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ABSTRACT

The purpose of this research is to provide a theoretical basis for the tracking control of a
Tethered Mobile Robot in highway maintenance application. The Tethered Mobile Robot is a
mobile robot with two independent driven wheels. The tracking control algorithms for this type of
mobile robot are thoroughly and systematically studied in this report. The tracking control
algorithms are developed both on the basis of kinematic models and dynamic models. The main
effort is to develop tracking control algorithms with strong robustness to uncertainties, such as
system perturbations and external disturbances.

Kinematic models with wheel slippage are developed. The slippage influence is treated to be
equivalent to parameter uncertainties in the system. An orientation equation for this kind of
wheeled mobile robot is developed. It reveals the inherent relation between position tracking and
orientation tracking. The influence of the location of the tracking point on the tracking ability is
thoroughly studied in this report. Two globally stable tracking control algorithms are developed
according to the tracking point location. A kinematic robust tracking control algorithm is
developed on the basis of the kinematic model with uncertainty.

On the basis of a full dynamic model with detailed tire-ground contact model, reduced order
dynamic models are developed. Uncertainty influence on the dynamic system is analyzed and a
match condition is proven. An exponential position dynamic tracking control algorithm is
developed. The control algorithm is based on the reduced order dynamic model and possesses
strong robustness to system uncertainties. Variable structure control theory is used to construct a
variable structure dynamic tracking control algorithm for the wheeled mobile robot. Because the
match condition is hold for the uncertainties in the dynamic system, the exponential tracking
control performance of the variable dynamic tracking control algorithm is invariant to system
uncertainties, such as parameter perturbations, external disturbances, and unmodeled system

dynamics.
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The performances of the tracking control algorithms are simulated by numerical methods. It is
worth pointing out that the full dynamic model with a detailed tire model is used in all the
simulations for the dynamic tracking control algorithms. The path planning problem related to
highway maintenance is discussed. Since the tracking control algorithm has trajectory tracking
features, a speed manipulation algorithm for mobile robot is proposed to produce a reference
trajectory along the reference path.

From a tracking control point of view, the Tethered Mobile Robot is no more than a ground
vehicle with two independent driven wheels. As such, the tracking control algorithms presented in

this report are valid for any differentially steered wheeled mobile robots or vehicles.
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EXECUTIVE SUMMARY

A Tethered Mobile Robot (TMR) is being developing for highway maintenance, such as
highway crack sealing (Winters and Velinsky, 1992) in the Advanced Highway Maintenance and
Construction Technology (AHMCT) Center at the University of California, Davis. The operations
proposed for the TMR in highway maintenance are basically tasks along a desired path, such as a
highway crack. Because of the real highway working environment, the payload and speed of the
TMR are much higher than that of a common wheeled mobile robot. Two of the vital requirements
for the TMR design and development are

» The tooling/equipment can accurately track a reference path;
» The tracking ability is robust to uncertainties, such as unmodeled dynamics, parameter
perturbations, and external payload disturbances.

The above two requirements are all related to the performance of the tracking control system of
the TMR. The TMR is basically a mobile robot with two differentially driven wheels. The
tracking control algorithm of this type of mobile robot has been studied extensively in the last
decade. However, several fundamental problems are still not well solved. These include the
relation between position tracking and orientation tracking, the influence of the location of tracking
point on the tracking ability, and the robustness of the tracking control algorithm. These problems
have critical influence on the tracking control performance of the wheeled mobile robot.

To meet the requirements for the TMR tracking control performance, fundamental modeling
and control algorithms have been studied in the last several months in the AHMCT Center, and
novel results on the tracking control algorithms of the wheeled mobile robot have been obtained.
In this report, we present the main theoretical progress on the modeling and tracking control
algorithms in our research.

The kinematic model is the basis for the tracking control of wheeled mobile robots. Kinematic
models of mobile robots have been studied by many authors. However, for the purposes of our

work, it is necessary to have a detailed study on the kinematic model of mobile robots with two
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independent wheels. In this report, we first describe the kinematics equations of the mobile
robots, and then study the kinematic features and their influence on the tracking control
performance. The tracking control performance of a mobile robot with two independent driven
wheels is strongly determined by its kinematics features and the location of the tracking point on
the mobile robot as well. Through the analysis of the kinematics characteristics, fundamental
tracking control algorithm structures for this kind of mobile robot are proposed. This includes the
tracking variable assignment, the tracking singularity and position-orientation tracking decoupling
problems.

For the problem of accurate path tracking control, a kinematic or dynamic model based control
algorithm is essential. This is because the dynamic model of the mobile robot can have
considerable uncertainty in modeling the driven force and payload, and its computational
complexity is relatively high. Kinematic models play an important role in control algorithm
development. Global convergence tracking control algorithms are developed for two different
cases, for the tracking point on and off the baseline. When the tracking point is not on the
baseline, only the position of the tracking point can exactly track a reference path, and it is
impossible to exactly track the heading direction of the mobile robot. When the tracking point is
located on the baseline, both the position of the tracking point and the orientation of the mobile
robot can exactly track a reference path. Numerical simulation examples are provided which
illustrate the performance of the control algorithms developed herein.

Since the TMR is being developed for application in highway maintenance, the accurate
tracking ability of the TMR to a reference path is very important for most maintenance operations.
However, since the working environment of the TMR will be in an unstructured environment (i.e.,
highway), there are many uncertainties that exist. Among them are the changes of roadway surface
conditions, the varying operation payloads, the different maintenance tasks, etc. These
uncertainties combined with the relative high speeds will result in wheel slippage and a change in
radius of the pneumatic tires. These uncertainties will appear in the mobile robot kinematics

equation as uncertainties of effective wheel radius. Therefore, to meet the accurate tracking
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requirements, any kinematics based tracking control algorithm must have enough robustness to
overcome the tracking performance deterioration caused by the kinematic uncertainties.

We thus develop a mobile robot kinematic tracking control algorithm based on the kinematic
model with uncertainties. This algorithm is developed to guarantee the exponential tracking control
property when uncertainties exist, and the algorithm possesses the similar calculation complexity as
that of a PID based algorithm and has the advantage of being suitable for real time application.
Through numerical simulation, it is determined that the robust control algorithm not only possesses
the robustness ability under the condition of uncertainty, but also improves the tracking control
performance under the condition of an exact kinematics model.

Based on the dynamic modeling work of Boyden and Velinsky (1993), it was believed that a
kinematics based control algorithm is only valid for very low speed and very low payload robots.
Therefore, a dynamic model based control algorithm is necessary for accurate path tracking
control, and one is developed herein. We describe the full dynamic model of the mobile robot, and
introduce the concept of a perfect dynamic model. The influence of the uncertainties, such as
unmodeled dynamics, slippage, payload variation, parameter perturbation, etc., on the system
dynamics is analyzed. Since exact position tracking control is very important for the Tethered
Mobile Robot, we make a coordinate transformation to get the tracking point position dynamic
model. As a fundamental basis of the robust tracking control algorithm, the matching condition for
the mobile robot uncertainty in the dynamic model is proven.

Additionally, we take the full dynamic model as a basis, and an exponential tracking control
algorithm is then developed based on the perfect dynamic model, and robustness to uncertainties is
guaranteed. In this way, the robust tracking control algorithm gives high tracking control
performance when unmodeled dynamics and external disturbances exist.

The main difficulty in the mobile robot's dynamic model based control algorithm development
and application is the influence of uncertainty. This is because real-time operation limits the
complexity of the dynamic model, while it is impossible to accurately describe the motion with low

order and simple equations. Robustness is the most important property for the dynamic model

vii
Copyright 2011, AHMCT Research Center, UC Davis



based control algorithm. A variable structure control system has the feature of sliding mode
invariance to both system perturbations and external disturbances (Utkin 1978, 1992), and
therefore, it is a suitable design method for the dynamic model based tracking control of mobile
robots. Thus, we first review the main aspects of variable structure control, and then produce a
variable structure control algorithm for the mobile robot's tracking control problem.

The path planning problem related to highway maintenance is also discussed. Since the
tracking control algorithm has trajectory tracking features, a speed manipulation algorithm for
mobile robot is proposed to produce a reference trajectory along the reference path.

From a tracking control point of view, the Tethered Mobile Robot is no more than a ground
vehicle with two independent driven wheels. As such, the tracking control algorithms presented in

this report are valid for any differentially steered wheeled mobile robots or vehicles.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

A Tethered Mobile Robot (TMR) is being developing for highway maintenance, such as
highway crack sealing (Winters and Velinsky, 1992) in the Advanced Highway Maintenance and
Construction Technology (AHMCT) Center at the University of California, Davis. The operations
proposed for the TMR in highway maintenance are basically tasks along a desired path, such as a
highway crack. Because of the real highway working environment, the payload and speed of the
TMR are much higher than that of a common wheeled mobile robot. Two of the vital requirements
for the TMR design and development are

» The tooling/equipment can accurately track a reference path;
» The tracking ability is robust to uncertainties, such as unmodeled dynamics, parameter
perturbations, and external payload disturbances.

The above two requirements are all related to the performance of the tracking control system of
the TMR. The TMR is basically a mobile robot with two differentially driven wheels. The
tracking control algorithm of this type of mobile robot has been studied extensively in the last
decade. However, several fundamental problems are still not well solved. These include the
relation between position tracking and orientation tracking, the influence of the location of tracking
point on the tracking ability, and the robustness of the tracking control algorithm. These problems
have critical influence on the tracking control performance of the wheeled mobile robot.

To meet the requirements for the TMR tracking control performance, fundamental modeling
and control algorithms have been studied in the last several months in the AHMCT Center, and
novel results on the tracking control algorithms of the wheeled mobile robot have been obtained.
In this report, we present the main theoretical progress on the modeling and tracking control

algorithms in our research.
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In this chapter, we first introduce the configuration features of the TMR related to the tracking
control problem; then, we review the main previous works on the wheeled mobile robot tracking

control problem; and finally, we consider the tracking control problem statement for the TMR.

1.2 Tethered Mobile Robot Configuration
The TMR is configured to be a self-propelled wheeled mobile robot working in proximity to a

support vehicle (see Fig. 1.1).

Support Vehicle

Mechanical
Linkage

Mobile Robot [}

Fig. 1.1 Tethered Mobile Robot Configuration

The TMR has two differentially driven wheels and a castor. The driven wheels have pneumatic
tires and are driven by two D. C. motors. A two degree of freedom planar mechanical linkage is
designed to link the mobile robot and the vehicle for purposes of power, materials, and allow for
the measurement of the position and orientation of the robot relative to the support vehicle with
high accuracy. The support vehicle contains the associated maintenance supplies, power supply,
and the primary maintenance operation sensing devices. The mobile robot is supplied with the

necessary maintenance materials and power through the tether to the support vehicle. Two linear
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transducers and an encoder are used to determine the relative position and orientation of the robot
to the support vehicle.

From the tracking control point of view, the important feature of the TMR configuration is that
its position and orientation can be measured with high accuracy. This makes accurate and robust

tracking control possible for this wheeled mobile robot.

1.3 Previous Work on Wheeled Mobile Robot Tracking Control

Extensive research has been done in the last decade on the tracking control of wheeled mobile
robots. Most of the authors take a kinematic model as the basis. Some authors studied the
dynamic tracking control problem based on an ideal wheel ground contact model. Because of the
nonholonomic feature of the wheeled mobile robot's kinematics constraints, many authors
concentrated on the kinematic controllability and path planning problem. In this section, we first
review the previous work on the kinematic and dynamic modeling of the differentially driven
wheeled mobile robots, then, we briefly outline main results on the tracking control algorithm of
the differentially driven mobile robots.

1.3.1 Kinematic Modeling

Many authors contributed to the kinematic modeling of wheeled mobile robots. Here, we only
review two comprehensive research results in this area.

Muir and Neuman (1987) studied the kinematic modeling of a general wheeled mobile robot.
Different wheel configurations, such as conventional, omnidirectional, and ball wheels, are
considered. Basic assumptions used are as following:

* The wheeled mobile robot moves on a planar surface;

» The mobile robot does not contain flexible parts;

» The friction at the contact point between the wheel and the surface is sufficiently large.
Wheeled mobile robot coordinate systems and their transformation matrices are discussed. Matrix
coordinate transformation algebra is described. Position kinematics, velocity kinematics, and

acceleration kinematics for general wheeled mobile robot configurations are developed. Kinematic
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characteristics of wheeled mobile robots, such as the robot mobility, kinematics solution, inverse
solution, robot actuation, and robot sensing are studied. Application of the kinematic model to a
wheeled mobile robot Uranus was shown as an illustrative example. Rotational slip was treated by
means of least-squares method with sensed kinematics data.

Alexander and Maddocks (1989) also comprehensively studied the kinematics and inverse
kinematics of wheeled mobile robots. They investigated the slippage by means of minimization of
a non smooth convex dissipation functional that is derived from Coulomb's law of friction.

In the kinematic models discussed above a fundamental assumption is that there is perfect
wheel-surface contact, although these authors treated the wheel slippage to a varying extent. Muir
and Neuman (1987) used sensed motion data to the solution of the kinematics equations, therefore,
the slippage influence can be treated by means of least-square method. Alexander and Maddocks
(1989) were trying to estimate the slippage on the basis of quasi-static motion assumption. The
common point of their methods is trying to determine the slippage quantities in the kinematic
models.

Wheel slippage is completely determined by the wheeled mobile robot dynamics. It is
impossible to solve the slip problem based on kinematics. From a tracking control point of view, it
is necessary to have the kinematics equations including slippage terms but it is not necessary to
determine the slippage quantities through the kinematic relations.

Muir and Neuman (1987) and Alexander and Maddocks (1989) concentrated on the general
mathematics descriptions for all types of wheeled mobile robot configurations. For the specific
configuration of a mobile robot with two differentially driven wheels, which we are concerned
with in our research, a deep understanding of the special kinematic features is required for the
purpose of accurate path tracking control.

