for finding the tire forces is outlined below. The equations which
correspond to the modified Dugoff tire model are not derived, but simply defined and

explained.

First it is necessary to check for pathological cases:

If the tire has no forward velocity V,, then the longitudinal tire force F, is

N
F =— (5-1)
X R[
where N is the torque applied to the wheel and R, is the tire radius.
If the tire has no forward velocity and no lateral velocity V, then the lateral

tire force Fy is zero
Fy =0. : : (5-2)

If the tire has no forward velocity and a lateral velocity less than 0.03048 m/s (0.1
ft/s)‘ then the lateral tire force is (NOTE: Equation (5-3a) is used if the lateral
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velocity V, is expressed in meters/sec and (5-3b) is used if the lateral velocity is

expressed in feet/sec.)

F,=-32.8u FV, (5-3a)

F,=-10p,FYV, (5-3b)

where |1, is the nominal coefficient of friction and F, is the normal load on the
tire.
If the tire has no forward velocity and the lateral velocity is greater than
0.03048 m/s (0.1 ft/s) then the lateral tire force is
Vy
Fy =——W F,. ‘ (5-4)
Yy
Vi
If none of the previous pathological cases were satisfied, then the tire forces must be
solved through the following procedure:
The ratio of the lateral velocity to the longitudinal velocity of the tire A is a measure of

percentage of lateral slip. The absolute value of this ratio is taken because the signs are

ignored at this point.
V
A=, (5-5)
V. '

The longitudinal tire slip S is the percentage of slip between the tire and the ground. If
the wheel angular velocity  is zero or opposite to the linear longitudinal velocity of the
tire, then the longitudinal tire slip = 1. If the wheel angular velocity is not zero and is in
the direction of the linear longitudinal velocity of the tire, then the longitudinal tire slip is

found with the following expression
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R
§=1-42 (5-6)

Because the equation for longitudinal tire slip is unbounded, a limit must be placed on
this value in order to keep other variables which are functions of the longitudinal tire slip
within reasonable levels. So, if the calculated longitudinal tire slip is less than -3, then set
the longitudinal tire slip to equal -3.

The longitudinal and lateral traction coefficients, C,, and C,,, are given by the following

expressions
C,, =0.001(C,F,) -7)
Cic =0.001(C, F,,) | (5-8)

where C, and C| are the longitudinal and lateral tire stiffnesses.
The combined slip S, is the square root of the sum of squares of the longitudinal slip and

the lateral slip

S, =vS*+ N : (5-9)
~The dynamic coefficient of friction 1 is dependent on the amount of slip which is

occurring

Vx

w=p, (1-¢v,S.) (5-10)

where € is the dynamic friction reduction factor (0.0034). If the dynamic coefficient of
friction is less than 70% of the nominal coefficient of friction, then the dynamic
coefficient of friction is limited to 70% of the nominal coefficient of fﬁction.

If the longitudinal slip is 1 (wheels locked), The longitudinal and lateral tire forces are

calculated by the following expressions:

V. C,MLF,
F. =|- - Ing ’2"73 — (5-11)
V. (Clng +C,A)
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V .
y I: Clatu‘FNA‘ )1/2:|' (5_12)

i ) ) (Cug” + CR

lat

If the longitudinal slip is not 1, then the desired longitudinal and lateral tire forces, F,,

and F,;, must be calculated based on the amount of slip

_ _& ClngS
Fu [ \vﬂ[l—s] 1

V, [ C.A
F,=—5|7=| 5-14
v | ‘Vy‘ [I—S} (5-14)

Using the desired tire forces, the desired coefficient of friction ﬂd can be found

(F2+F2)"

= 5-15
Ky F, (5-15)

If the desired coefficient of friction is less than 1/2 of the dynamic coefficient of friction,
then the desired longitudinal and lateral tire forces are correct. Otherwise, they must be

scaled back using a reduced (resultant) coefficient of friction W, :

. =u[1— H ] (5-16)

4u,

The longitudinal and lateral tire forces can now be predicted using the following

equations
A
F,=F, [”— | | (5-17)
Ly ) ,
3\
F,=F, (“— . (5-18)
Ly )
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This modified Dugoff tire friction model has been thoroughly tested in many different
types of maneuvers and situations (including skids and spins). It has been shown to
accurately predict tire forces for any situation that a vehicle may encounter.

- A flow chart of the procedure is additionally included in Figure 5-1.
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INPUT VARIABLES:
Rt, VxI Vy, Cx, Cy, Fn, N, o, uO

Calculate: NO YES _
—<— A (egn. 5-5) Fx=R

Fy =0
Eil Calculate:
Calculate: Fy (eqn. 54)
S (eqn. 586) =
4 _
S is
$=-3 §<-37
. Calculate:
Y Fy (eqn. 5-3)
< NO
v Calculate:
Clng (ean.5-7)
— Cjat (eqn.5-8)
Sz (eqn.5-9)
p (eqn.5-10)
Calculate:
NO |Fyq (eqgn.5-13) s | Fx =Feg
Fyg (ean. 5-14) Fy = Ry
Ky (egn. 5-15)
YES NO
Calculate: Calculate:
Fx (egn.5-11) _ Bes (€Qn. 5-18)
Fy (eqn. 5-12) Fx (eqn. 5-17)

FIGURE 5-1
MODIFIED DUGOFF TIRE FRICTION MODEL FLOW CHART
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CHAPTER 6. DYNAMICS OF DIFFERENTIALLY STEERED
WHEELED MOBILE ROBOTS

Thus far equations 4for kinematic and simple dynamic modeling of wheeled mobile
robots have been derived. A method for finding tire forces was also presented. In this
chapter, the dynamic equations for differentially steered WMR's are derived and the
method for finding tire forces presented in Chapter 5 is used to provide the tire forces for
the dynamic model. The three differentially steered TMR models are then compared to

one another through the use of simulation to find the limits of validity of each model.

6-1. Derivation of Dynamic Equations.

From Chapter 4, the applicable force and moment equations for a 3 DOF model are

Z F. =m(u—vr) (4-7)
Z F,=m(v+ur) (4-8)
Y M, =1r. 4-9)

For the differentially steered Tethered Mobile Robot is shown in Figure 2-1, the force and

moment equations can easily be summed by inspection yielding

Y F,=m(i—vr)=F

xrl

+F, +P+L,+F, (6D

ZFy=m(v+ur)=F

yrl

+F,+P +L, +F; . (6-2)

S M, =17= %(Fx,, ~F,)-b(F,,+F,)—dP,+eL, + L +aF,. (63

Solving the three equations for the longitudinal, lateral, and yaw accelerations, &, Vv, and

F respectively, yields
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Fm+F + P, +L » T Fy
+vr (6-4)

m

F _ +F +P+L +F

p=_r —ur (6-5)

m

T
—2—( " —F,)—b(F T y,,)—dPy+eLfy+L,+aF)_,f

¥F=

(6-6)

The three state variables, the longitudinal, lateral, and yaw velocities (u, v, r), are simply

the integral of their accelerations

u= Ju dt  (longitudinal velocity) (6-7)
V= Jl} dt  (lateral velocity) (6-8)
r= Jf‘ dt  (yaw velocity) . | (6-9)

The orientation of the vehicle with respect to the world coordinate system (yaw angle) is

then determined by taking the integral of the yaw velocity

y=|radr. ’ (6-10)

With the forward, lateral, and yaw velocities along with the yaw angle, the equations for
velocity and position of the TMR in the world coordinate system are identical to those of
the kinematic model at the end of Chapter 3:

In the world coordinate system, the velocity of the linkage connection point V of

the TMR is

V, =Ui +Vj, (3-12)
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U =ucos(y)—vsin(y) —ersin(y) - (3-13)
V =usin(y) +vcos(y) + ercos(y) (3-14)

and the position of the linkage connection point R, in the world coordinate system is

R, = Xli; + Yljl (3-15)
X, =[Uat (3-16)
Y= [vat. (3-17)
TIRE FORCES

It has already been established how the tire forces are found through the use of the
Dugoff tire friction model. However, there are a number of parameters which need to be
known for the Dugoff model to be able to predict the tire forces:

R; Tire radius. (constant)
C, Cy:  Longitudinal and Lateral tire stiffness parameters. (constant for a set of

given conditions; i.e. tire pressure, temperature, etc.)