1.3.2 Dynamic Modeling

There are few tracking control algorithms for wheeled mobile robots that are based on full
dynamic models. Some authors used simplified dynamic models based on the assumption of

perfect wheel-surface contact conditions in their control algorithm development.

Copyright 2011, AHMCT Research Center, UC Davis



Hamdy and Badreddin (1992) developed a dynamic model of wheeled mobile robot for
navigation and control purposes. The robot is a cart with two differently driven wheels and one
castor. There is a rotational tower mounted on the cart. The dynamic model includes the vehicle
motion dynamics and driven motors' dynamics. A basic assumption was made is that there exists
only longitudinal slippage and no lateral slippage. Longitudinal slip was described by kinematic
relations. Two types of dynamic equations for the wheeled mobile robot are developed, one is for
the case of no slip and another is for the case of slip presence. In simulation, the wheel-ground
contact forces are described by nonlinear functions of the corresponding slip speeds. This includes
sticking, dry, and viscous friction. The wheel roll resistance is modeled as a constant coefficient
multiplied by half of the robot weight. A slip speed limit was tested to determine whether or not a
slip model should be used in the simulation process.

Boyden and Velinsky (1993) developed dynamic models for wheeled mobile robots towards
the application of the Tethered Mobile Robot simulation. Full vehicle dynamics with Dugoff's tire
friction model are included in the dynamic models. Since the Tethered Mobile Robot is developed
to operate in a real highway maintenance environment with relatively high motion speed and
operation payload, wheels with pneumatic tires are selected in order to get higher driven forces.
For such a wheel configuration and operation conditions, it is very important to use a more realistic
tire model in the dynamic modeling. Full dynamic models and simplified dynamic models for both
conventionally steered and differentially steered mobile robots are described. The effectiveness of
the dynamic models are illustrated by numerical simulations. Tire driven forces are calculated by
Dugoff's friction circle method. These forces are nonlinear functions of longitudinal and lateral
speed of the vehicle. The total wheel payload is assumed to be the vehicle weight.

Kinematic models cannot effectively describe wheel slippage. However, the influence of
slippage must be considered in the tracking control problem of wheeled mobile robots in the case
of high motion speed and payload, such as Tethered Mobile Robot. Therefore, a full dynamic
model with detailed tire-ground forces model is necessary. However, a full dynamic model with

accurate tire-ground force description is far too complex for any tracking control algorithm. This is
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because Dugoff's friction circle method is not a closed form description. Even in the simplified
dynamic model developed by Hamdy and Badreddin (1992), limited test procedures must be
performed in the simulation process to decide which model, slip or no slip, could be used. The
slip model possess higher order than the no slip model. From the tracking control point of view, a
reduced order dynamic model with clear uncertainty influence is necessary. This dynamic model
should have the simplicity of a perfect dynamic model. The influence of the uncertainties could be
well treated by a robust design method. In this way the tracking control performance can be
guaranteed.

1.3.3 Kinematic Model Based Tracking Control Algorithms

Based on the kinematic model of the mobile robot with two driven wheels, controllability,
motion planing, and related control problems are studied by many authors, for example,
Kanayama, Nilipour, and Lelm (1988), Kanayama, Kimura, Miyazaki, and Noguchi (1990),
d'Andréa-Novel, Bastin, and Campion (1991), Badreddin (1992), Pomet, Thuilot, Bastin, and
Campion (1992), Wit and Sgrdalen (1992), Sgrdalen and Wit (1993), Lee and Williams (1993),
Walsh, Tilbury, Sastry, Murray, and Laumond (1994), and Reister and Pin (1994).

Kanayama, Nilipour, and Lelm (1988) developed a PID based tracking control algorithm for
mobile robots with two driven wheels. The tracking point is set to be the center of the baseline.
The vehicle posture errors are translated into the errors in the vehicle fixed coordinate system; that
is, the errors in the forward and lateral directions and rotation, respectively. The translated error
components are then PID filtered to generate the desired vehicle longitudinal speed and angular
rotation speed. According to the kinematic relations, the control inputs of the kinematic based
control algorithm (i.e., the wheel velocities of the left and right wheel) are calculated from the
desired vehicle longitudinal speed and angular rotation speed. The vehicle posture and velocity are
measured by means of the dead-reckoning method. Kanayama and Kimura, et al. (1990)
developed a nonlinear feedback tracking control algorithm on the basis of the translated vehicle
posture error. The tracking point is on the center of the baseline. Lyapunov's direct method was

used to prove the stability of the tracking control algorithm. Unfortunately, the Lyapunov function
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selected is not quadratic on the orientation error, and an unnecessary assumption was made to
guarantee the non-positive time derivative of the Lyapunov function along the trajectory of the error
equations. Effects of control parameters on the tracking performance and velocity or acceleration
limits are discussed. The efficiency of the tracking control algorithm was proven by experimental
results.

Lee and Williams (1993) developed a tracking control algorithm for mobile robots with two
driven wheels. An important feature in the control system is that the tracking point is not on the
baseline. The robot posture error in the world coordinate system is translated into the posture error
in the vehicle fixed coordinate system. The desired rotation speed of the two driven wheels are
calculated from the vehicle kinematics relations. Since the tracking point is not on the baseline,
there exist three kinematic constraint equations on the two driven wheel speeds. It is well known
that the lateral speed equation and the rotation speed equation of the mobile robots are not
independent. Therefore, the two control inputs are determined from the three posture errors by
using the least-squares method. The driven motors are controlled by a PID control algorithm. The
authors' simulation results indicated that the convergence speed of the lateral tracking error is very
slow. Since the position and orientation errors are not independent and a least-squares method is
used to determine the desired control inputs, the position and orientation tracking control errors of
the algorithm are strongly coupled and the tracking control performance is quite poor.

Walsh and Tilbury, et al. (1994) used a Taylor series expansion to get time-varying linearized
tracking error equations, and Lyapunov's direct method was used to construct a linear time-varying
feedback law. The control algorithm is proven to be exponentially stable. However, the
convergence of the proposed control algorithm is directly determined by the specific reference
trajectory, and the time-varying linear feedback control law causes high computational complexity
in application.

Wit and Sgrdalen (1992) produced a circular transformation to the wheeled mobile robot's

kinematic equations, and an exponential control algorithm is developed on the transformed space to

Copyright 2011, AHMCT Research Center, UC Davis



control the robot to a given position and orientation. Sgrdalen and Wit (1993) lately extended the
method to the path following problem. A piecewise smooth feedback control law is proposed.

The location of the tracking point on the mobile robot is of critical influence on the tracking
control property. However, this fact is not widely considered by most authors. It is impossible to
track a reference trajectory both in orientation and position while the tracking point is not on the
baseline. For industrial application of wheeled mobile robots, tracking control algorithm
robustness is of vital importance; however, very few authors have considered this area.

1.3.4 Dynamic Tracking Control Algorithm

Kinematic model based tracking control algorithms are believed to be valid only for very low
speed wheeled mobile robots. However, because of the difficulty to accurately model the wheel-
surface contact forces, little progress has been made on a full dynamic model based tracking
control algorithm.

d'Andréa-Novel, Bastin, and Campion (1992) studied the dynamic feedback linearization of
wheeled mobile robots. Pure rolling and no slipping assumptions are made for the dynamic
model. Campion, d'Andréa-novel, and Bastin (1991) studied the controllability and feedback
stability of mobile robots based on a perfect dynamic model. Samson (1991) studied the torque
control problem based on a perfect dynamic model also. Unfortunately, all noted research are
restricted to very general mathematical descriptions and provide little contribution toward practical
design and application.

Sarkar, Yun, and Kumar (1994) developed a dynamic tracking control algorithm for
mechanical systems with both holonomic and nonholonomic constraints, and applied the control
algorithm to wheeled mobile robots. The dynamic model is also a simplified perfect dynamic
model. Numerical simulations are made to show the effectiveness of the control algorithm.

The major disadvantage of kinematic model based tracking control algorithm is that it is only
valid for very low motion speeds and payloads. This is because wheel slip will occur while the
motion speed is high or the payload is high and the perfect wheel-surface contact condition will no

longer hold. In this case the ideal kinematic model is no longer valid. However, the perfect

Copyright 2011, AHMCT Research Center, UC Davis



dynamic model is still based on the assumption of perfect wheel-surface contact, and therefore, the
dynamic tracking control algorithm based on a perfect dynamic model cannot completely overcome
the disadvantages of the kinematic model based tracking control algorithm.
From the above reviewed previous work, it is clear that in order to meet the requirements for

tracking performance for the Tethered Mobile Robot, attention must directed to the following:

* The influence of the kinematic features on the tracking performance;

* Uncertainty influence in kinematic model and dynamic model;

» Tracking control algorithm robustness;

* Dynamic tracking control algorithm.

1.4 Tracking Control Problem Statement

1.4.1 Control Objective

The control objective in this report is the Tethered Mobile Robot (TMR). The TMR is a mobile
robot with two independently driven wheels and a castor. From the tracking control point of view,
the TMR is the same as any mobile robot with two independently driven wheels except that its
position and orientation can be accurately measured. Therefore, all the modeling and control
algorithm results in this report is valid for all wheeled mobile robots with the same wheel
configurations as TMR.

1.4.2 Coordinate Systems

The coordinate systems are selected to be consistent with the convention employed in the
ground vehicle community. The world coordinate system is determined with the x axis in the
longitudinal direction, the z axis in vertical direction and pointing towards the ground, the y axis is
selected to make the x-y-z system a right-hand-system. The vehicle orientation is determined by
the angle between the vehicle heading direction and the x axis. The vehicle fixed coordinate system
is determined by the vehicle heading direction and lateral direction.

1.4.3 Reference Path and Reference Trajectory
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Reference path is a curve in the x-y plane which is a desired path for the mobile robot to
follow. Reference trajectory is the time parameterized curve in the x-y plane. The reference path
1s time independent, but the reference trajectory is time dependent. If the along path motion speed
is determined along a reference path, then the reference path becomes a reference trajectory.
Therefore, a reference trajectory is a reference path with motion speed determined. In most parts
of this report we do not strictly distinguish between reference path and reference trajectory.

1.4.4 Tracking Point and Baseline

Tracking point is a point on the mobile robot with which the mobile robot follows a reference
path. Reference point is a point on the reference path at which the tracking point on the mobile
robot should align at time t. For the TMR, the tracking point is the tool equipment operating point.
Baseline is the line on the mobile robot which links the centers (axles) of the two driven wheels.

1.4.5 Tracking Control Problem

The tracking control problem is to design a control algorithm to control the mobile robot to
follow a reference path or trajectory in position and orientation. Since the tracking point of the
TMR is the tool operation point which is not on the center of the baseline, we mainly study the
position tracking control problem in this report. This is because the orientation is determined by
the reference path while the tracking point is not on the center of the baseline.

1.4.6 Exponential Tracking and Robustess

If the position and orientation tracking errors exponentially converge to zero, we call the
tracking control algorithm an exponential tracking control algorithm. Robustness is the property
of a tracking control algorithm which guarantees perfect tracking control performance under system

uncertainty or external disturbances.

1.5 Conclusions

In this chapter, we introduce the purposes and scope of this report. Previous research work on

this area is reviewed with brief comments. This report concentrates on the development of a
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tracking control algorithm for the Tethered Mobile Robot. All the results are valid for any mobile

robot with two differently driven wheels.
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CHAPTER 2

KINEMATIC MODELING AND ORIENTATION
EQUATION

2.1 Introduction

The kinematic model is the basis for the tracking control of wheeled mobile robots. Kinematic
models of mobile robots have been studied by many authors. Muri and Neuman (1987), and
Alexander and Maddocks (1990) studied the general wheeled mobile robot kinematics problem,
and concentrated on a general mathematical description of the kinematics for varied configurations
of wheeled mobile robots. However, for the purpose of this report, it is necessary to have a
detailed study on the kinematic model of mobile robots with two independent wheels. In this
report, we first describe the kinematics equations of the mobile robots, and then study the
kinematic features and their influence on the tracking control performance. The tracking control
performance of a mobile robot with two independent driven wheels is strongly determined by its
kinematics features and the location of the tracking point on the mobile robot as well. Through the
analysis of the kinematics characteristics, fundamental tracking control algorithm structures of this
kind of mobile robot are proposed. This includes the tracking variable assignment, the tracking

singularity and position-orientation tracking decoupling problems.

2.2 Kinematics Equations

The structural parameters of the Tethered Mobile Robot are defined as shown in Fig. 2. The
coordinate system x-0-y is the world coordinate with the z axis pointing into the paper to make the
frame right handed. The local velocity coordinate frame u —o'—v is fixed on the mobile robot with
the origin point o' located at the tracking point G, and i and j are the unit vectors of heading speed

u and lateral speed v, respectively.
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Fig. 2.1 Mobile Robot Kinematic Parameters Definition

When the longitudinal and lateral slippage exist, the velocity of the wheel center has both lateral

and longitudinal components; that is

Vi=u i+v,j @.1)
and
Vi=u i+v j 2.2)

where, u, and u, are the wheel axis longitudinal speed and v, and v, are the wheel axis lateral

speed, and [ and r corresponding to the left and right wheels, respectively. The velocity of the

tracking point G can be described as
— - - -
Ve=Vi+ wkxOG (2.3)

where, o is the rotational angular speed and k is a vertical unit vector pointing into the paper.

Then, we have
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-y

Ve=uy, ?+v,7+ w?x(b?+%7)

= (1 —%wﬁ+ (v, +bo) ]

—ui+v]
Therefore, we can obtain
d
U=u ——
2
and
v=v,+bw.
On the other hand

Ve=V,+0kxO0G
= ur7+ v,7+ co%x (b?—%}?)