Wy | Nominal road/tire interface coefficient of friction. (constant for a given
surface)

N: Torque applied to the wheel. Provided as an input to the system.

Fy: Normal Force supported by the wheel. This is assumed to be constant

because weight transfer due to acceleration is neglected. ~The normal
force supported by the rear wheels combined is a function of the
longitudinal position of the center of mass of the vehicle and is expressed

as

a

FN(rear) =mg (6-1 1)

‘ " a+b
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Ve Vy:
:

Assuming that the vehicles' center of mass is located along the centerline -

of the vehicle; the right and left wheél loads are equal and are written as

mg. a
FN(!eﬁ) = FN(right) = (T) atb (6-12)

Longitudinal and Lateral velocities of the wheel hub. These velocities are

found simply by using rigid body kinematics. The right tire linear velocity

in the longitudinal and lateral directions are expressed as

T, .
V,=u— r; (longitudinal velocity) (6-13)
V,=v—rb (lateral velocity) (6-14)

and the left tire linear velocity in the longitudinal and lateral directions are

similarly expressed as

T
Ve=u+ r'?' (longitudinal velocity) (6-15)

Viy=v—rb (lateral velocity). (6-16)

Wheel angular velocity. There are two ways of determining the wheel
speeds:
1. The wheel speeds are already known because they have been specified
* as a function of time. This method is used is when comparing the
dynamic model to the kinematic model. Sinée'the only way to run a
kinematic simulation is to specify the wheel speeds as functions of
time; the only way to directly compare the dynamic model to the
kinematic model is to also specify the wheel speeds as functions of

time. Because the wheel speeds are known at all times throughout the
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simulation, slip can be directly calculated and tire forces can be
derived from this.

. In a realistic simulation of a wheeled mobile robot, wheel torques are
provided as inputs to the system. However, wheel speeds must be
known in order to predict tire forces because tire forces are based on
slip - so it is necessary to derive the equations of motion for the wheel.

A driving wheel (right or left) is depicted in Figure 6-1.

FIGURE 6-1
Right or Left Wheel

As shown in Figure 6-1, N is the applied wheel torque, 1, is the
equivalent combined wheel, gearbox, and motor rotor moment of
inertia, and F,, is the longitudinal tire force.

Summing the wheel moments yields
Iéd=N-F,R. (6-17)
Thus, the wheel angular acceleration () can be written as

(j):lv_lﬁ (6-18)

t

and wheel speed © is the integral of the wheel angular acceleration

m=_[d) dt. (6-19)
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FRONT CASTER ROLLING RESISTANCE

The rolling resistance produced by the front caster wheel is assumed to be
opposite to the velocity and proportional to the load on the front ’wheel (independent of
the magnitude of the velocity); i.e., Coulomb friction is assumed in the analysis.
From equation (651 1), the normal load on the front wheel can be expressed as

b
a+b’

Fy oy =M8 (6-20)

In order to find the portion of rolling resistance which acts in the longitudinal direction
and the portion which acts in the lateral direction, the velocity of the front wheel is

needed and can be written in vector form as

V, = uf; +(+ar) f2 (6-21)

and the magnitude of this velocity is

V, =it +(v+ar)’. | (6-22)

The portion of rolling resistance which acts in the longitudinal direction is the ratio of the
wheel forward velocity to the magnitude of the wheel velocity

u

(6-23)
1+ (v+ar)?

and the portion which acts in the lateral direction is the ratio of the wheel lateral velocity

to the magnitude of the wheel velocity

v+ar

. (6-24)
Vi +(v+ar)’
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Accordingly, the rolling resistance produced by the front caster wheel in the longitudinal .

and lateral directions is expressed as

bu
F,=—p.m (longitudinal (6-25)
o p 8 (a+b)u? + (v +ar) ,ngl mal)
' b(v+ar)
F =—p m (lateral) (6-26)
=P g(a+b)\/u2 +(v+ar) “

where p,, is the rolling resistance coefficient.
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6-2. SIMULATION AND RESULTS

6-2-1. Comparison of dynamic and kinematic differentially steered
models using a wheel speed controlled turning maneuver.

To demonstrate the importance of the dynamic model, it was compared to the
kinematic model. To compare these two models, both were run through identical
situations to perform a simple maneuver. This maneuver was a simple 90 degree left
hand turn similar in nature to a turn that the differentially steered TMR would be
expected to perform. Because the kinematic model is used in‘the comparison, the left and
right wheel speeds were the inputs specified as a functions of time. The wheel speed
form of the Dynamic model was used accordingly.

The following vehicle parameters and dimensions for this simulation were
selected as values characteristic of tethered mobile robot under development (Winters
1992).

TMR mass =272 kg (18.6 slugs).
Tire radius = 0.3048 m (1.0 ft).
Longitudinal tire stiffness = 40034 N/rad (9000 lbf/rad)
Lateral tire stiffness = 40034 N/rad (9000 1bf/unit slip)
Road/tire interface coefficient of friction = 0.8
Yaw moment of inertia = 407 kg m2 (300 ft Ib sec2)
Combined wheel, gearbox, and motor rotor moments of inertia = 6.78 kg m?2
(5 ft 1b sec?)
Vehicle dimensions:
a=0.762 m (2.5 ft).
b =0.6096 m (2.0 ft).
d=0.9144 m (3.0 ft).
e =0.2286 m (0.75 ft).
T,=0.9144m (3.01t).

The complete maneuver was accomplished as follows:
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The TMR was initially located at point (0,0) with an orientation of ¢ = 0 degrees
in the world coordinate system with an initial velocity in the l: direction
corresponding to the nominal wheel angular velocity (®,). Both right and left
wheels are spinning at angular velocity ®,,.

At a certain point in time, the left wheel is decelerated to a stop as a quarter sine
wave, held at zero angular velocity for a period of time, and then accelerated back
to angular velocity ®, (again as a quarter sine wave). The rate that the wheel is
decelerated and accelerated and the amount of time at which it is held at zero is
dependent on the velocity of the TMR. The right wheel angular velocity is held
constant throughout at ®,. A graph of the left wheel angular velocity is shown in
Figure 6-2. This figure is for w, = 1 rad/sec and will vary depending on the value
of ®, (although the basic shape will remain the same). After the turning

maneuver, the TMR is allowed to travel in a straight line for a few moments to

LEFT WHEEL SPEED VS TIME
90 DEGREE TURNING MANEUVER
(for o, = 1 rad/sec)

g 1.00
E \
g‘ \
Q
8
£ oes
8
2
s
]
f 0.33
=
5
0.0 ~
0.0 25 5.0 75 10.0
Time (sec)
FIGURE 6-2

Left wheel speed as a function of time at @, = 1 rad/sec.
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illustrate the difference in predicted paths between the models. The total time
simulated varies depending on the speed that the TMR is simulated at (to produce
comparable results).

e The maneuver is run at five different vehicle speeds: 0.3048 m/s (1 ft/s), 0.6096
/s (2 ft/sec), 0.9144 m/s (3 ft/s), 1.524 m/s (5 ft/s), and 3.048 m/s (10 ft/s).