=(u,+5§w)?+(v, +bw) ]

=ui+vy
Accordingly, we have
d
U=u +—
2
v=y, +bw
From (2.5) and (2.8), we can obtain
1
0= E( u-u),

and from (2.6) and (2.9), we have
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(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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v, =v, =V (2.11D)

and

v=§(u,—ur)+vs (2.12)

where v, is referred to as the lateral slip speed. Substituting (2.10) into (2.5) or (2.8), we have

u=-;—(u,+u,). (2.13)

2.3 Kinematic Model with Uncertainties
To arrive at the kinematic model with uncertainties, we make a basic assumption that there is
not pure lateral sliding; i.e., lateral slip is due to the cornering force only. The longitudinal slip

coefficient ¢ is defined to be

c,.=]-—L (i=Lr) (2.14)

where, r is the radius of the wheel, and ® is the rotational angular speed of the wheel. Therefore,
V.=wr(l-c) (i=Lr). (2.15)

Because of the lateral slip, there is a slip angle o between the heading direction and the travel

direction of the wheel. The longitudinal and the lateral speed of a wheel can then be determined as

u,=V,coso,,=wr,(l-c)coso, =ar,, (i=Lr) (2.16)
and

v,=V.sino, =or, tga;, (i=1r) (2.17)

e
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where r, =r(I—c)cosa is defined to be the effective rolling radius of the wheel.

(2.16) and (2.17) into (2.10), (2.12) and (2.13), we have

(t) %re,l 2re,r
u _
b b [om
V(t) = _rel —_rrer
d "~ d “" || o)
o(t) 1 1 -
—rel —_rer
L d "~ d "
where
b =b+—tgq,
and
d
b =b——tecx. .
. > 8,
In the world coordinate frame, we have
xg(t)| Tcosw(t) —sinw(t) O u(t)
yg(t) =|siny(t) cosy(t) O] v(t)|.
w(t) 0 0 1 Jo(t)

Combining (2.18) and (2.21), we have

0[5
w(t) g

where
T
q,(t)=x,(t) y ()]
ot)=[w1) 0]
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(2.21)

(2.22)

(2.23)
(2.24)
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] re’l[-cicosl//(t)—b,sinlll(t)] re,,[fl—cost//(t)+b,sinl,{/(t)]
G(w)==| 3 z (2.25)

d re’l[%sim//(t)+b,cosl//(t)] re,r[%sinw(t)—brcosl//(t)]
and
1
g:E[r&I -] (2.26)

Although the magnitudes of the longitudinal slip and lateral slip are determined by the dynamics
and the payload of the mobile robot, the dynamic model of the tethered mobile robot possess more
uncertain influences, such as the modeling of pneumatic tire and payload. The kinematic model of

(2.22) describes all the influences of slippage as parameter uncertainties.

2.4 Perfect Kinematic Model

We define the perfect kinematic model to be the situation where there is no slippage and
parameters uncertainties. For the perfect kinematic model, the time derivatives of the position and
orientation of a mobile robot with two independent driven wheels in a planar surface can be

completely determined by the angular speed of the driven wheels. From the previous section, we

set
v=0,¢=01c=0
and
r=r,=r
Then, we have
o(t)= -:;[w,(t) ~o,(1)] 2.27)
(1) =2 [0,(1) - 0,(1)] (2.28)
wt)= %[ o,(t)+ @ (1)] (2.29)
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where w(t) is the angular speed, and u(?) and v(#) are the forward and lateral speeds, respectively,
r is the radius of the wheels, and @, and @, are the angular speeds of the right and left wheel,
respectively. It is clear that the rotation speed @(z) and lateral speed v(¢) are not independent.
Therefore, there are only two independent variables in the local coordinate system.

The motion equations of the tracking point G in the world coordinates can be obtained through

a rotation transformation; that is

x'g(t)=u(t)cos w(t)—v(t)siny(t) (2.30)
Y, (1) = u(t)siny(t)+v(t)cos y(t) (2.31)
y(t)=w(t) (2.32)

where, x and y are the position of the tracking point G in the world coordinate frame x-o-y, and y

is the orientation angle of the mobile robot. Combining (2.27)-(2.32), we have

#(t) = G(y)v(t) (2.33)
where
xt)=[x,1) (1) wo)] (2.34)
o(t)=[e1) 0] (2.35)
and

. d . d
—bsin 1//+—§cosl// bsml//+zcosl//

G(l//)=—2— bcos w+£21-sin1// —bcos t//+%sinl// . (2.36)
1 -1

2.5 Tracking Pairs and Singularity
Although many authors use all three posture variables as feedback variables in the control

algorithms, the mobile robot with two independent driven wheels is of only two degrees of
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freedom, and there are only two completely independent variables in the world coordinates. To

track a reference path in position, the orientation angle can not be controlled arbitrarily at the same

time. Since the only feasible reference orientation is the tangential direction of the reference path,

the orientation is inherently determined by the path configuration. We will refer to the tangential

direction of a given reference path as the reference orientation throughout this paper.

Since there are two degrees of freedom for the mobile robot, we can exactly track two

variables. We can chose one of the variable pairs (x,, y,) or (x,, W) or (y,, ¥) to be the tracking

control feedback variables. Denoting matrix G(y) as

g
G(y)=|g,
8y

where, g’ € R?,(i = x,y, ¥), we can obtain the following results:

T 2
= det[g’}ji -Zb
)

= det|: -—— cos v

= det|: )T} —-—szn V.
8y

From (2.38)-(2.40), we arrive at the following observations:

(2.37)

(2.38)

(2.39)

(2.40)

¢ Since K,, is always nonzero when b # 0, therefore, the tracking pair ( x,( t), yg( t)) is

nonsingular for any reference path as long as the tracking point is not on the center of

baseline;

e It is clear that x_, is zero when y =xZ, therefore, the tracking pair (x ( t),y(t)) is

Xy

singular when y ==Z; that is, this tracking pair cannot track any reference path which is

parallel with the y axis;
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e For the tracking pair (y,(z), y(t)), the singularity occurs when x , is zero at
v =0 or ¥ =t 7; this means that this tracking pair cannot track any reference path parallel

with the x axis.
Therefore, when b # 0, we can only track a reference path in position. When b=0, that is, the
tracking point G is on the center of baseline, there is no lateral speed at the tracking point G on the

local coordinate frame. The basic kinematic equations in the local coordinate frame becomes

o(t) = gfco,(z) ~,(1)] (2.41)

u(t)= -;:[a),(t)+ o, (t)] (2.42)

and in the world coordinates the kinematic equations are of the following form:

%,(t) = u(t)cos y(t) (2.43)
Y () =u(t)siny(t) (2.44)
y(t)=o(t). (2.45)

Then, the matrix G(y) defined by (2.36) becomes

r s
Ecosl// Ecosl//
G(y)= %sint// %sinl// . (2.46)
r r
| 4 d ]

Sine k,, =0 in this case, the pure position tracking control is completely singular, and the

orientation variable must be taken as the tracking control variable.
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21
2.6 Orientation Equation
The orientation of the mobile robot during the path tracking process is determined by the

features of the reference path. We define the tangential direction of the reference path as the

reference orientation (). We can see that when b # 0 and if we want to accurately track a

reference path in position, it is impossible to have accurate orientation tracking in this case. A
difference between the mobile robot orientation and the reference orientation is inherently necessary

when the position tracking is exact.

Vix u' Vi

reference path

Fig. 2.2 Orientation Tracking Error

Denoting the angle difference between the mobile robot heading direction and the reference path

tangential direction as ¢ as shown in Fig. 2.2, the value of the speed of the tracking point G on the

mobile robot is written as

V(1) =A[V2(1)+ V(1) =% (1) +3, (1) (2.47)

and the corresponding value of the speed of the reference point Gf on the reference path is
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Since

and

where

and noting that

and

we have

where

Vi(t)=[V, 20+ V, (1) =[5, (0)+3,(1).

byr(t) = (1)

v(t) =V (t)sing — AV(t)sin(y+6)

AV(t) = el (1) +e,(1)
e.(t)=x,(t) = x,(1)

e,(1)=y,(t)= yy (1)

0 =atan —‘f—"if—t—)—
ex(t))
v(t)=y.(t)-¢(t)

V(1) = atan[M]

xgr (1)

% (1)y (1) = %o ()Y (1) |

V()= :
X (1) + Y, (1)

(;)(t)"'é\/;cgfz(t)’*').’gfz(t) sin@(t) =y (1) + &(1)

e(t)= e (1) + &) (1) sin( v (1) - 9(1) + 8(1).
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(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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reference path

Vy

0]

Fig. 2.3 Orientation Tracking Error When Position Tracking |s Exact

The last term in equation (2.56) only depends on the initial position errors. When the initial

position errors are zero, or when ¢ — oo, e,(t) = 0, £(t) = 0 , we have

5 ()Y (1) =% ()3 (1)

X (1) + 3, (1)

1)+ A3 (1)+3,7(1) sin (1) = (2.58)

From (2.58), when the mobile robot accurately tracks a reference path in position, there may be a
nonzero ¢(¢t) determined by the reference path configuration, as shown in Fig. 2.3. In this case,
the tracking point G is overlapping the reference point Gf on the reference path, and both the value
and direction of the velocity of point G is the same as that of the desired velocity at the reference
point Gf. If the reference path has a nonzero curvature at point Gf, the mobile robot must have a
nonzero rotation speed. Therefore, there is a nonzero lateral speed v at point G, and this means the
orientation W of the mobile robot cannot be the same with the tangential direction ¥, of the
reference path at point Gf.

The zero input equation of (2.58) is of the form:
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(;)(t)+-l§—q(t)sin¢(t)=0 (q(t)>0,Yt=0). (2.59)

We can see that ¢ =0 or are the equilibrium solutions of (2.59); that is, when ¢ =0orxtrx
there is (}5( t)= 0. When b>0, the tracking point G is in front of the baseline, equation (2.59) has a
stable equilibrium solution of ¢=0 but ¢ ==+x is unstable. In this case, the mobile robot is
heading forward during the tracking process. When b<0, the tracking point G is behind the
baseline, equation (2.59) then has a stable equilibrium solution of ¢ =+ while ¢=0 is not stable;
this means the mobile robot will track the path while heading rearward. When b=0, the tracking
point G is the center of the baseline, and from (2.49) the lateral speed is zero. The value and the
direction of the forward speed u(#) are the same as that of the desired velocity at the reference point
Gp on the reference path, and therefore ¢(z)=0.

From the above discussions, the orientation of the mobile robot is completely determined by
the reference path and the location of the tracking point on the mobile robot. Under the definition
of reference orientation being the tangential direction of the reference path, exact orientation
tracking occurs only when the reference path is a straight line or the tracking point is the center
point of the baseline. The mobile robot may be in a heading-forward or heading-rearward direction
during the tracking process depending on the location of the tracking point (in the front or behind
the baseline). The orientation tracking error increases as the distance from the tracking point to the
baseline increases.

It is evident that both exact position and orientation tracking control at the same time is
impossible for this kind of mobile robot when the tracking point is not on the baseline. If both
position and orientation accurate tracking is required, a third degree of freedom for the posture
control is necessary in the mobile robot configuration. Orientation tracking error can be reduced by

decreasing the distance b or decreasing the curvature of the reference path.
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2.7 Conclusion

Kinematic models of the mobile robot with two driven wheels is developed in this chapter.
General kinematics equations, uncertainty kinematic model, and perfect kinematic model are
produced. Since there are only two control inputs and three posture variables, tracking control
pairs selection and their singularity are also discussed in this chapter.

An orientation equation under the condition of exact position tracking is proposed, and the
fundamental relation between position tracking and orientation tracking is given. When the mobile
robot exactly tracks a reference path, the orientation of the mobile robot is completely determined
by the location of the tracking point on the mobile robot and the desired speed and acceleration of

the reference path.
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CHAPTER 3

KINEMATIC MODEL BASED TRACKING CONTROL

3.1 Introduction

With respect to the tracking control problem for wheeled mobile robots, algorithms from basic
PID based ones to fuzzy logic and neural network based algorithms were developed by many
authors. The knowledge based algorithms are mainly suitable for real environment guidance type
problems. However, for the problem of accurate path tracking control, a kinematic or dynamic
model based control algorithm is essential. This is because the dynamic model of the mobile robot
can have considerable uncertainty in modeling the driven force and payload, and its computational
complexity is relatively high. Kinematic models play an important role in control algorithm
development. Kanayama, Nilipour, and Lelm (1988) proposed a PID control algorithm for mobile
robot tracking control. The kinematic model was used to transform the posture errors in world-
coordinates to errors in a robot-fixed frame. A similar control algorithm was developed by Lee and
Williams (1993). Kanayama, Kimura, Miyazaki, and Noguchi (1990) proposed a nonlinear
control algorithm based on a kinematic model, and they also gave a proof of the algorithm's
stability. Winters and Velinsky (1992) used a PID based control algorithm in a Tethered Mobile
Robot tracking control study which included both simulation and experiment of a prototype mobile
robot. Since the fundamental control structure related to the kinematic features was uncertain, in
some algorithms, the inherent consistence with the kinematics of the mobile robot was not
completely matched. As such, a strong disturbance between position and orientation tracking was
reported, and the tracking performance was poor.

In this chapter global convergence tracking control algorithms are developed for two different
cases, for the tracking point on and off the baseline. When the tracking point is not on the
baseline, only the position of the tracking point can exactly track a reference path, and it is

impossible to exactly track the heading direction of the mobile robot. When the tracking point is
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located on the baseline, both the position of the tracking point and the orientation of the mobile
robot can exactly track a reference path. Numerical simulation examples are provided which

illustrate the performance of the control algorithms.