In order to keep the results simple and straightforward to interpret, it is assumed
that there are no router forces, no torques or forces from the passive linkages, and no
rolling resistance forces from the front caster wheel:

P,=P,=L,=Py,=L=F =F=0.

The results from this simulation are quite significant and are shown in Figure 6-3.

DIFFERENTIALLY STEERED 90 DEGREE TURNING MANEUVER

Y1 vs X4
(path traced out by TMR)
Kinematic and Dynamic Models

-30.0 |
06096 m/s Labeled speeds are
3048 m /’ (2 f/s) Dynamic model.
e ),
225 /
, 0.9144 m/s
Kinematic (3 f/s)
g Modsl \_)
E, -15.0
N
75 / 1.524 m/s (5 ft/s)
00 3.048 m/s (10 fs)
0.0 3.0 8.0 8.0 12.0
‘ X4 (meters)
FIGURE 6-3

TMR path trace - 90 Degree turn simulation results.
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The predicted path that the vehicle traces out using the kinematic model is .
independent of initial vehicle speed. As expected, however, the dynamic models'
prediction is highly dependent on vehicle speed. At a vehicle speed of about 0.3048
m/sec (1 ft/sec) or less, the predicted results of the dynamic model are identical to that of
the kinematic model. At a vehicle speed of 0.6096 m/sec (2 ft/sec) the differences
become significant, and at any higher speeds, the differences are drastic. At the higher
vehicle speeds, the left tire forces saturate during the maneuver which causes the vehicle
to fall short of the designated 90 degree turn. This is, of course, a very sharp turn with a
radius of curvature of approximately the rear wheel track of the vehicle (0.9144 m (3 ft)).
However, differentially steered vehicles are designed to be highly maneuverable and turns
of this sort are expected. |

According to these results, a differentially steered wheeled mobile robot
simulation using dead reckoning navigation techniques, traveling at a velocity of only
0.9144 m/sec (3 ft/sec) will have a location error of about 2 meters (7 feet), 23 meters (75

feet) after making the turning maneuver.
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6-2-2. Comparison of Dead Reckoning method, Dynamic (with tire),
and Dynamic (without tire) differentially steered models using a torque
controlled turning maneuver. '

In the previous simulation, the range of validity of the kinematic model fbr
differentially steered vehicles when used for simulation purposes was shown. The
kinematic model can also be used on real vehicles to determine position and orientation
by physically measuring wheel speeds - a process cailed dead reckoning. It is possible to
show the range of validity associated with the dead reckoning process by combining the
kinematic model with the dynamic model. The kinematic model simply utilizes the
wheel speeds which the dynamic model calculates - just as if they had been measured off
of the drive wheels of a vehicle. Any differences between the predicted paths of the dead
reckoning and dynamic models is entirely due to wheel slippége, and is the same error
associated with using the dead reckoning process on a real vehicle. It is important to note
that in these simulations, the dead reckoning method is performed using drive wheel
speeds. Dead reckoning can also be performed by using wheel speeds measured off of
passive wheels, which is more accurate because much of the longitudinal slip error is

removed.

For this simulation the applied wheel torques are specified instead of wheel -

speeds. Using this method, the importance of a tire model can also be detérmined by
comparing the dynamic (with tire) model to a dynamic (without tire) model. A dynamic
differentially steered model without a tire model was derived in Section 4-2. .

The simulated maneuver for this comparison is again, a left hand turn. However,
since the wheel torques are specified, the degree of attempted turn is not predetermined.
The left hand turn is accomplished as follows:

e The TMR starts initially at point (0,0) with an orientation of W = 0 degrees in the
world coordinate system with an initial velocity if 0.3048 m/sec (1 ft/sec) in the {l

direction. Both the right and left wheels are spinning accordingly. At time t = O
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seconds, equal torques of 27.1 N-m (20 ft-1bf) are applied to the right and left driving
wheels.

e At time t = 2 seconds, the torque applied to the left wheel is reversed to -27.1 N-m (-20
ft-1bf). This reversed torque is applied for 2 seconds (until t = 4 seconds), and then
resumed to its original 27.1 N-m (20 ft-1bf). The right wheel torque remains constant at
27.1 N-m (20 ft-1bf) throughout. The total time simulated for each situation is identical

(6 seconds).

As in the previous simulation, it is assumed that there are no router forces, no
torques or forces from the passive linkages, and no rolling resistance forces from the front
caster wheel.

For this simulation, the position of the TMR center of mass has been altered for
several different comparisons. This will demonstrate the effect that the vehicle inertia has
on the different models. Three different center of mass locations were used. Table 6-1
contains the vehicle dimensions for each of the three center of mass locations.

‘The results of the simulation showing the path traced out by the TMR with the
center of mass in each of the three different locations are shown in Figures 6-4 to 6-6.
Each figure shows the predicted path for the dynamic (with tire) model, the dynamic

(without tire) model, and the dead reckoning method.
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Vehicle Dimensions (m [ft])

Position # | Description of C.M. Location a b d e
1 At linkage connection point O | 0.5334 | 0.8382 | 1.143 0
[1.75] | [2.75] | [3.75] [0]
2 At regular C.M. point G 0.762 | .06096 | 0.9144 | 0.2286
[2.5] | [2.0] | [3.0] | [0.75]
3 On axle point Q 1.3716 0 0.3048 | 0.8382
[4.5] [0] [1.0] | [2.75]

TABLE 6-1
Vehicle dimensions for different center of mass locations

DIFFERENTIALLY STEERED LEFT TURN

Y1 v X
(path traced outLy TMR)
center of mass at position 1

-3.0

-2.25

/_-/7 Dead Reckoning
i

Yy (meters)

-1.5
. with
‘ Q’ ) model
Dynamlc (wnhout

tire) mode
0.75
oA
0 3.0 8.0 8.0 12.0
X1 (meters)
FIGURE 64

TMR path trace - Torque controlled turn - C.M. at position # 1
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DIFFERENTIALLY STEERED LEFT TURN

q v X
(path traced out1by TMR)
30 center of mass at position 2
-2.25
Dead Reckoning
|
_ Dynamic (with
B /4_/_ tire) model.
®
E 5
> Dynamic (without
_L'tlre) model
0.75
0 /
0 3.0 8.0 8.0 120
X4 (meters)
FIGURE 6-5

TMR path trace - Torque controlled turn - C.M. at position #2

DIFFERENTIALLY STEERED LEFT TURN

Y4 vs
(path traced ou11by TMR)
center of mass at positio
8.0
4.5
3
3
E =0 /
N
Dynamic (with
tie) model.
1.5 .
tire) model.
0 /
0 1.5 3.0 45 8.0
X4 (meters)
FIGURE 6-6

TMR path trace - Torque controlled turn - C.M in position #3
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The results of this torque controlled turn simulation are very significant. Most
noticeably; there is no difference between the dynamic (with tire) model and the dynamic
(without tire) model in any of the three situations. This must be attributed to the fact that
the tire forces are relatively small in these situations.