3.2 Global Exponential Position Tracking Control

When the tracking point is not on the baseline, the mobile robot position variables ( x, (t), ¥, (t)

can be taken as control variables. We now denote

. d : d
—-bsin w+3cosl// bsin I/I+Ecosl//

g
G,(y)= I:gr} =

,
d b d . d . G-D
y cos t//+5sm1// -bcos 1//+—2—smt//
and take the control inputs as
vx
1 T -1 v,
v(t)=[G, (8,8,) 8,1 | (3.2)
vll/
From (2.33) and (3.2), we have
. Loy (y)
[x.p(t)} _ 2x2 fly ]:vp(t):l (3.3)
vl Ly 1
where,
x,(1)=[x,1) y, 0] (3.4)
v,(1)=[v,(1) v, (3.5)
. T
_| _siny cosy
y)=| 0¥ oY (3.6)
and
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f(w)=[-bsiny beosy] . (3.7)

From (3.6) and (3.7), we have

W(y)f(y)=1,

KT ()X, (1) = (1) (3.8)

and
f( l//) W(t) = [xp (t)]rotation (39)
where [X,(2)] .0, T€Presents the component of speed caused by the pure rotation with angular

speed 1;/( t). Therefore, if the transformed control inputs v,(f)and v,(t) correspond to the
reference value of x p(t)and 1}/( t), respectively, then the rotation speed is fully determined by the

reference position speed, and any control to rotational speed will disturb the accurate control of the

position. Considering that

Ly, f(w)
rank =2 (3.10)

h(y) 1

then a direct full decoupling control algorithm between v ) (t)and Uw( t) cannot be obtained.

For the position tracking control, we take

0, =0 (3.11)

and

vpzxp(t)—erp(t) (3.12)
where

ep(t)=xp(z‘)—xpf(t)
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k0 k.>0k >0 3.13
KP—O k, (k; >0, k,>0) (3.13)

and X, (t) is the reference path. Then, from (3.3) we have

es(t) ==K e (1) (3.14)
and
W(t)= W (W) x,— K e, (1)]. (3.15)
From (3.14), we have
e,(t)=e""e, (0) (3.16)

which implies that under control (3.11) and (3.12), the mobile robot exponentially tracks the
reference path in position with zero steady state error, and the algorithm is a globally convergent.
From (3.12) and (3.14), we can see that there is no need to have a derivative feedback term or
an integral feedback term in the control (3.12). A derivative feedback term is equivalent to
decreasing the value of Kp, and an integral term will deteriorate the stability margin.
Since A”( y/);cpf( t)— 1}/( t) and ep( t) — 0, when t — oo, therefore, equation (3.15) gives no
information about orientation. Combining (3.2), (3.11), and (3.12), the feedback linearized

exponential tracking control algorithm is written as
V(1) =G (W)l xm (1) = K,e,(1)]. (3.17)

Because the matrix Gp is second order and its determinate is a constant as shown in (2.38), there is

no extra calculation needed to determine the inverse of Gp in (3.17). The control algorithm (3.17)
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is of the same calculation complexity as a common PID control algorithm and it is therefore suitable

for real time application.

3.3 Global Position and Orientation Tracking Control
When the tracking point is on the baseline, exactly tracking both position and orientation is

possible as described in section 2.2. In this case, we take the local variables u(t) and w(t) to be

tracking variables. Then from (2.41) and (2.42) we have

“ON_ ) (3.18)
o(t)
where
r r
2 2
H= . (3.19)
r _r
d d
Taking the control to be
vu
v(t)=H" [v il (3.20)exactly tracking
1'4
results in
u(t) v,
= . 3.21
[wm] {v} 21

Although the control system (3.21) is linear in the local coordinate frame, the control law for
the transformed control inputs v, and v,, must be designed based on world coordinate variables.
Considering the expression of u(?) in world coordinates, we have

u(t) = %, (t)cos (1) + ¥, (t) sin y(t). (3.22)
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We now set the control algorithm to be

v, (t)= uf(t)-—ku[ex(t)cos I//(t)+e),(t)sin w(t)]
v, (1)= l[lf(t)—kwa(ev,)-i— cf(ex,ey, V)

(3.23)
(3.24)

where, k, >0, ku, >0, and o(-) and &(-) are unknown functions to be determined as follows.

Substituting (3.23) and (3.24) into (3.21), we have

u(t)= u.(t)—k,[e.t)cos 1//(t)+ey(t)sin y(t)]
and

W(t) = l/'/f (t) - kwa(ew) + é(ex) ey: l/[) .

Taking the Lyapunov function candidate to be

V= é[ef(t)+ef,(t)]+ 4sin2(ﬁ":l(2),

then the time derivative of V along the trajectory of the system equation is expressed as

3 _ . . 2 . ev/ ev/ .
V=ee + e, + sin( 7 Jcos( —4? )ey,.

Considering (2.43) and (2.44), we have

€.(t)=u(t)cos y(t)—u;cos y(t)
é,(t)=u(t)siny(t)—u, siny,(t)

Therefore, we arrive at the following expression
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7 . e -
V=(e.cosy+e sinyu—(e cosy,+e siny;)u;+ sm(;”’)ew

e
=—k,(e cosy+esin v)+ sin(—g—)e’w

+(e.cosy+e sinylu, —(e cosy,+e siny Ju,

e
=k, (e cosy +e,sin v)+ sin(—f)éw

+ Zuf(ey cosy —e, sin y/)sin(%")

=—k, (e, cosy +e,sin v) - k, sin(%)a(eu,)

+ [ﬁ(ex,ey, w)+2u,(e,cosy—e, sin l//)]sin(%"’—)

Now, we let

and

e
— oin ¥
G(ew)—szn—z—

(e, e, W)=~2u,(e cosy—e,siny)

which leads to

. e
V=—k(e,cosy+e, siny) —k,sin’ —5"'—

<0

and V is a Lyapunov function. Combining (3.20), (3.23) and (3.24), we have

uf(t) —k,[e.(t)cos 1//(t)+e),(t)sin w(t)]

— -
v(t)=H l/}f(t)— k, sin(
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)) —2ug(t)[e,(t)cos y(t)—e (t)siny(t)] |

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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Since
O<le,l<2m,
we have
0 <l sin2e? 1<l sin a2 |
which implies that

0<le, (1)I<le, (0)1,

and therefore, the control algorithm (3.34) is globally convergent for tracking a reference path both

in position and orientation with the tracking point G on the baseline.

3.4 Tlustrative Examples
We take three types of reference paths, straight line, circle, and sine, as illustrative examples to
show the tracking control ability of the above control algorithms and the orientation tracking

problem.

Example 3.4.1 Straight line reference path with initial position errors. Taking reference path

to be as follows

X, (1)=2t
V(1) =2+1

then the reference orientation is

— atanl 22 | = aranct
l//f(t)—atan(ng] atan(z).

Wf(t) =0

The steady state orientation equation (2.58) is of the form

Copyright 2011, AHMCT Research Center, UC Davis



q5(t)+é—\/§sin¢(t)=0

If b>0, for lp|<<1, we have

1o

e
B(1)=(t))e > " = 0,100 = Y(t) = v, (1)

and if b<0, for ¢ = ¢'-, |¢'| << I, we have

"ﬁl( t—t,

0'(1)=9'(t,)e

0)—>O,t—>oo = y(t) >y (t)-7 .

The numerical simulation results are shown in Fig. 3.1 and Fig. 3.2. The initial conditions are set

to be
x,(0)=0and y(0)=0.

and the control parameters are set to be

y,meter

orientation,degree

X, meter time,second

Fig. 3.1 Straight Line Reference Path with Initial Position Errors and b>0
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y.meter
orientation,degree
i

xX,meter time,second

Fig. 3.2 Straight Line Reference Path with Initial Position Errors and b<0

Because there are initial position errors, the control algorithm exponentially converges to the
reference path. The mobile robot orientation convergence to the tangential direction in heading-
forward or heading-rearward depends on the sign of b. Fig. 3.1 corresponds to the situation when
b>0, and Fig. 3.2 corresponds to the case of b<0. Numerical simulation results verify that
whether the orientation error converges to zero or to 7z depends only on the sign of b regardless of
the initial value of the orientation when b # 0.

Example 3.4.2 Circular reference path with exact initial position. A one fourth circle is taken

to be the reference path which can be described as

0Lts—)

X, () = asin(wt) T
V(1) =acos(wt) 20

where a>0 is the radius of the circle path. The reference orientation is then

y(t)= atan(&-] = —t
Xy .

l/./f(t) =—0
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The orientation equation (2.58) is now of the form

¢(t)+é~aa)sin¢(t)=—co.

The steady state solution is then expressed as

¢ =sin'1—b— (b>0)
a

or
o, = w+sin' 2 (b<0)
a

When b<<a, the steady state value of ¢ is approximately equal to b forb>0 or 7w+ b for b<0.
a a

This means that the orientation error is in proportion to the distance b and the curvature — of the
a

reference path. A numerical simulation result is shown in Fig. 3.3. In the simulation, the
parameters of the reference path are set to be a=4 and w = Z, and the control parameters are the
same as in Example 3.5.1. An exact initial position is set for the simulation. The initial orientation
is set to be the equal to the tangential direction of the reference path. The path of the mobile robot

completely overlaps the reference path, and the orientation error increases from zero to a constant.

y,meter

orientation,degree

X, meter time,second

Fig. 3.3 Circle Reference Path with Exact Initial Position and b>0
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Example 3.4.3 Sine reference path with exact initial position. The reference path is set to be

{x(t)=t

y(t) = csin(wt)

and the reference orientation is then expressed as

V(1) = atan(cwcos wr)

The orientation equation is then written as

cw’ sin ot
I1+cw’ cos’ ot

‘;5(1)+']-)]-\/1+02a)2 cos’ wt sin §(t) = —

In this case the reference orientation and the orientation error are all functions of time. Numerical

simulation results are shown in Fig. 3.4. The value of ¢ and ® in the reference path are set to be 4

and 1/4, respectively, and the control parameters are

The initial position is exact, and the initial orientation is zero. Because there is no initial position
errors, the position path is again completely overlaps the reference path, and the orientation of the
mobile robot delays the tangential direction of the reference path.

Example 3.4.4 Circular reference path with the tracking point on the baseline. A circular
reference path is used to simulate the tracking control process of a mobile robot with the tracking

point on the baseline, that is b=0. The initial conditions are set to be

x,(0)=0and l//(0)=0_
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The control parameters are taken to be

k,=3andk,=5.

Fig. 3.5 shows that both position and orientation track the reference path with zero steady state

CITOr.

y,meter

0 20 40 60

X, meter

orientation,degree

time,second

Fig. 3.4 Sine Reference Path with Exact Initial Position and b>0

y,meter

X,meter

orientation,degree

0 10 20 30
time,second

Fig. 3.5 Circular Reference Path with the Tracking Point on Baseline (b=0)
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3.5 Conclusions

On the basis of a kinematic model, control algorithms for the mobile robot with two
independent driven wheels are developed. A global exponentially convergent control algorithm
and a globally convergent tracking control algorithm are developed according to the tracking point
location relative to the baseline. These algorithms can track any differentiable reference path with
zero steady state errors. Illustrative examples are provided to show the position tracking control
ability and the orientation behavior for the control algorithms.

It can be concluded that it is impossible to exactly track both position and orientation
concurrently when the tracking point is not on the baseline. When the tracking point is located on

the center of baseline, the position and orientation can be tracked simultaneously.
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CHAPTER 4

KINEMATIC MODEL BASED ROBUST TRACKING
CONTROL

4.1 Introduction

Since the TMR is being developed for application in highway maintenance, the accurate
tracking ability of the TMR to a reference path is very important for most maintenance operations.
However, since the working environment of the TMR will be in an unstructured environment (i.e.,
highway), there are many uncertainties that exist. Among them are the changes of roadway surface
conditions, the varying operation payloads, the different maintenance tasks, etc. These
uncertainties combined with the relative high speeds will result in wheel slippage and a change in
radius of the pneumatic tires. These uncertainties will appear in the mobile robot kinematics
equation as uncertainties of effective wheel radius. Therefore, to meet the accurate tracking
requirements, any kinematics based tracking control algorithm must have enough robustness to
overcome the tracking performance deterioration caused by the kinematic uncertainties.

Winters and Velinsky (1992) developed a PID control algorithm for the TMR, and both
numerical simulation and experiment are made based on a prototype TMR model. This control
algorithm used the PID control algorithm on the basis of mobile robot inverse kinematics. Much
research has been done on the wheeled mobile robot tracking control area. Kochekali and Velinsky
(1994) have made a comprehensive survey of the mobile robot control problem. Kanayama (1988)
proposed a PID control algorithm by kinematically transferring mobile robot posture errors in the
world coordinate frame into errors in local coordinate frame. The posture errors in the local
coordinate frame are then filtered by a PID algorithm to produce the control inputs, that is, the
speed of the two driven wheels. Lee and Williams (1992) developed a similar PID control
algorithm for wheeled mobile robots. The local position and orientation are used to determine the

two driven wheels angular speeds by means of least-squares-method. The posture errors in the
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world coordinate frame are transformed into errors in the local frame on the basis of kinematics.
This kind of control algorithm has three basic features: one is the assumption of precise mobile
robot kinematics model; the second is the PID control algorithm; and the third is that all three
posture variables (two position variables and one orientation variable) are used as feedback. Since
the character of the nonholonomic condition of a mobile robot's kinematics (i.e., there are three
posture variables and only two control inputs), in the path tracking process, the mobile robot
position and orientation are inherently coupled. Inadequate feedback of the three posture variables
may influence the tracking performance. There is no guarantee of global stability and tracking
performance for this kind of control algorithm. The robustness of this kind of control algorithm is
also very limited.