In comparison of the dynamic models and the dead reckoning method, thé greatest
differences occur with the center of mass in position #1 and #2. These differences

represent the real error associated with tracking a vehicle by measuring the wheel speeds

of its driven wheels. In these simulations, the position error is as much as 0.6096 m (2 .

feet) after the vehicle has only traveled for a total of 6 seconds at relatively low speeds
(the maneuver takes place at about 1 m/s (3.5 ft/sec)). This is almost a 10% error.

When the center of mass location is moved to the rear axle, as in position #3, the
dead reckoning method's prediction is much more accurate. This is because the inertial
effects are decreased because the center of mass is closest to the center of curvature at this
position (the kinematic center of curvature lies along the line created by the rear axle).

Perhaps the most interesting results are the tire forces. The longitudinal and
lateral left tire forces for the TMR with center of mass in position #2 are shown in Figure
6-7. Only the left tire forces are shown because its forces are the greatest since the left
wheel is the one whose applied torque is altered. In general, it is assumed that the dead
reckoning technique is a relatively good approximation if the tires are producing forces
less than 50% of their limits. For the TMR with C.M. at position #2, the tire limits are
about 600 N (135 Ibf). From Figure 6-7, the maximum tire forces occur at t = 4 seconds,
at which time the longitudinal and lateral tife forces are about -90 N (-20 1bf) and -45 N (-
10 1bf) respectively for a combined tire force of approximately 98 N (22 1bf). This is only
16% of available tire force. Yet there is a 10% error in position after only 6 seconds of
travel. This means that the kinematic model with dead reckoning is not necessarily a

good approximation even when the tire forces are well within their limits.
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DIFFERENTIALLY STEERED LEFT TURN
LONGITUDINAL AND LATERAL TIRE FORCES

LEFT TIRE ONLY

90 (center of mass at position 2)
g - —
E 45
L2 o
o Longitudinal tire force
-
B
ﬁ 0
©
& N N -
;g 45 A Lateral tlralforce
=
[=]
c
(=]
-l

80

0 25 L] 7.5 10
Time (sec)
FIGURE 6-7

Left tire forces for torque controlled turn - C.M. at position #2

It is necessary to note, once again, that no external forces were considered in
either 6f these simulations in order to make the results more straightforward to interpret.
If external forces had been considered, especially large forces as are expected in the case
of the TMR, the paths between the dynamic and kinematic models would have differed to
a greater extent. Most noticeably, the paths would deviate more significantly in the case

where the center of mass was located on the differentially steered vehicles' rear axle.
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6-2-3. Comparison of differentially steered Dynamic (with tire) model .

to Dynamic (without tire) model using a torque controlled turning
maneuver with external forces.

Since the two differentially steered dynamic models produced identical results in
the previous section, it is necessary to find the limits of validity of the dynamic (without
tire) model. To accomplish this, the same torque controlled turning maneuver is used as
in the previous simulation with the following exceptions:

o External longitudinal and lateral router forces of 222 N (50 1bf) are applied to the
vehicle throughout the simulation: P, = P, =222 N (50 Ibf). These router forces
comply with router force magnitudes which the TMR is expected to experience.

e« Two different values for the magnitude of the torque applied to the wheels are
used: 102 N-m (75 ft-1bf) and 204 N-m (150 ft-Ibf)

e The position of the center of mass is not varied in any of these simulations. It

remains at the regular center of mass point G (position #2).

The TMR path trace and left tire forces for the simulation with the 102 N-m torque
applied to the wheels are shown in Figures 6-8 and 6-9 respectively. From Figure 6-9, the
maximum tire forces occur at t = 4 seconds, at which time the longitudinal and lateral tire
forces are about 333 N (75 1bf) and 500 N (112 1bf) respectively for a combined tire force
of approximately 600 N (135 Ibf). This shows that the tires are operating right at the
limits of their traction abilities during this simulation. Still, the dynamic (without tire)
model is relatively accurate, only deviating from the dynamic (With tire) model by about
4%. .Of course, over a longer period of time, this error will accumulate and beco-me very
significant. However, it is surprising at how accurate the dynamic (without tire) model is
considering the fact that the tires are producing forces at their available traction limits.
For demonstration purposes only, the dead reckoning path trace is also shown in

Figure 6-8 to show the ihaccuracy of this method when the tires operate at their limits.
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DIFFERENTIALLY STEERED LEFT TURN
1 v8 X.
(path tracad out‘lby TMR)

center of mass at position 2
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FIGURE 6-8

TMR path trace - Torque controlled turn - 102 N-m (75 ft-1bf)

DIFFERENTIALLY STEERED LEFT TURN

LONGITUDINAL AND LATERAL TIRE FORCES

LEFT TIRE ONLY
(center of mass at position 2)
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FIGURE 6-9

Left tire forces - Torque controlled turn - 102 N-m (75 ft-1bf).
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The TMR path tréce and left tire forces for the simulation with the applied wheel
torque magnitude of 204 N-m (150 ft-Ibf) are shown in Figures 6-10 and 6-11
respectively. Clearly in this simulation, the traction limits have been exceeded. From
Figure 6-11, the tradeoff between the longitudinal and lateral tire forces can be seen from
t =2 to 4 seconds. As the TMR is turning, the need for lateral tire force increases, which,
because the tire limits have been exceeded, causes a decrease in the longitudinal tire
force. This indicates that there is excessive longitudinal and lateral slippage occurring.
This accounts for the large error now associated with the dynamic (without tire) model

shown in Figure 6-10.

DIFFERENTIALLY STEERED LEFT TURN

Yq vs X
(path traced out‘lby TMR)
40 center of mass at position 2
|
Extemnal forceL: Px=Py=222 N
Whee! torque magn =204Nm
-22.5
7
2
E 5 /
> Dynamic (with /
tire) model.
| ___ Dynamic (without
tire) model.
-7.5 /
. //
0 15 30 45 80
X1 (meters)
FIGURE 6-10

TMR path trace ] Torque controlled turn - 204 N-m (150 ft-1bf)
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DIFFERENTIALLY STEERED LEFT TURN
LONGITUDINAL AND LATERAL TIRE FORCES
LEFT TIRE ONLY
600 (center of mass at position 2)
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Wheel torque magnitude = 204 N m
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FIGURE 6-11

Left tire forces - Torque controlled turn - 204 N-m (150 ft-1bf).
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CHAPTER 7. DYNAMICS OF CONVENTIONALLY STEERED
WHEELED MOBILE ROBOTS

Similar to the format of Chapter 6, the dynamic equations for conventionally
steered WMR's are derived in this chapter. The three conventionally steered TMR
models will then be compared to one another through the use of simulation to find the

limits of accuracy of each model.