Although much work has been done on robust control of robot manipulators, see Spong and
Vidyasagar (1989), little research has been done on the robust control of a mobile robot with
independent driven wheels. In this chapter, we will develop a mobile robot kinematic tracking
control algorithm based on the kinematic model with uncertainties. On the basis of the kinematics
features, a global exponential tracking control algorithm is proposed in the previous section. The
algorithm decouples the kinematics inherent coupling of orientation control to position control, and
a feedback linearized control law for position tracking is obtained. The algorithm revealed the
fundamental tracking control structure of mobile robots with two independent driven wheels. A
robust control algorithm is developed in this section to guarantee the exponential tracking control
property when uncertainties exist. This algorithm possesses the similar calculation complexity as
that of the PID based algorithm and has the advantage of being suitable for real time application.
Numerical simulation is made to show the efficiency of the robust control algorithm. It is found
that the robust control algorithm not only possesses the robustness ability under the condition of
uncertainty, but also improves the tracking control performance under the condition of an exact

kinematics model.
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4.2 Robust Control Algorithm for Tethered Mobile Robot

For tracking control of the tethered mobile robot, a reasonable tracking point is the contact

point of the tool and ground; that is, the tracking point is not on the center of the baseline. In

Chapter 3, we proposed an exponential position tracking control algorithm for the mobile robot

with the tracking point not located on the baseline. If we know the exact kinematic model of the

mobile robot, from section 3.2 the control law is set to be
v(t) =G, (w)[q, (1)=K,e,(t)]
where, g, (1 )is the reference path, and

T
Gy (1) =[x (1) 3, ,(1)]
e,(t)=q,(t)-q, (1)

K k0 k.>0k >0
2= K, (k,>0,k,>0) .

Substituting the control (4.1) into the perfect kinematic model (2.33), we have
er(1)=-K,e,(1)
Taking the Lyapunov function to be
V =e(t)Pe(t)

where P is the unique positive definite solution of the Lyapunov equation, we have

K,P+PK,=0Q
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and Q is a given positive definite symmetrical matrix. Taking the time derivative of the Lyapunov

function V along the trajectory of system equation (4.5), we have

V =-2k e (t)Pe(t) 4.8)

where,

k,=min[k k. ].

That is, the control (4.1) exponentially tracks the reference path position at exponential rate k.

The only feasible reference orientation for the tracking control is the tangential direction of the
reference path. In this case, the heading direction of the mobile robot is completely determined by
the features of the reference path and the location of the tracking point on the mobile robot.

The exponential tracking control algorithm depends on the precise kinematics of the mobile
robot. For the Tethered Mobile Robot, however, there are strong uncertainties in the kinematic
model related to wheel slippage. Although it is difficult to get an exact kinematic model while
slippage occurs, a robust control algorithm can be developed to ensure tracking control
performance in this case. Robust control algorithms for model parameter uncertainties have been
extensively studied, see for example, Leitmann (1981) and Corless (1993). A Lyapunov method
based algorithm is used in this paper to design the robust tracking control algorithm.

We now let the control law (4.1) be determined based on the kinematic model without slippage;

that is
(1) =G, (y)a(t) (4.9)
where
d . d .
N - —cosY—bsiny —cosy+bsiny
Go(y)==| 3 y (4.10)
dld d
Esinl//+bcosl// Esin Wv—bcosy
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and r is the design radius of the wheels. Substituting the control (4.9) into the uncertainty

kinematic model (2.22), we obtain

51,,(t)=oc(t)+E(t/f)a(t) (4.11)
where

E(y)=G,(W)Gy (W)= 1L,,. (4.12)

Choosing the robust control law to be

at)=q, ,(1)-K,e, () + (1) (4.13)
then we have
ep(t)=—K,e,(t)+8(t)+n,(1) (4.14)
and
n,(6)=E(Y)Iq, (1)~ K,e,(t)+8(1)]. (4.15)

Since the reference path is always planned to be of limited motion speed, therefore,

5

q,;,f(t)“Sx<°° : (4.16)

Because the longitudinal slip coefficient and the lateral slip angle are relatively very small,

therefore, we suppose that
|E(w)|spu<I. (4.17)

Then with a function p( e, (t)) >0, we take

Copyright 2011, AHMCT Research Center, UC Davis

44



Pe, (t)
|Pe, (1]
0 (|Pe,(t)]=0)

|-pte 0

. e+

It can be seen that

|6¢z)] < ple,(2)
and the function p(e,(z),¢)> 0 can be determined as follows. Consider

|n,0)| < L2 +|K, |- Je, )+ ple )]

and let
ulx +|K,|-le, )|+ pte, (01 = ple,(1).
Then, we have

ple, ) =5 L +[K e,y

and

|m, )| < pte,(2)) .

Taking the Lyapunov function to be

T
V—epPep,

then
V=¢l(t)Pe,(1)+e, (1)Pé (1)

==e,(t)Qe, (1) + 2¢,(t)P[3(t) +1,(1)]

< —2k,e] (t)Pe) (t)+ 2e, PS(t) + 2| Pe, (t)||m, (1)

< —2k,e, (t)Pe, (1)+ 2¢, P[5(1)+ hiAC ple,(1)]

[Pe, (1]

= 2k, e’ (1)Pe (1)
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Therefore, we have

le, ()] < 7]e, (0™ (v <o, k,, = min(k,, k,)). (4.25)

m

That is, under the robust control algorithm, the mobile robot position exponentially tracks the
reference path at an exponential rate k,,.

For the mobile robot with two independent driven wheels, the heading direction of the mobile
robot is completely determined by the reference path features and the location of the tracking point

on the mobile robot when the position converges to the reference path.

4.3 Numerical Simulation and Discussion
The robust exponential tracking control algorithm is simulated numerically with Matlab on a

Macintosh Q80 computer. In the simulation, the feedback control parameters are set to be

To make a comparison, the exponential tracking control (ETC) algorithm (4.1) and the robust
tracking control (RTC) algorithm (4.13) are used in the simulation. We define the slippage factor

to be the ratio of the effective rolling radius and the design radius of the wheel; that is

I

o=l (i=]r).
r

When there exists slippage, the tracking performance of the ETC algorithm deteriorates. Fig.

4.1(a) shows the tracking performance of the ETC with slippage factors to be

0, = 1.0 and o, = 0.8 in the kinematics simulation, while the value of the slippage factors of the

two wheels are taken to be 1.0, respectively, in the control law.
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(b) Robust control algorithm

Fig. 4.1 Straight Line Reference Path Tracking Control with Uncertainties

It is clear that when slip exists, the ETC algorithm cannot track the reference path exactly.
Considering the control law (4.1), the control inputs (i.e., the rotation speed of the left and right
wheels) are calculated based on the inverse kinematics.

When slip exists, there are uncertainties in the parameters of the kinematic model. The inverse
kinematics calculation of (4.1) does not match the real kinematics of the mobile robot; therefore,
tracking errors cannot be completely eliminated by the control system. The tracking performance
of the robust control algorithm is as shown in Fig. 4.1 (b). Comparing with Fig. 4.1 (a) where the

ETC algorithm is used under uncertainty conditions, it can be seen that the robust control algorithm
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overcomes the tracking errors caused by the uncertainties. It also can be seen that the RTC
algorithm has a higher convergence rate than the ETC algorithm. This is because the robust
tracking control algorithm is inherently a nonlinear control algorithm, while the exponential control
algorithm is basically a linear control algorithm. Despite the nonlinear features in the inverse
kinematics calculation, the exponential control algorithm is a PD feedback control algorithm on the
posture errors. The robust control algorithm is a nonlinear feedback control algorithm on the
posture errors, and it gives higher control efforts when the value of the posture error is large.

To further illustrate the tracking ability of the robust control algorithm, a more complex
reference path is used in the simulation with exact initial conditions as shown in Fig. 4.2. When
slip exists, the ETC algorithm cannot exactly track the reference path as shown in Fig. 4.2(a)
where the slippage factors for right and left wheel are all equal to 0.8. The tracking ability of the
robust control algorithm under the uncertainty condition is shown in Fig. 4.2(b). It is clear that the
RTC algorithm can track the reference path under the influence of uncertainty, and the tracking

performance is greatly improved.

30 ! ! 30 ! !
L 20 ........................ // AAAAAAAAAAAAA _ L 20 ........................ .................... _
o : 3] : :
o iy 5}
E | 7 g z :
S T} S ;.,./.,’ ...... ..................... i I T | ........................ ...................... _
0 : i 0 i i
0 10 20 30 0 10 20 30
X,meter X,meter
(@) (b)

Fig. 4.2 Slope Sinusoidal Path Tracking Control with Uncertainties
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4.4 Conclusion

On the basis of the kinematic features of a mobile robot with two independent driven wheels, a
global exponential tracking control algorithm is proposed. This algorithm decouples the kinematics
inherent coupling between orientation control and position control, and a feedback linearized
control law for position tracking is obtained. This algorithm revealed the fundamental tracking
control structure of mobile robots with two independent driven wheels. Considering the
uncertainties existing in the mobile robot kinematics model, a robust control algorithm is developed
to guarantee the exponential tracking control property when uncertainties, such as wheel slippage
and pneumatic tire wheel radius errors, exist. The Tethered Mobile Robot (TMR) is being
developing towards application in highway maintenance. Accurate tracking control is the basis of
any maintenance operation while there are strong uncertainties due to changes of road surface
conditions and different highway operation payloads. The TMR configuration has the advantage
of accurate measurement of its position and orientation, and therefore, the robust control algorithm
developed in this chapter is very suitable to guarantee the exponential tracking control of the TMR.
The robust control algorithm is also feasible for any mobile robot with two independent driven
wheels as long as its accurate position measurement is available. The efficiency of the robust
control algorithm is illustrated by numerical simulation. It was found that the robust control
algorithm improves the tracking control performance both when exact kinematics are known and

when uncertainties exist.
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CHAPTER 5
DYNAMIC MODELING

5.1 Introduction

The configuration of mobile robot moving along a planar surface is defined by three posture
variables, the position coordinates and the heading direction. The purpose of tracking control
cause the mobile robot to follow a desired reference path in both position and orientation. Based
on the dynamic modeling work of Boyden and Velinsky (1993), it was believed that a kinematics
based control algorithm is only valid for very low speed and very low payload robots. Therefore,
a dynamic model based control algorithm is necessary for accurate path tracking control.

The dynamic model is the basis for the dynamic tracking control algorithm design and
application. Vehicle dynamics was considered in some control algorithms for conventionally
steered mobile robots. Hemami, Mehrabi and Cheng (1992) used a simplified linear dynamic
model in the synthesis of a tracking control algorithm for a three-wheeled cart with front steering
wheel. Nelson and Cox (1989) considered the motor dynamics in a control algorithm while still
used a kinematics model in the control law design. A simplified dynamic model was used by
Hemami, Mehrabi and Cheng (1990) to simulate the kinematics based control algorithm for a
conventionally steered mobile robot. To control a high speed autonomous vehicle, Shin and Singh
previewed the path dynamics and used acceleration limits to speed plan. A simplified dynamic
model of a differential driven wheeled mobile robot is developed by Hamdy and Badreddin (1992).
Only longitudinal slippage was considered in the model. Boyden and Velinsky (1993) developed
dynamic models for both conventionally steered and differentially steered wheeled mobile robots
with the use of Dugoff's tire friction model.

In this Chapter, we first describe the full dynamic model of the mobile robot, and introduce the
concept of a perfect dynamic model. The influence of the uncertainties, such as unmodeled
dynamics, slippage, payload variation, parameter perturbation, etc., on the system dynamics is

then analyzed. Since exact position tracking control is very important for the Tethered Mobile

Copyright 2011, AHMCT Research Center, UC Davis

50



Robot, we make a coordinate transformation to get the tracking point position dynamic model. As
a fundamental basis of the robust tracking control algorithm, the matching condition for the mobile

robot uncertainty in the dynamic model is proven.

5.2 Full Dynamic Model

For development of the full dynamic model of the differential driven wheeled mobile robot, we
assume that the robot is restricted to move on a two dimensional planar surface. A full dynamic
model of a differential driven wheeled mobile robot is developed by Boyden and Velinsky (1993),
and the tire payload is simplified in their model. In this section, the dynamic model is rewritten
with addition of accurate tire payload and motor dynamics.

The coordinate system is selected as shown in Fig. 5.1 and Fig. 5.2, where x-o-y is the world
coordinate system, and u-G-v is the local speed-coordinate fixed on the mobile robot with the
origin at the mass center of the mobile robot, u in the heading direction of the robot, and v in the
lateral direction.

The definition of the structural parameters are shown in Fig. 5.2. The point G is the mass
center of the mobile robot. The point B is the center of the baseline. The points R and L are the
wheel-ground contact points of right wheel and left wheel, respectively. The point C is the wheel-

ground contact point of the castor. The point P is a mechanical linkage joint. The point E is the

0
X
y G q),\Ll
v

0
o WY

v w

Z

Fig. 5.1 Vehicle Coordinate System
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Fig. 5.2 Structural Parameters Definition

tool equipment and ground contact point. Point A is a tracking point, that is, the tracking control
system controls the mobile robot to follow a desired reference path with this point. The tracking
point may be a local vision sensor focus point or tool-ground contact point for an industrial mobile

robot. The points R, L, E, P, and C are all the reaction force action points. The reaction force

F,, and M,

v,i?

components acting on these points are as shown in Fig. 5.3, where, F

(i=1r,c p, e) are the force component in the heading direction, the force component in the lateral

direction, and the applied momentum, respectively. The force F’

n,i

(i=1r,e p,c) is the normal

force acting in the negative direction of the z axis.

Fu,i
Fv,i

Mi
Fn,i

w

Fig. 5.3 Reaction Force Components at an Acting Point
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5.2.1 Dynamic Equations of Motion
The dynamic equations of motion of the robotic vehicle can be deduced from Newton's second

law. Because the robot moves on a planar surface, we have

Y F, =m(i-vo) (5.1)
N F, =m(v+uw) (5.2)
YM, =10 (5.3)
> F, =0 (5.4)
M, =0 (5.5)

> M, =0 (5.6)

where, mand I, are the mass of the robot and the moment of inertia about the w axis,

respectively, and

ZEl = Fu,l + E:,r + El,e + ‘Fu,p + Fu,c (57)
ZFV =F, +F, +F, +F, +F,, (5.8)
EMW =_d-(F'ul —ler)—b(Fvl+er)_eFve
2" ' ; : : (5.9)
+cF, + va,P +M,+ Mp
> F,=mg—(F, +F, +F, +F, +F,) (5.10)
S M, = 5’2.(}?",, —F,,)-h(F, +F, +F, +F, )+hF, (5.11)

Y M, =F,

nc

-b(F

1

+pF, ,+h(F, +F, +F +F,)

u,r u,c ue

at+F, . )—eF, ~hF

p* u,p

(5.12)

where, h, is the height from the mass center to the ground, and %, is the height from the

mechanical linkage joint point to the mass center. The tool equipment and mechanical linkage
acting forces and momentum are external disturbance inputs to the system, and can be considered

to be functions of time. That is,
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F.,=n,,(t) (j=wv,n i=ep) (5.13)
and

M.=t(t) (i=ep). (5.14)

The tire-ground contact forces F,; (j=u,v,n i=1r,c) are determined by the tire model. The tire
model is the most complex part of the dynamic model and will be described late in this section.
5.2.2 Wheel-motor System Dynamics
The wheel driven system consists of pneumatic tired wheels, gearboxes, and DC motors. The

dynamic model of the motors can be described as

1,0, (t)+(B,+ K}QK” )&, (1) =£I§Lv,.(t)— T,:(t) (i=Lr) (5.15)

where, I, is the equivalent moment of inertia of the motor and the gearbox, B, is the viscous

friction coefficient of the motor and gearbox, K, and K, are the motor torque constant and the back

emf constant, respectively, R, is the armature resistance, and @,,;, v, and 7,,; are the motor

m,i’ m,i

angular speed, input applied armature voltage, and output payload torque. Here, (i=1, r), and
land r correspond to the left and right wheel, respectively. The wheel mechanical motion

dynamics is described a

leza)i(t) + Bwha)i(t) = Tm,i(t) - Fu,ir (l = l’ i‘) (516)

where, I, is the moment of inertia of the wheel, B,, is the viscous friction of the wheel], r is the

radius of the wheel, and ®, is the angular speed of the wheel. Combining (5.15) and (5.16), we

get the dynamic equations of the wheel-motor system as follows:

Itd)i(t)"' B;wi(t) = Ti(t) - Fu,,‘r (i= I, r) (517)
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and
IL=1,6+o0l, (5.18)
Bt =Bwh+G(Bm + KtRKb) (519)
’L',.=£I§iv,. (i=Lr) (5.20)

where, o is the ratio of the gearbox, and we refer to 7, and 7, as control system inputs.
T, and T, are variables calculated from the product of the applied armature voltage and a constant
coefficient.

5.2.3 Velocity Constraints

For wheeled mobile robots, kinematic equations provide special constraints on the velocity. In
the general case, the velocity constraints for a differential driven mobile robot can be describe by

the following equations (Zhang and Velinsky, 1994b):

u(t)=é[u,(t)+ur(t)] (5.21)
v(t)=g—[u,(t)—u,(t)]—i-vs(t) (5.22)
(1) =5 [u(1)=u(1)] (5.23)

where, u, and u, are the longitudinal speed of the wheel center of the left wheel and right wheel,

respectively, V' is the lateral speed of the center of the wheels, that is the lateral slip speed. The

longitudinal velocity of the center of the wheels can be further described as follows:

wy(1) = ra (1) —u (1) (5.24)
u, (1) =ro, (1) —u/(1) (5.25)

where, u; and u; are the longitudinal slip speed of the center of the left wheel and the right wheel,

respectively. It is worthwhile to point out that the kinematic equations of (5.21)-(5.25) are valid in
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general as long as the vehicle can be considered to be a rigid body. In the case of perfect wheel-

ground contact, thatis, u; =0, u, =0 and v’ =0 , we have

v(t)=bw(t)
u,(t)=rw,(t)

u(t)=rw.t).

Equations (5.26)-(5.28) are only valid when there is no slippage.
5.2.4 Prneumatic Tire Model

(5.26)
(5.27)

(5.28)

Dugoff's friction circle concept is used to describe the pneumatic tire forces for mobile robots

and common vehicle dynamics (Boyden and Velinsky, 1993, Guntur and Sankar, 1980). On the

basis of Dugoff's tire friction model, the longitudinal and lateral forces acting on the wheels and

the castor can be described as

Fj,i =ll'Lj,iFrl,i (j =u,v i= l: v, C)

where

i =M, (wv,0,u,0,1) (j=uv)
'ui,r =/‘Lj.r(u’v’ o, u, 0, Tr) (j=u,v)

Hije =M (v, @) (j=uv)

From (5.4)-(5.6) and (5.10)-(5.12) and (5.29), we have

F,, J 1 J 1 1 mg= 1Mo~ My
Fn,r = _:2- - h’g:uv,l —5 - hg:uv,r —hgluv,c hgnv,e - hp nv,p
Fy. hp,,—b hp,,—-b hp, t+c| €N+ BNy =BT = Py )
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5.2.5 Full Dynamic System Equations
From the above description, we can rewrite the dynamic system equations as follows. From

(5.1)-(5.3), (5.7)-(5.9), and (5.17), we have

1
j=—(F,+F, +F,+n, +1n,)+v®
u m( u,l uw,r u,c nu,e nu,p) v (5.34)
1
j=—(F,,+F, +F, _+mn,, + - Uw
v m( vl v, r v,¢ TIV,E TIV,P) u (5.35)
d) = —II_[%(El,I - El,r)—b(Fv,l +Fv,r)+CFv,c
—-en,.+pn,,+7,+7,] (5.36)
. 1
w,(t)=—[7,(1) - F, r— Baw,(t)]
1, (5.37)
a'),(t)=i[r,(t)—Fu,,r—B,a),(t)]
1, . (5.38)

The motion of the tracking point A in the world coordinates can be described by the following

equations:
X(t)=u(t)cos y(t)—[v(t)+(a—b)a(t)]sin y(t) (5.39)
(1) = u(t)siny(2)+ [W(1) + (a— b)oo(t) Jcos y(t) (5.40)
y(t) = w(t). (5.41)

Equations (5.34)-(5.41) are the full dynamic system equations of the differentially driven
wheeled mobile robot. The equations are also valid for any differentially driven wheeled ground
vehicles. The main difficulty in applying the above full dynamic model to control system design is
that the tire model is complex and nonlinear and it is impossible to get any closed form analytical
control system synthesis results. Herein, we deal with the dynamic control problem by using a
simplified dynamic model, which we refer as a perfect dynamic model, to synthesize the control

system while maintaining the same control performance as that based on the full dynamic model.
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5.3 Perfect Dynamic Model

We define the perfect dynamic model to be a wheeled mobile robot on which the perfect wheel-

ground contact condition always holds and there exists no external disturbance inputs, such as

equipment tool forces, mechanical linkage forces, etc. We also neglect the viscous friction force

and the resistance force of the castor. For the perfect dynamic model, the system dynamic

equations (5.34)-(5.38) become

1

U= _(‘Fu,l + ‘Fu,r)+ v
m
1

v=—(F,,+F, )-uw
m
)
IW[Z
. 1
wz(t) = T[Tl(t) - Fu,[r]

t

6=-[%(F,,~F,,)-b(F, +F,,)]

u,r

a),(t)=-11—[f,(t)—-F r]

u,r
t

and, the kinematic equations (5.26)-(5.28) are valid; that is

u(t) = -;-[wl (t)+w,(1)]
o(t) = gfw,(z) —o,(1)]

and
v(t)=bw(t).

From (5.45), (5.46), and (5.47), we have

ur

F, +F, =£(r, + 1,)———25’ u.
r r
From (5.45), (5.46), and (5.48), we obtain
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(5.45)

(5.46)

(5.47)

(5.48)

(5.49)
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59

F;:,I_Fu,r':l(,rl—rr)—ga)' (551)
r r
From (5.43) and (5.49), we have
F, +F, =m(bo+uw). (5.52)

Therefore, substituting (5.50) and (5.49) into (5.42), we have

mbr?

u(t)= P a)z(t)+@L[T,(t)+ T.(t)] (5.53)

u u

where

@, =mr’+2I.

Substituting (5.51) and (5.52) into (5.44), we obtain

2bmr?

a(t)=- u(t)a)(t)+é—d[1',(t)-—rr(t)] (5.54)

w
where

O, =1d*+2r* (I, +mb’).

Now, substituting (5.49) into the motion trajectory equations of (5.39)-(5.41), we obtain

X(t)=u(t)cos y(t)—am(t)sin y(t) (5.55)
Y(t)=u(t)sin y(t)+aw(t)cos y(t) (5.56)
y(t)= (). (5.57)

Denoting
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(1) =[5 (1) + 3, (1)] (5.58)

(1) =5 [5(0)= 7,(1)] (5.59)

and rewriting the equations (5.53)-(5.57) in a compact form, we have

 [u(t)cosy(t)-aw(t)siny(t)] 0 0

Xt | w(t)sinw(t)+ aw(t)cos w(t) 0 0

¥(1) o(t) 0 0 [z,

y(t)|= mbr? w(t) + ﬁ 0l (t)] (5.60)
1i(t) o, e, [°

| o(1) ] _2bmr ) 0 %

The equations (5.60) are the perfect dynamic model of the differentially driven wheeled mobile
robot. Although the perfect dynamic model is only a simplified dynamic model, it is rigorous in
mechanical principle under the perfect conditions. In other words, there is no vague physical
process model being used in the perfect dynamic model; the only physical principle used in the
model is Newton's second law and rigid body kinematics relations. Since the perfect dynamic
model is developed on the basis of certain perfect conditions, there are uncertainties, such as
unmodeled dynamics, external disturbance inputs, viscous resistance, parameter perturbations,
etc., that exist in the perfect dynamic model compared to the full dynamic model. In order to
develop a tracking control algorithm based on the perfect dynamic model while still guaranteeing

high tracking performance, the control algorithm must possess robustness to all the uncertainties.

5.4 Reduced-Order Dynamic Model with Uncertainties

To analyze the uncertainties, we consider the kinematic equations of (5.21)-(5.25). These

kinematic equations are valid for the system in any case. From (5.21) and (5.23), we have
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ul=u+£a) (5.61)
2
and
d
U =U——0. (5.62)
2
Then, from (5.24) and (5.25), we have
a),=£(u+%a)+uf) (5.63)
’
and
a)r=l(u—ia)+uf). (5.64)
r 2

Substituting equations (5.37) and (5.38) into equation (5.34) and considering the kinematic

equations (5.22) and (5.61)-(5.64), we obtain

mbr?

u(t)= )

coz(t)+gru(t)+6u (5.65)

u
where

6. = o (MO ()47 [1,, (1) + 1, (1)4 71, (1]
u | (5.66)

=B, [2u(t)+uw/(t)+uw ()]~ 1 [ (t)+u (t)]}

Then, substituting (5.37), (5.38), and (5.35) into (5.36) and considering the kinematic equations
(5.22) and (5.61)-(5.64), we have

2
a.)(t)z_mer

u(t)w(t)+—~2é-(-i—'tw(t)+5w (5.67)

(1] @

where
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8, = @L{—Btdza)(t)— Bd[u(t)—u(t)] - Ld[uf(t)—u(t)] — 2mbr*v'(t)

» . (5.68)
+2r2[(b—e)nv,e(t)+(a+b)nm(t)+(c+b)nv,p(t)+ T,(t)+ Tp(t)]}

Considering kinematic equations (5.22) and (5.23), the motion trajectory of the tracking point A in

the world coordinates can be described as

X(t) = u(t)cos w(t)— aw(t)sin y(t)—v*(t)sin y(t) (5.69)
¥(t) = u(t)sin y(t)+aw(t)cos y(t)+v'(t)cos w(t) (5.70)

and
v(t)=a(t) . (5.71)

Now, we denote
O, =—-v(t)siny(t)
0, =V'(t)cosy(t)

and the system equations (5.65), (5.67), and (5.69)-(5.71) can be rewritten in a vector form

corresponding to the perfect dynamic model equations (5.60) as

o [u(t)cos y(t)—awm(t)sinw(t)] T 0 0 ] -
x(t) u(t)siny(t)+aw(t)cos y(t) 0 0 o,
) o(t) 0 0 [z (1) 0,
yi(t) | = mbr® | 2r ‘ ]+ 0 (5.72)
(1) o, V1 ;O
i 2
| a(t) _2bmr () 0 ‘%d |8,

The system equations (5.72) are the exact dynamic equations of the mobile robot provided that
0,0,

and ,, can be exactly measured. It is clear that §,,6,,6

u’

0 and §,, are uncertainties

consisting of disturbances due to external inputs, unmodeled dynamics, viscous resistance, and

slippage. Compared to equations (5.60), it is evident that the system equations (5.72) are the
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perfect dynamic model (5.60) plus a vector of uncertainties. This means that the tracking control
system of the mobile robot can be designed based on the perfect dynamic model as long as the
control algorithm is robust to the uncertainties. We refer to (5.72) as the uncertainty dynamic

model of the system.