7-1. Derivation of Dynamic Equations.
For the conventionally steered Tethered Mobile Robot is shown in Figure 2-2, the

force and moment equations can easily be summed by inspection yielding

Y F,=m(i—vr)=F, +F, +F,cosd—F, sind+P, (7-1)
ZFy =m(V+ur)=F, +F, +F,cosd+ F_sind+ P, (7-2)

Y M, =1 r——( ' — Fp) —b(F,, + F, )+a(F, cosd+ F, sind) — dP,.
(7-3)

- Solving the three equations for the longitudinal, lateral, and yaw accelerations, &, v, and

r respectively, yields

F +F +F, cosS F, sind+ P,

xrl xrr +vr ‘ (7_4)
m
. F,+F,_+F,cosd+F, s1n5+ P,
V= —ur (7-5)
m _
T

S(Fyy = F,) =b(E, + F,,) + a(F, cosd + F, sin8) ~ dP,
- .

4

;=

(7-6)
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Just as in Chapter 6, the three state variables, the longitudinal, lateral, and yaw velocities

(u, v, 1), are simply the integral of their accelerations

u= Ju dt  (longitudinal velocity) (6-7)
y= Jﬁ dt  (lateral velocity) (6-8)
r= Ji‘ dt (yaw velocity) (6-9)

and the orientation of the vehicle with respect to the world coordinate system (yaw angle)

is then determined by taking the integral of the yaw velocity

y=rd. | (6-10)

With the forward, lateral, and yaw velocities along with the yaw angle, the equations for
velocity and position of the TMR in the world coordinate system are identical to those of
the kinematic model at the end of Chapter 3:

In the world coordinate system, the velocity of the linkage connection point V, of

the TMR is
V, =Ui, +V]j, ‘ (3-12)
U = ucos(y) —vsin(y) — er sin(y) (3-13)
V = usin(y) + vcos(y) + er cos(y) (3-14)

and the position of the linkage connection point R, in the world coordinate system is

R,= Xll: +%, (3-15)
X,=[Uadt (3-16)
Y,=[var. (3-17)
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TIRE FORCES

Once again the Dugoff tire friction model is used to predict the forces produced by
the tires. The rear tire forces are determined exactly the way they were determined in
Chapter 6 for the differentially steered vehicle: |

The normal force supported by each of the rear left and right wheels is written as

mg. a
vFN(left) = FN(right) = (T) a+b (6-12)
and the load supported by the front steered wheel is
-
Fyfronny =8 e (6-20)
The longitudinal and lateral velocities of the right rear wheel are
T; o .
V,=u-— r; (longitudinal velocity) (6-13)
Vy=v- rb (lateral velocity) (6-14)
and sinﬁlarly for the left rear wheel:
T; Lo
Ve=ut r; (longitudinal velocity) (6-15) -
Viy=v—rb (lateral velocity). (6-16)

In order to find the front tire forces, the longitudinal and lateral components of the front
- wheel velocity need to be found. The velocity of the steered front wheel with respect to
the wheel orientation (tire fixed reference frame) was derived in Section 4-3 and is

expressed as

V, =[ucosd+ (v +ar) sin6]iA3 +[(v +ar)cosd—u sinS]JA'3 (4-38)
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so the longitudinal and lateral components of the front wheel velocity V,, and Vi, with

respect to the wheel orientation are written as

V, =ucosd+(v+ar)sind (7-7)
V,, =(v+ar)cosd—usino. (7-8)

The wheel angular velocities can once again be determjned’in two ways: They can be
specified if this dynamic model is being compared to the kinematic model, or in any other
situation, the wheel speeds would need to be calculated by the following equations as
were derived in Chapter 6.

The wheel angular acceleration @ is written as

w=N—F.R ‘IFxr ; (6-18)

t

and wheel speed  is the integral of the wheel angular acceleration

o= [ad (6-19)

'These wheel angular velocity relations are valid for any wheel by using the applied
torque, longitudinal tire force, tire radius, and moment of inertia all of which correspond

to the tire of interest.
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7-2. SIMULATION AND RESULTS

7-2-1. Comparison of dynamic and kinematic conventionally steered
models with controlled wheel speeds.

To demonstrate the importance of the dynamic model, it was compared to the
kinematic model. To compare these two models, both were run through identical
situations to perform a simple maneuver. This maneuver was a simple 90 degree left
hand turn similar in nature to a turn that a conventionally steered TMR would be
expected to perform. Because the kinematic model is used in the comparison, one wheel
speed along with the steering angle must be specified as functions of time. As was
derived in Chapter 3 for the TMR, the specified wheel speed is.the right rear wheel. The
wheel speed form of the Dynamic model was used accordingly.

The same vehicle dimensions and parameters as with the differentially steered
TMR simulation are used here with the addition of the front wheel moment of inertia:

TMR mass = 272 kg (18.6 slugs).
Tire radius = 0.3048 m (1.0 ft).
Longitudinal tire stiffness (all tires) = 40034 N/rad (9000 lbf/rad)
Lateral tire stiffness (all tires)= 40034 N/rad (9000 Ibf/unit slip)
Road/tire interface coefficient of friction = 0.8
Yaw moment of inertia = 407 kg m2 (300 ft Ib sec2)
Front wheel moment of inertia = 2.71 kg m2 (2 ft Ib sec2)
- Combined rear wheel, gearbox, and motor rotor moments of inertia
= 6.78 kg m2
(5 ft 1b sec?)
Vehicle dimensions:

a=0.762 m (2.5 ft).
b=0.6096 m (2.0 ft).
d=0.9144 m (3.0 ft).
e=0.2286 m (0.75 ft).
T,=09144m (3.0ft).
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The complete maneuver was accomplished as follows:

o The TMR was initially located at point (0,0) with an orientation of ¢ = 0 degrees
in the world coordinate system with an initial velocity in the lA1 direction
corresponding to the right wheel angular velocity (®,). The steered angle is zero (
oo = 0 degs). The right wheel angular velocity ®, is held constant throughout the
maneuver.

e At a certain point in time, the front wheel is steered to a maximum angle of -30
degrees (a negative steering angle causes a left hand turn) as a quarter sine wave.
The steered angle is held at -30 degrees for a period of time, and then steered back
to zero degrees also as a quarter sine wave. The rate at which the front wheel is
steered is dependent on the velocity of the TMR. A graph of the steered angle is

shown in Figure 7-1.

STEERING ANGLE VS TIME
90 DEGREE TURNING MANEUVER
(for o = 1 rad/sec)

o
']
[ -30
e
j=A
]
o
[=)]
E -20
g
=
2
1)

-10

0.0

0.0 5.0 10.0 15.0 20.0
Time (sec)
FIGURE 7-1

Front wheel steering angle as a function of time for ®, = 1 rad/sec
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Figure 7-1 is for @, = 1 rad/sec and will vary depending on the value of ®, .

(although the basic shape will remain the same and the maximum steered angle is

always -30 degrees). After the turning maneuver, the TMR is allowed to travel in

a straight line for a few moments to illustrate the difference in predicted paths

between the models. The total time simulated varies depending on the speed that

the TMR is simulated at (to produce comparable results).

e The maneuver is run at four different vehicle speeds: 0.3048 m/s (1 ft/s), 0.9144

m/s (3 ft/s), 1.524 m/s (5 ft/s), and 3.048 m/s (10 ft/s).

In order to keep the results simple, it is assumed that there are no router forces being

exerted on the vehicle:

P,=P,=0

~ The path traced out by the TMR is shown in Figure 7-2 for the four different simulated

speeds.
CONVENTIONALLY STEERED 90 DEGREE TURNING MANEUVER
. 1 v8 X4
(path traced out by TMR)
120 Kinematic and Dynamic Models
0.3048 m/s 0.9144 m/s 1,524 m/s
(1 ﬂ/s)\ (3 ft/s) (6 t/s)
"/
Z/L- 3.048 m/s (10 fUs)

9.0
— Kinematic
s )
E 8.0
> Labeled speeds are

Dynamic modei.
-3.0
0.0
0.0 3.0 8.0 8.0 12.0
X1 (meters)
FIGURE 7-2

TMR path trace - 90 Degree turn simulation results
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Figure 7-2 shows that the designated conventionally steered turn (radius of
curvature ~2.5 m (~8 ft)) is not nearly as tight as that of the differentially steered turn.
Conventionally steered vehicles are not designed to be as maneuverable as differentially
steered vehicles. This turning maneuver is already an extremely sharp turn for a
conventionally steered vehicle, and it would take an unrealistically large steering angle to
approach the turning radius as was simulated by the differentially steered vehicle.

Once again, the kinematic model results are independent of vehicle speed, and
will always predict a perfect 90 degree turn. The results from the dynamic model are
quite different and highly dependent on vehicle speed. At a vehicle speed of about
0.3048 m/s (1 ft/s) or less, the predicted results of the dynamic model are nearly identical
to that of the kinematic model. At. a vehicle speed of 0.9144 Ih/S (3 ft/s) the differences

are significant, and at any higher speeds, the differences become drastic.

According to these results, a conventionally steered wheeled mobile robot
simulation using dead reckoning navigation techniques, traveling at a velocity of 1.524
m/s (5 ft/s) will have a location error of slightly over 1 meter (3 ft), only 10 meters (33 ft)

after making the turning maneuver.
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- 7-2-2. Comparison of Dead Reckoning method, Dynamic (with tire),
and Dynamic (without tire) conventionally steered models with
controlled wheel torques.

In this section the importance of the tire model for conventionally steered WMR's
is demonstrated by comparing the dynamic (with tire) model to the dynamic (without tire)
model. The dead reckoning predicted path is also shown in order to demonstrate the error
associated with tracking the path of a real vehicle using the dead reckoning process.

For this simulation, the front wheel steering angle is speéiﬁed as a function of
time, and the applied rear wheel torques are specified. Equal torques are applied to both
right and left rear wheels simulating a single motor which transfers power to the two
driving wheels through the use of a differential (a standard differential provides equal
torques to each driving wheel).

The simulated maneuver for this comparison is again, a left hand turn. Just as in
Section 6-2-2, since the wheel torques are specified, the degree of attempted turn is not
predetermined. The left turn is accomplished as follows:

e The TMR starts initially at point (0,0) with an orientation of Yy = 0 degrees- in the
world coordinate system with an initial velocity if 0.3048 m/sec (1 ft/sec) in the l:
direction with a steered angle of zero (o = 0 degs). Both the right and left wheels are
spinning accordingly. Equal and constant torques are applied to the right and left

' driving wheels. Three different torques ére used in this simulation: 13.6 N-m (10 ft-
Ibf), 27.2 N-m (20 ft-1bf), and 40.8 N-m (30 ft-1bf).

e From time t = 2 seconds until time t = 4 seconds, the front wheel is steered to a
maximum angle of -10 degrees (a negative steering angle causes a left hand turn) as a
quarter sine wave in the same manner as was done in Section 7-2-1. The steered angle
is held at -10 degrees for 2 seconds (from time t = 4 seconds until t = 6 seconds) and
then steered back to zero degrees over a period of 2 seconds (from time t = 6 seconds

until t = 8 seconds) as a function of a quarter sine wave. The vehicle is then allowed to
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travel with a steering angle of zero degrees for an additional 2 seconds. The total time

- simulated for each situation is identical (10 seconds).

As in the previous simulation, it is assumed that there are no router forces being

exerted on the vehicle:
P,=P,=0.

The vehicle parameters outlined in Section 7-2-1 are also used in this set of
simulations. The position of the center of mass is not varied as it was in the simulation of
the differentially steered WMR in Section 6-2-2.

The results of the simulation showing the path traced out by the TMR for the three
different applied wheel torques are shown in Figures 7-3 to 7-5. Each figure shows the

predicted path for the dynamic (with tire) model, the dynamic (without tire) model, and

the dead reckoning method.

CONVENTIONALLY STEERED LEFT TURN

Yqve X%y
- (path traced out by TMR
Applied wheel torque: 13.6 Nm (10 ft ibf)
4.0 \

I
. Dead Reckoning
(dashed) >/
45 :

E / Dynamic (with and
kT without tire) model.
E =30
> : /
1.5 /
0
0 3.0 8.0 8.0 12.0
X1 (meters)
FIGURE 7-3

Conventionally steered TMR path trace - Applied wheel torque: 13.8 N-m (10 ft-1bf)
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CONVENTIONALLY STEERED LEFT TURN

1 v8 X
(path traced ouﬂ)y TMR)
Applied wheel torque: 27.2 Nm (20 ft Ibf)

-15.0
11.25
Dead Reckoning | /
(dashed) \ /
® Dynamic (with and
% without tire) model.
E s
>
375 / /
o /
0 3.75 75 11.25 15.0
X1 (meters)
FIGURE 7-4

Conventionally steered TMR path trace - Applied wheel torque: 27.2 N-m (20 ft-1bf)

CONVENTIONALI?Y STEERED LEFT TURN
v8

(path tméd out TMR?
Applied wheel torque: 40.8 Nm (30 ft Ibf)

-30.0
ic (with
( t?ryar)mnr;dél.
225 \‘\ \ “\
Y\ e
Dead Reckoning | *, \| ic (without
7 Cashe L |1\, prmames
E -15.0 ‘
>_‘-
1.5 :
. //’
0 3.0 8.0 0.0 12.0
X4 (meters)
FIGURE 7-5

Conventionally steered TMR path trace - Applied wheel torque: 40.8 N-m (30 ft-1bf)
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The different wheel torque magnitudes applied to the different simulations have
two effects: 1. The higher applied wheel torque increases the longitudinal tire forces on
 the rear driving wheels, and 2. The greater the applied wheel torque, the greater the
vehicle acceleration, which causes the vehicle to travel at a higher rate of speed when the
maneuver takes place. For these simulations, the speed range at which the maneuvers

took place are as follows:

Applied Wheel Torque Vehicle Velocity Range

13.8 N-m (10 ft-1bf) 0.6 - 1.8 m/sec (2 - 6 ft/sec)
27.2 N-m (20 ft-1bf) 1.2 - 3.4 m/sec (4 - 11 ft/sec)
40.8 N-m (30 ft-Ibf) 1.5 - 4.9 m/sec (5 - 16 ft/sec)

Figure 7-3 shows that both the dynamic models and the dead reckoning method
are nearly identical for this low speed, low torque simulation. As the vehicle speed and
torque are increased as in Figure 7-4, the dead reckoning method begins to vary
noticeably from both of the dynamic models - which are still in agreement in this
simulation. However, the dead reckoning method is still relatively accurate, only
deviating from the dynamic models by not more than about 0.15 m (0.5 ft) after traveling
a distance of approximately 18 m (60 ft). Large deviations from the dynamic (with tire)
model, however, do show up in Figure 7-5 when the wheel torques are increased to 40.8
N-m (30 ft-1bf). Both the dead reckoning technique and the dynamic (né tire) model
differ equally from the dynamic (with tire) model. The error associated with the dynamic
(no tire) model and the dead reckoning method is about 0.6 m (2 ft) after traveling a
distance of approximately 20 m (65 ft). For this particular situation, if the simulation was
allowed to continue for a few more seconds, the dynamic (no tire) model would differ
significantly more from the dynamic (with tire) model than would the dead reckoning

results due to the difference in yaw angle predicted by the dynamic (no tire) model.
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In order to find the general limits of validity of the different models, it is
necessary to take a look at the tire forces involved in these simulations. Figures 7-6 and
7-7 show the right rear and the front tire forces respectively (right rear tire force.s are
shown because they are greater than the left rear tire forces) which correspond to the

simulation results shown in Figure 7-4 (27.2 N-m (20 ft-1bf) wheel torque simulation).