5.5 Position Coordinate Transformation

In our previous work based on kinematic modeling in Chapter 2 and 3, we have pointed out
that there exists an inherent heading direction error as long as the tracking point is not on the center
of the baseline for this type of mobile robot. In this report we mainly consider the position
tracking control problem with the tracking point not on the baseline. Therefore, we first introduce

a position coordinate transformation to the reduced order dynamic system. Let us denote

X
q,= (5.73)
y
and
X
q,=| .| (5.74)
Yy
Then, we have
4,=q, (5.75)
and
4, = [ } (5.76)
y
From (5.69) and (5.70), we have
H _ [C?S v W}[ y } (5.77)
y siny  cosy |law+v
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Now, taking the time derivative of both sides of equation (5.77), we have

x| |cosy
y B siny

Substituting equations (5.65) and (5.67) into (5.78) gives

X| [cosy —siny
] Lsiny  cosy | Ld’+2r°[1, +mb(b=a)] . 2rad

mr’(b—a)-2al, o + 2r

(&)

u

—siny | ii-aw’ -vo
cosY || ad+uw+v° |

a 7, + 6!‘ -V

u

From (5.77), we can solve

]

[0]

+ 8 T, +ad, +Vv

[

u(y,q,)=xcosy+ysiny

and

a)(l//,qz,vs)=i(ycosy/——)ésin v-v').
a

Rearranging (79), we obtain

m =D(y)[s(¥,4,,6,)+ T+6(¥,q,,6,)]

where,

E

cosy —siny | e

D(y)= “
(v) [sinl;r cosw} 0 2rad

2 — —
. mr (b ;) 2al, (Y0, V)
SOV 92 00) =\ 1 42 L 22 [T 4+ mib(b—a)]
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u(y, q,)o(y,q,,v*)

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)
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e . )
—[6,(¥,4,,0,)—V'0(¥,q, V)]

g(l//’ QZ’ 5!)1) = Zr @ (5‘85)
2-[aé,(y,q, 6,)+V']
2rad
o(¥,q,,0,)=0(y,q, V") (5.86)
T=[fl‘} (5.87)
T(D

and, &, represents the unmodeled uncertainty vector. Then, through the coordinate transformation

(5.73) and (5.74), the system equations (5.72) become

9,=q; (5.88)
q2 =D(l//)[S(l//,q2, 5m)+T+g(l//’q2’ 51}1)] (589)

and the orientation equation is
V=0(y,q,,9,). (5.90)

From the definition of g, and ¢,, equations (5.88) and (5.89) are the system equations describing
the position of the mobile robot.

It is easy to verify that through the coordinate transformation (5.73) and (5.74) the perfect

dynamic model equations (5.60) can be transformed into

9:=4; (5.91)
G, =D(W)[sy(y,q,)+ 7] (5.92)
and
V=00,(V¥,q,) (5.93)
where,
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mri(b-a)- 2al,

o wg('//:%)
SO(W)qZ)—__ Itd2+2r2[lw+mb(b_a)] (5.94)
5 u(W,q,)0,(Y,q,)
rad
and
1,. ..
a)o(w,qz):;(ycosw—xsml//). (5.95)

5.6 Matching Condition

It is important to consider a special feature of the mobile robot dynamic model structure. We
can see in the following that all the uncertainties in the uncertainty dynamic model equations enter
the system through the input channel. This is called a 'matching condition'. It is well known that
if the matching condition is hold, a robust control algorithm can then be developed for the tracking
control. It is also well known that if the variable structure control method is applied to the control
system design, the sliding mode of the system is invariant under the influence of the uncertainties
which enter the system through input channel.

We rewrite the uncertainty dynamic system model, equations (5.88) and (5.89), in a compact

form as
4= f(qv.6,)+&(qv.6,)+B(y)T (5.96)
where
B(y)= { Onc ] (5.97)
D(y)
flgv.08,)= { 0412 ]+ B(y)s(¥,q,,6,,) (5.98)
2X2
and
&(q. v, 6,,)=B(y)s(v,q,,6,). (5.99)

In equations (5.96), &(q,w,6

n

) 1is the unmodeled uncertainty term, and the term
f(g, v, 6, ) consists of unmodeled uncertainty as well. Furthermore, there may be parameter

uncertainty in the term f(q, y, 6,,) and the input matrix B(y).
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Theorem 5.6.1 (Matching Condition): The uncertainty dynamic model (5.96) satisfies the

matching condition, that is,

f(av,8,)=f,(qw)+B(W¥)f(qv.8,) (5.100)
B(y,8,)=B,(y)+By(y)B(vy) (5.101)
E(q,v,8,)=B,(w)E(q,v.6,) (5.102)

where, ‘
Bo(t//)=[ 0 ] (5.103)
Dy( )

and f(q, v, 6,), B(q, v.8,) and &g v, 0,,) are vector and matrix with appropriate dimensions.

Proof: Let us denote
B(y)=B,(y)+AB(y) (5.104)
f(q’ W’ 5m)=fo(Q’ W)+Af(9: l//’ 6}71) (5105)

where, B,(y)and f,(g, ) are known functions, and AB(y)and Af(q, y,,,) are uncertainty

terms. To check the matching condition of equation (5.100)-(5.102), we need only to prove that

AB(y)=B,(y)B(y) (5.106)
Af(q,v,8,)=By(¥)f(q v.5,) (5.107)
E(q,v,8,)=B(w)E(q,v,5,) (5.108)

where, B(v), f(q, v, 6, ), and 5 (g, v, 6,) are an appropriate matrix and vector with uncertainty,

respectively. The matching conditions (5.106)-(5.108) can be proved directly from the definition
in (5.83)-(5.86) and (5.97)-(5.99). It can be seen from (5.83) that the matrix D(y) is

nonsingular. Then, from (5.83) and (5.97), we have
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0
AB(W:[AD(W)]

0
= D (w)AD
[Do(l//)j} L, (W)AD(y ). (5.109)

= B,(¥)D," (y)AD(y)
=:B,(y)B(v)

The condition (5.106) is then proven. Substituting (5.84) and (5.106) into (5.98), we have

Af(q,v,6,)= [[CIOZ}FB(W)S(W, 4y 5,,1)]—[[6102}30(1//)80(1//: 4,)]
= [B,(v)+ AB(Y)I[5,( ¥ 9) + AS(Y, 2, 6,)] = By(W)s,(V,.0,)
= B,(W)As(V,q,, 8,)+ AB(W)[5,(W, q,) + AS(Y, q,, S, )] . (5.110)
=B,(W){ As(W,q,,8,,)+ B(W)[s,(¥,q,) + As(y,q,,8,,)]}
=:B,(y)f(q ¥, 8,)

Thus, the condition (5.107) is proven. Finally, substituting (5.85) and (5.106) into (5.99), we

have
é(q’ W’ 5»1) = [BO(W)_*_ AB(W)]Q(W’ QZ’ 5m)

=By(y)[I+B(yw)]g(v,4,.6,) , (5.111)
= B 0( l/[) é(q’ t//’ 5m )

and the condition (5.108) is proven. Therefore, the matching conditions (5.100)-(5.102) hold for
the system (5.96). The matching condition is a general basis for the robust tracking control
algorithm.

In (5.100)-(5.102) the uncertainty influence includes the unmodeled dynamics, external
disturbances, and model parameter perturbations. It is clear that (5.100)-(5.102) implies that all
the uncertainties enter the dynamic system through the control input channel. Theorem 5.6.1

provides a fundamental basis for robust dynamic tracking control algorithms.
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5.7 Conclusion

Three types of dynamic models for a mobile robot with two independent driven wheels are
developed in this chapter. The full dynamic model is a detailed model with a pneumatic tire and
ground friction model. A perfect dynamic model is developed based on the perfect tire and ground
contact condition. A reduced order dynamic model with uncertainties is also developed. It is
found that the uncertainty dynamic model is the perfect dynamic model plus an uncertainty vector
term. The basic idea in this chapter is that though a full dynamic model is too complex for any
control algorithm design, the influence of the uncertainties to the perfect dynamic model (i.e.,
unmodeled dynamics, external disturbance inputs, viscous friction influences, and parameters
perturbations) can be analyzed. It is proven that the matching condition is hold for the mobile
robot uncertainty dynamic model. The matching condition provides a fundamental basis for the

robust control algorithm design for the dynamic tracking control algorithm of the mobile robot.
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CHAPTER 6

DYNAMIC MODEL BASED TRACKING CONTROL

6.1 Introduction

Differentially driven wheeled mobile robots possess both the advantages of higher tracking
ability and simple wheel configuration. Tracking performance is vital for mobile robots which are
developed to perform certain industry operations, such as highway crack sealing. Tracking control
algorithms for wheeled mobile robots have been extensively studied in recent years. Most of the
tracking control algorithms are developed based on kinematic models with perfect wheel-ground
contact assumption. In this chapter, we deal with the tracking control problem of differentially
driven wheeled mobile robots based on dynamic models.

The configuration of a mobile robot moving along a planar surface is dictated by three posture
variables, the position variables and the heading direction. The purpose of tracking control is to
cause the mobile robot to follow a desired reference path in position and orientation. Tracking
control algorithms for differentially driven wheeled mobile robots are developed by many authors,
for example, Kanayama, Nilipour, and Lelm (1988), Kanayama, Kimura, Miyazaki, and Noguchi
(1990), Nelson (1989), Badreddin (1992), and Lee and Williams (1993). The kinematic equations
of the mobile robots include nonholonomic constraints on the time derivative of the posture
variables. Many authors, such as Walsh, et al., (1994), Campion, Bastin, and d'Andrea-Novel
(1993), d'Andrea-Novel, Bastin, and Campion (1991, 1992), and Pomet, et al. (1992) analyzed
the nonholonomic features of the mobile robot control problem. A basic feature of these
algorithms is that they are developed on the basis of the mobile robot kinematics. A general
assumption among these algorithms is that there is no slippage and the wheel ground contact is
perfect. In Chapter 2, we studied the influence of the tracking point on the tracking performance of
differentially driven wheeled mobile robots. An exponential position tracking control algorithm

and heading direction equation are developed in Chapter 3. On the basis of the kinematic model, a
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robust tracking control algorithm considering slippage and parameter uncertainties is also
developed in Chapter 4. It was believed that the kinematics based control algorithm would only be
valid for very low motion speed and very low payloads. Because the real control input is the input
voltage of the motors, the kinematics based control algorithm must be matched with a motor
control loop algorithm. An inadequately synthesized motor control loop will degrade tracking
control performance, while the synthesis of the motor control loop is strongly related to both motor
dynamics and vehicle dynamics. Therefore, a dynamic model based control algorithm is necessary
for accurate path tracking control.

Vehicle dynamics have been considered in some control algorithms for conventionally steered
mobile robots. Hemami, Mehrabi, and Cheng (1992) used a simplified linear dynamic model in
the synthesis of a tracking control algorithm for a three-wheeled cart with front steeredg wheel.
Nelson and Cox (1989) considered the motor dynamics in a control algorithm while still using a
kinematics model in the control law design. A simplified dynamic model was used by Hemami,
Mehrabi and Cheng (1990) to simulate the kinematics based control algorithm for a conventionally
steered mobile robot. To control a high speed autonomous vehicle, Shin and Singh previewed the
path dynamics and used an acceleration limit for speed planning. A simplified dynamic model of
differentially driven wheeled mobile robot was developed by Hamdy and Badreddin (1992). Only
longitudinal slippage was considered in their model. Boyden and Velinsky (1993) developed
dynamic models for both differentially driven and conventionally steered wheeled mobile robots
and used Dugoff’s tire friction model to accurately account for the wheel ground interface. To the
authors knowledge, there has been no control algorithm developed on the basis of a full dynamic
model of a wheeled mobile robot. Due to the nonholonomic constraints and the complexity of
modeling the interaction between the ground and the vehicle, a full dynamic model based control
algorithm was previously considered not to be practical. In this paper, we take the full dynamic
model as a basis, and an exponential tracking control algorithm is then developed based on the

perfect dynamic model, and robustness to uncertainties is guaranteed. In this way, the robust
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tracking control algorithm gives high tracking control performance when unmodeled dynamics and

external disturbances exist.

6.2 Tracking Error Equations

For the tracking control problem, we desire the mobile robot to follow a reference trajectory

q'(t)=[x"(t), y'(t)]". Ttis convenient to describe the tracking control problem in the tracking

error space. Let us form the tracking error vector as

e,(t)=q,(t)-ql(t) 6.1)
e)(t)=q,(t)—qi(t)=q,(t) - i (t) (6.2)
and
e,(t)
e(t) = Lz(t)}' (6.3)

It can be seen from (5.83) that the matrix D(y) is nonsingular. Let us set

(1) = Dy (W(E)[ V(1) +GL(1) ] = 5,(W(t), (1)) (6.4)

where 3 R’ is the new control input vector. The position tracking error equations for the perfect

dynamic model equations (5.91)-(5.93) are

é(t) = Ae(t)+ Bu(t) (6.5)
where
A= 01 6.6
1o o (6.6)
and
B= 0 6.7
=, (6.7)
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It is clear that the feedback control law (6.4) linearizes the position tracking error equations of the

perfect dynamic model. For the dynamic model (5.88)-(5.90), the tracking error equations become

é(t) = Ae(t)+ B[v(t)+ x(V¥.q,,0,)] (6.8)
where

Z( l//’ qZ’ 6171) = D( l//)[AS( ‘//’ qZ’ 6}11) + g( W’ C.ZZ’ 6m)] (6‘9)

is the uncertainty term. It is reasonable to suppose that the uncertainty term is bounded; that is

(v, q.. 6, )| =|D(W)[As(v,q,,8,) + (W45, 8,) ]| < %., (6.10)

where, 0 <y, <o is a given number.
The purpose of the tracking control problem is then to design a control algorithm for v(¢) to
guarantee tracking error convergence to zero; that is, e(t) — 0, t — . For the perfect dynamic

system (6.5), we have the following lemma.

Lemma 6.2.1: There exist matrices K, € R*? and K, € R*” and the control law
v(t)=—-K,e,(t)—- K,e,(t) (6.11)
such that the tracking error of the perfect dynamic model described by (6.5) exponentially

converges to zero, or equivalently, for a given symmetric positive definite matrix Q > 0, there

exists a unique symmetric positive definite matrix P> 0 to be the solution of the Lyapunov

equation

ZP+PZ+Q=0 (6.12)

where A=A-BK,and K=[K, K,].
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Proof: Considering that (A, B) is a controllable pair, then there exist matrices K, and K, such
that the closed-loop system matrix A = A— BK is stable; that is, ReA(A)< 0. Therefore, the

tracking error exponentially converges to zero.

6.3 Robust Tracking Control Algorithm

The main difficulty in the mobile robot dynamic model based control algorithm development
and application is the influence of uncertainty. This is because real-time operation limits the
complexity of the dynamic model, while it is impossible to accurately describe the motion with low
order and simple equations. As shown in the previous section, low order dynamic system
equations include uncertainty terms. Robustness is the most important property for the dynamic
model based control algorithm. In this section, we will produce the robust tracking control
algorithm based on the Lyapunov method.