LONGITUDINAL AND LATERAL TIRE FORCES
CONVENTIONALLY STEERED LEFT TURN
RIGHT REAR TIRE
Applied wheel torque: 27.2 Nm (20 ft Ibf)

45

L Longitudinal tire force

45 N

Longitudinal and Lateral tire forces (N)

Lateral tire force —

-80

0 25 5 7.5 10
Time (sec)

FIGURE 7-6
Right rear tire forces - Applied wheel torque: 27.2 N-m (20 ft-1bf)

From Figure 7-6, the maximum right rear tire forces occur somewhere around time t = 7
seconds, at which time the longitudinal and lateral tire forces are about 44.5 N (10 1bf)
and -80 N (-18 Ibf) respectively for a combined right rear tire force of approximately 93
N (21 1bf). From Figure 7-7, the maximum front tire forces occur at about time t = 6

seconds, at which time the longitudinal and lateral tire forces are about -11.5 N (-2.6 1bf)
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and -130 N (-29 Ibf) respectively for a combined front tire force of slightly more than 130 -
N (29 Ibf).

LONGITUDINAL AND LATERAL TIRE FORCES
CONVENTIONALLY STEERED LEFT TURN
FRONT TIRE
Applied wheel torque: 27.2 Nm (2/(\) ft Ibf)

g Longitudinal tire fgrce
0 0
8
E Wt ——-
2
®
3 50 \
[
-]
©
=
[
©
£
S -100 _
‘O
| =
o
-l
) Lateral tire force
-150 | |
0 2.5 5 75 10
Time (sec)
FIGURE 7-7

Front tire forces - Applied wheel torque: 27.2 N-m (20 ft-1bf)

For the conventionally steered TMR configuration and parameters, the right rear tire
limits occur at about 600 N (135 Ibf) and the front tire limits occur at about 930 N (210
Ibf). This means that the right rear tire is operating at about 16% of its available force
limits and the front tire is operating at about 14% of its available force limits. Both are
well within the generally accepted range of validity of the dead reckoning kinematic
tracking method, however, noticeable deviations in path prediction between the models is

beginning to occur and be significant.
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The tire forces for the right rear and front tires which correspond to the simulation
results shown in Figure 7-5 (40.8 N-m (30 ft-1bf) wheel torque simulation) are shown in

Figures 7-8 and 7-9 respectively.

LONGITUDINAL AND LATERAL TIRE FORCES
CONVENTIONALLY STEERED LEFT TURN
RIGHT REAR TIRE

200 Applied wheel torque: 40.8 Nm (30 ft Ibf)

100

Longitudinal tire force

0 TN,

4

Longitudinal and Lateral tire forces (N)

-100 Lateral tire force \\//
-200
0 2.5 5 7.5 10
Time (sec)
FIGURE 7-8

Right rear tire forces - Applied wheel torque: 40.8 N-m (30 ft-1bf)

From Figure 7-8, the maximum right rear tire forces occur somewhere around time t = 7
seconds, at which time the longitudinal and lateral tire forces are about 100 N (22 Ibf) and

- -150 N (-34 Ibf) respectively for a combined right rear tire force of approximately 180 N
(40 Ibf). From Figure 7-9, the maximum front tire forces occur at about time t = 6
seconds, at which time the longifudinal and lateral tire forces are about -16 N (-3.5 Ibf)
and -250 N (-56 Ibf) respectively for a combined front tire force of slightly more than 250
N (56 Ibf).
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LONGITUDINAL AND LATERAL TIRE FORCES
CONVENTIONALLY STEERED LEFT TURN
: FRONT TIRE
100 Applied wheel torque: 40.8 Nm (30 ft Ibf)

Longitudinal tire force /’\
0 A

_..__\.____L__ —
v\

Longitudinal and Lateral tire forces (N)

-200 Lateral tire force
-300
-0 25 5 7.5 10
Time (sec)
FIGURE 7-9

Front tire forces - Applied wheel torque: 40.8 N-m (30 ft-1bf)

As was stated before, the right rear tire linlifs occur at about 600 N (135 1bf) and
the front tire limits occur at about 930 N (210 Ibf). This means that the right rear tire is
operating at about 30% of its available force limits and the front tire is operating at about
27% of its available force limits. Although the generated tire forces are getting large,
they are still well within the limits of the tires and within the generally accepted range of
validity of the dead reckoning kinematic tracking method. However, the path trace from
Figure 7-5 shows that neither the dead reckoning method nor the dynamic (no tire) model
are even reasonably accurate and should by no means be used to predict the position and

orientation of a wheeled mobile robot under these conditions.
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this paper was to show the importance and significance of
dynamic modeling of wheeled mobile robots. The kinematic model, which is the method
most researchers have used to track WMR's, was compared to a dynamic model through
computer simulation. The advantage of the kinematic model is its simplicity, but this is
also where its shortcomings lie. For simulation purposes, masses and moments of inertia,
along with external forces and torques do not affect the velocity, position, or orientation
of the WMR in any way. For both differentially and conventionally steered WMR's, it
was found that a kinematic model cannot accurately predict the position aﬂd orientation
of a 'working' WMR under almost any conditions. Use of the kinematic model must be
limited to lightweight vehicles which operate under very low speeds, very low
accelerations, and under lightly loaded conditions. An additional drawback to the
kinematic model for use in simulation purposes is the fact that wheel speeds must be the
specified variables, whereas in a real vehicle, wheel speeds cannot realistically be
specified. From these results it is concluded that dynamic modeling of any ‘working'
WMR is extremely important due to the fact that a kinematic representation fails to
provide reasonable accuracy under common working and maneuvering conditions.

The kinematic model is also used to track the position of real vehicles by
measuring wheel speeds directly, a process called dead reckoning. It has been shown that
for both differentially and conventionally steered WMR's the'potential error associated
with this method is large, even when the tires are producing forces at only a fraction of
their friction potential, where dead reckoning is generally assumed to be relatively
accurate. This demonstrates that vehicle tracking through the use of dead reckoning for a
WMR when wheel speeds are measured off of the driving wheels is much less accurate

than commonly thought. Once again, dead reckoning is only valid on small, lightweight
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vehicles which operate under very low speeds, very low accelerations, and under lightly .

loaded conditions.

Another aspect of this work was to determine the importance of using a complex
tire representation when dynamically modeling a WMR. A dynamic model without a tire
model was created to investigate this. For differentially steered vehicles, this dynamic
(without tire) model was surprisingly accurate, even approaching the friction limits of the
tires. A complete and accurate tire model (such as the Dugoff tire model) is irreplaceable
for any complete dynamic model which may encounter situations where the tire limits are
approached or reached. However, for a differentially steered WMR which is known to
stay well within the traction limits of the tires, very simple tire rﬁodels can be used (or no
tire model as was derived in this paper) with excellent accuracy. A good rule of thumb
for differentially steered WMR's is probably this: If the WMR is known to stay within
50% of the tire traction limits, simple tire models (or no tire model) provide excellent
accuracy and can be used with confidence; If the WMR is expected to exceed 50% of the
traction limits, a more accurate tire model (one which incorporates the friction circle
concept) is in order to ensure accurate simulation results.

For conventionally steered vehicles, the dynamic (without tire) model was only
accurate to a fraction of the tire friction limits. - In fact, the dynamic (without tire) model
had an accuracy range similar to that of the dead reckoning method. Because the limits of
accuracy for conventionally steered WMR's were found to be at such low tire friction
levels, it is suggested that dynamic modeling incorporating the use of an accurate tire
model should always be used when simulating conflentionally steered wheeled mobile
robots.

It is important to note that only 3 degree of freedom dynamic models were used in
this paper in order to keep the results straightforward to interpret. As degrees of freedom

are added to the dynamic model, (roll, pitch, bounce, weight transfer, etc), the accuracy of
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the dynamic model will increase, although further discrepancies from other models are

expected to be small in comparison to those demonstrated here.

While this work has contributed to the understanding of the importance of
aynamic modeling of differentially and conventionally steered wheeled mobile robots,
there remains room to extend this work and provide additional contributions. Throughout
this work, a three degree of freedom dynamic model was used. Extending this to include
additional degrees of freedom such as roll, pitch, bounce, weight transfer, etc., will
increase the accuracy of the model.

Another extension of this work is the investigation of the accuracy of the dead
reckoning method of vehicle tracking when using passive whéels (both rigidly mounted
and caster-type wheels) instead of driven wheels. This method is expected to be
éigm’ﬁcantly more accurate than the driven wheel dead reckoning method which was
investigated here, but the degree of accuracy is yet unknown.

Finally, this work investigated the dyna;njc modeling of wheeled mobile robots
with conventional wheels. While conventional wheels are most common at this time,
much research is now being devoted toward the development of omnidirectional type
wheels and wheeled mobile robots which make use of these types of wheels. Although
the dynamic modeling of omnidirectional WMR's is significantly more complex fhan that
of conventionally wheeled WMR''s, it is a logical extension of this work as we advance

toward the future of wheeled mobile robots.
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APPENDIX

Derivation of the Rigid Body Equations of motion with respect to a
Body Centered Frame of Reference.

The standard body centered reference frame (SAE vehicle axis system) of a vehicle is

depicted in Figure A-1:

-

/7/— A

e
F ALY
FIGURE A-1
Body Centered Reference Frame
Direction X y y/
Linear Velocity u \4 w
Angular Displacement ] 0 Y
Angular Velocity p q r

The body centered reference frame (xyz) is a rotating coordinate system. To derive the

rigid body equations of motion with respect to this system, it is necessary to make use of

an absolute coordinate system, which will be referred to as the inertial reference frame

(XYZ). The body centered reference frame rotates within the inertial reference frame at
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the same angular velocity as the vehicle angular velocity ® given by the following

expression
W= pi+qj+rk (A-1)

where p, g, and r, are the roll, pitch, and yaw angular velocities.

The vehicle linear velocity v is expressed as

vV=ui + vf + wlg ' (A-2)

where u, v, and w are the forward, lateral, and vertical velocities.

The sum of Forces equals the time rate of change of linear momentum (in the inertial

reference frame (XYZ)):
ZF = d(mv) = md_V (for m=constant) (A-3)
dt |y dt | xy,

and the sum of moments equals the time rate of change of moment of momentum (in the
inertial referencé frame (XYZ))

3 m 40D

A-4
dt (A9

XYz

It is easiest to take the derivative of the velocity with respect to the body fixed reference

frame (xyz)
dv dv
— =—1 +(oxv)
dt |yy, dtly, (A-5)

=(u+qw—vr)f+(1>+ur—pw)f—i—(w-i- pu—qu)lg

so the sum of the forces with respect to the body fixed reference frame (xyz) in each of its

three principal directions can now be written independently as
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z F =m(u+qw-vr) (A-6)
2 F = m(v + ur — pw) (A-7)
ZFZ =m(W+ pu—qu). ‘ (A-8)

For the moment equation (A-4)

_aH

dH

— + (0 xH). (A-9)
dt

xyz

XYZ

In general, the moment of momentum of rigid body 'B' about some point P is written:

H= [ (rx[@xr])dm (A-10)

where r is the position vector from point P to a point mass Q in the body B

r=xi+yj+zk. (A-11)
Crossing  into r gives

® X1 =(gz—ry)i +(rx— pz) ] +(py— gx)k | (A-12)
and then crossing r into [® x r] yields

(rx[@Xxr]) =[y(py - gx) - z(rx— pD) I

Hz(gz—ry) - x(py—gqx)1] (A-13)
+Hx(rx— pz) - y(gz—ry)Ik.

The moment of momentum in the x direction only can be written as

H, =_[(y2p—xyq —zxr +2° p)dm
i (A-14)
= P_[ (y* +7%)dm— q_[ (xy)dm —-rj(xz)dm.

But, from the definition of the moment and product of inertias we have the following

equations:
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J’(yz +7%)dm = I, (moment of inertia of Body B about x) (A-15)
J(xy)dm =1, (product of inertia about x and y) (A-16)

J (xz)dm=1, (product of inertia about x and z). (A-17)

Substituting in for the inertia expressions yields
H =1Ip-1g49-1,r. (A-18)
Similarly, the moment of momentum in the y and z directions yields

Hy=Iyq—Ier—Ixyp (A-19)
H,=Ir-1,p-14. (A-20)

Now, taking the derivative with respect to time of the moment of momentum produces

dH _ e o A
E = p-1,9-17)i+(Uq4-1,7-1p)j
xyz (A-21)

+(1F-1,p-1,9)k
and crossing o into the moment of momentum gives
woxH=[qUr-1,p-1,9)-r(Ig-1,r—1_p)li
+Hr(p—I,9~1.r)~ p(Lr~1,p~1.9]j (A-22)
Hp(g-1,r-1,p)~q,p-1,q-1.nk.

Adding (A-21) and (A-22) gives expressions for the moment equations WRT the body

fixed reference frame (xyz) in the longitudinal, lateral, and vertical directions

d M =Lp-1,G-pr)-1,GF+pg)+I,~1)gr+1,(r*~q")
(A-23)
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zMy =Iyq._lyz(f_-pq)_Ixy(p+qr)+(1x _Iz)pr+lxz(p2—r2)
(A-24)

S M, =1Li-1,(p—gr)—1,(G+pr)+U,—1)pg+1,(q" - p*).
(A-25)

In most vehicles, including wheeled mobile robots, the xz plane can be approximated as a

plane of symmetry, which causes the product of inertia about x and y to drop out

=] =1 =0

xy yz

which simplifies equations (A-23), (A-24), and (A-25) to the following expressions:

S M, =1p—1,G+pg)+I,—1)gr (roll) (A-26)
Y M, =14+, -1)pr+1,(p>—r>)  (pitch) (A-27)
M, =1i-1,(p—qr)+U,-1)pq (yaw). (A-28)
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