From Lemma 4.1, the tracking error of the perfect dynamic system (6.5) exponentially
converges to zero with the control (6.11). In the dynamic system equation (6.8), there exists an

uncertainty term, and we can see that the uncertainty dynamic system (6.8) is equal to the perfect

dynamic system (6.5) plus an uncertainty term y(V, ¢,, 6

m

) which enters the system through the

input channel. We set the control for the uncertainty system (6.8) to be

V(t) = 0,(t)+ Av(t) (6.13)
where

v, =—K,e,—K,e,, (6.14)

and Av represent the robust control term. With control (6.13), the uncertainty dynamic system

equation (6.08) becomes

é=Ae+B(Av+Y) (6.15)
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We take the robust control term to be

B Pe(t) .
B Pe(z)] 0
av(t)=1 " [FPet]*" (| B Pe(t)]| = 0)

0 (|B" Pe(t)| = 0)

(6.16)

which leads to the following theorem.

Theorem 6.3.1: The tracking error of the uncertainty dynamic system (6.08) exponentially

converges to zero under the control (6.13) with v,(t) and Av(t) determined by (6.14) and (6.16),

respectively.

Proof: From Lemma 6.2.1, the matrices K, and K, can be selected to make the system matrix

A in (6.15) stable, and for a given symmetric positive definite matrix Q > 0, there exists a unique

symmetric positive definite matrix P > 0 that is the solution of the Lyapunov equation
AP+PA+Q=0.

We take the Lyapunov function to be

V=¢Pe

and then the derivative of the function V along the trajectory of the error equation (6.15) is

expressed as

V =¢"(t)Pe(t)+ e (t)Pé(t)
=—e’ (t)Qe(t)+ 2e" (t)PB[Av(t)+ x(1)]
<—e’(1)Qe(t)+ 2¢" PBA(t)+ 2| B" Pe(t)|- |x(1)].
B'Pe,(1)

<—e’ 2¢T PB[ A e
e (t)Qe(t)+ 2e' PB[ v(t)+”BTPep m‘ Xl
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From (6.16), we have

V <—e"(1)Qe(t).

Because Q and P are symmetric positive definite matricies and the Lyapunov function is a positive

definite quadratic form, therefore, the tracking error exponentially converges to zero.

Combining (6.4) and (6.13), the robust control algorithm for the uncertainty dynamic system is
of the form

=D (w)[§ — Ke+ Av]-5,(¥,q,). (6.17)

It is worth pointing out that the control algorithm (6.17) is a position tracking control
algorithm. The heading direction of the mobile robot is determined by the reference path when the

position tracking error becomes zero, as indicated in Chapter 2.

6.4 Numerical Simulation

Numerical simulation is used to illustrate the performance of the robust control algorithm
(6.17). In the simulation, the full dynamic model (5.34)-(5.41) is used with the Dugoff's tire
friction model to calculate the vehicle dynamics.

To illustrate the tracking control performance of the robust control algorithm, a non-robust
control algorithm, which is produced by deleting the robust term Av in (6.17), is also used in the
simulations. The non-robust control algorithm is really the perfect dynamic system control
algorithm through combining (6.4) and (6.11). A circle reference path with exact initial position is

used in the simulation. The parameters in the feedback matrices of the robust control algorithm

(6.17) and corresponding non-robust control algorithm are set to be K, =diag[0.96 0.96] and

K, = diag[0.16 0.16].
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Fig. 6.1 and Fig. 6.2 show the influence of the unmodeled dynamics on the tracking control
performance of the non-robust and robust control algorithms, respectively. In the path and
orientation graph, the dashed line indicates the reference path and the solid line indicates the
simulated vehicle motion trajectory. In the longitudinal slip graph, the dashed and solid line
correspond to the left and right wheel's slip, respectively. The longitudinal and lateral slip are
calculated from the Equations (5.21)-(5.25). The oscillation in the longitudinal and lateral slip
curves is due to the nonlinear and discontinuous features of Dugoff's friction model.

Because the non-robust algorithm is designed only on the basis of the perfect dynamic model,

and the full dynamic model is used in the simulation, therefore, there exist unmodeled dynamics,
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Fig. 6.1 Simulation Results of the Non-Robust Control Algorithm. The Vehicle
Dynamics Is Calculated By the Full Dynamic Model and Dugoff's Tire Friction Model
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Fig. 6.2 Simulation Results of Robust Control Algorithm. The Vehicle Dynamics is
Calculated by the Full Dynamic Model and Dugoff's Tire Friction Model

and the non-robust algorithm results in large tracking errors. It is also found that to further
increase the feedback coefficients will degrade the tracking performance of the algorithm.

It can be seen from Fig. 6.2 that the robust control algorithm gives very good tracking results.
The simulated vehicle trajectory overlaps the reference path in the graph. The oscillation in the slip
curves of the robust algorithm is more serious than that on the non-robust algorithm. This is
partially due to the stronger discontinuous features of Dugoff's tire model under stronger control
action and partially due to the 'chattering’ phenomenon of the robust control algorithm. It is very
interesting to note that the average values of the longitudinal and the lateral slip of the robust

control algorithm are smaller then that of the non-robust algorithm.
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Fig. 6.3 provides simulation results of the tracking performance of the control algorithms
under the condition of external disturbance. A tool-equipment action force, 7, () =—-200N, is
applied to the system. Fig. 6.3(a) is the simulation results of the non-robust algorithm, and Fig.
6.3(b) is the results of the robust control algorithm. It can be seen that the non-robust control
algorithm cannot follow the reference path at all in this case, while the tracking trajectory of the

robust control algorithm overlaps the reference path in the graph.
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Fig. 6.3 Performance of the Robust Control Algorithm Under the Condition of External

Disturbance. The Disturbance Is Set to Be a Tool-Equipment Acting Force

M,..(t)=-200N Which Is Applied for 1> 10 .
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It is evident that the robust control algorithm gives very good tracking ability to both
unmodeled dynamics and external disturbances.

The robustness of the control algorithm to external disturbance, such as the tool-equipment
acting force, is very important for an industrial mobile robot. It is worth tnoting that the
robustness of the robust control algorithm to the external disturbance is not unlimited. It is clear
that, for example, if the magnitude of the tool force in the direction opposite the motion is greater
than that of the maximum tire tractive force, then the vehicle will be completely uncontrollable
physically; therefore, no control algorithm can work in this situation.

It is verified in the simulation that there exists a maximum external disturbance force beyond
which the vehicle is uncontrollable. In practical application, a mobile robot must possess enough

self weight and driven power to guarantee the robustness of the control algorithm.

6.5 Conclusion

Although a dynamic model based tracking control algorithm is vital for accurate tracking
control of wheeled mobile robots, it is impossible to use a full dynamic model for the control
system design because of the computational complexity. In this chapter, a systematic method is
developed for the dynamic model based tracking control algorithm for differentially driven wheeled
mobile robots. This method ensures the application of the nonlinear robust control system design
method to the dynamic model based tracking control problem of the mobile robots. On the basis of
a full dynamic model, a reduced order dynamic model is developed and the influence of uncertainty
is analyzed. This leads to a tracking control algorithm which is exponentially convergent and
robust to both unmodeled dynamics and external disturbances while maintaining calculation
simplicity. Numerical simulation shows the tracking control ability with the presence of

uncertainties.
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CHAPTER 7

VARIABLE STRUCTURE DYNAMIC TRACKING
CONTROL

7.1 Introduction

The main difficulty in the mobile robot's dynamic model based control algorithm development
and application is the influence of uncertainty. This is because real-time operation limits the
complexity of the dynamic model, while it is impossible to accurately describe the motion with low
order and simple equations. As shown in the previous section, low order dynamic system
equations include multiple uncertainty terms. Robustness is the most important property for the
dynamic model based control algorithm. A variable structure control system has the feature of
sliding mode invariance to both system perturbations and external disturbances (Utkin 1978,
1992), and therefore, it is a suitable design method for the dynamic model based tracking control
of mobile robots. In this section, we first review the main aspects of variable structure control,
and then produce a variable structure control algorithm for the mobile robot's tracking control

problem.

7.2 Variable Structure System Method
The main principle of the Variable Structure System method is to design a control law to make

the system react to the switching manifold

S(e)=Ce=[C, CZ][e’}o. (7.1)

2
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When the system reachs the switching manifold, it will remain on the switching manifold. The
system is then said to be in a "sliding mode". The tracking control performance is then determined
by the sliding mode, that is

Ce,+Ce, =0. (7.2)
If C, is nonsingular, then we have

é,+C;'Ce,=0. (7.3)

Therefore, the system position tracking dynamic response on the switching manifold is determined
by (7.3).

One of the reaching conditions can be described by

§TS<0. (7.4)

It can be seen that the switching condition (7.4) will force the system to reach the switching
manifold (7.1).

One of the Variable Structure Control types usually takes the form

V=10, + AV (7.5)

where, v, is the equivalent sliding model control, and Av is an added term to satisfy the reaching
conditions.

If the sliding mode of the Variable Structure Control system is not affected by system
perturbations and external disturbances, it is said that the sliding mode is invariant to perturbations
and disturbances.

It is well known that if the matching conditions (5.100)-(5.102) are satisfied, that is, all the
system perturbations and external disturbances enter the system through the input channel, then,

the sliding mode of the variable structure control system is invariant.
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In Theorem 5.6.1 we have proven that all the uncertainties including the unmodeled dynamics,
parameters perturbations, and external disturbances, in the uncertainty dynamic model of the
mobile robot with two differently driven wheels, enter the system through the inputs channel; that
is, the matching condition is hold. Therefore, the sliding mode of the system is invariant to all of

these uncertainties.

7.3 Variable Structure Tracking Control

We first rewrite the perfect dynamic model (6.5) and the uncertainty dynamic model (6.8) as

é(t) = Ae(t)+ Bu(t) (6.5)

where

and

Additionally, we have
é(t)=Ae(t)+ B[ v(t)+ x(V¥,q,,9,)] (6.8)

where

X(V,95,6,)=D(Y)[As(Y,q,, 8, )+ ¢(¥.4,,6,)]
is the uncertainty term, and we suppose that the uncertainty term is bounded as follows
||Z( W’ qZ’ 6nz )" = ”D( I//)[AS( l//’ Q2’ 5111) + g( W’ QZ’ 5m)]|| S ;{m

where, 0 < y,, <o is a given number.
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Theorem 7.4.1:. Suppose that the switching manifold (7.1) is determined and C, is

nonsingular. Then the sliding modes of the perfect dynamic system (6.5) and the uncertainty
dynamic system (6.8) are equivalent.
Proof: Taking the time derivative of (7.1) along the trajectory of the perfect dynamic model
(6.5), we have
S=CAe+CBv=0 (7.6)
which results in

Ce,+C,0=0. 7.7
Since C, is nonsingular, we can solve the equivalent control from (7.7) as follows:

v,, =—C;'Ce,. (7.8)

Substituting (7.7) into (6.5), the sliding mode of the perfect dynamic system (6.5) is then

described as

o 0 I 79
=y _cac, 1) (7.9)

Similarly, taking the time derivative of (7.1) along the trajectory of the uncertainty dynamic model

(6.8), we get the equivalent control as

v,,=-C,'Ce,— 1. (7.10)

Substituting (7.10) into (6.8), we can see that the sliding mode of the uncertainty dynamic system
(6.8) is also described by equations (7.9). Therefore, the sliding modes of the two systems are

equivalent.
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Theorem 7.4.1 means that the sliding mode of the mobile robot's dynamic system equations is
invariant to unmodeled system dynamics and external disturbances. Since the system dynamic
response is determined by the sliding mode on the switching manifold, therefore, the uncertainty
dynamic system (6.8) and the perfect dynamic system (6.5) have the same tracking performance on
the same switching manifold.

We set matrix C in the switching manifold (7.1) to be

C=[C, G]=[A 1] (7.11)

where A =diag{A, A,], (A,>0, 2,>0). Then the sliding mode for both the perfect dynamic

system and the uncertainty dynamic system is expressed as

é,(1) =—Ae,(t). (7.12)

This means that the tracking error exponentially converges to zero. Next, we need to determine the
control law for the uncertainty system (6.8) to guarantee the reaching condition (7.4). Taking the

time derivative of the reaching condition (7.4) along the trajectory of (7.1), we have

S7S =8TCAe+S"CB(v+ )

=S"CAe+ST(v+y) . (7.13)
=8"(CAe+v+y)
Now we set
v=—CAe— AV 714
=-—Ae, - AV 7.
and
S Sl 0)
Av=1|s|*" (7.15)
0 (IS =0)
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Substituting (7.14) and (7.15) into (7.13), we see that, when ||S|| # 0 then

STS=S"(—Av+y)

=~|Slx,, +S"x
<-{ISllx.. + ISl
=Sl x.. — )
<0

That is, the reaching condition (7.4) is satisfied. Because the tracking error is controlled by (7.12)
on the switching surface, then the tracking control exponentially converges to zero when the

sliding mode is reached. Therefore, the following theorem applies.

Theorem 7.4.2: The control law (7.14) with Av determined by (7.15) is a variable structure
control of the uncertainty dynamic system (6.8) for the switching manifold (7.11). Therefore, the
tracking error of the uncertainty dynamic system (6.8) exponentially converges to zero under the
control (7.14).

Now, set

C,=1and C,=A .

The sliding mode equation (7.9) becomes

é =e, (7.16)
¢, =—Ae, (7.17)

whereas on the switch manifold (7.11) we have

e, =—Ae,

which leads to the following expression:
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m:{—f —ﬂm (7.18)

Therefore, in the sliding mode the whole system is exponentially convergent.
One important feature of variable structure control is the chattering phenomena, which means
that there exists a high frequency switching process in the control inputs. One common method to

overcome the chattering is to modify (7.15) into

S (S]> )
Av= [[gSll (7.19)

where, 0< €< 1. We will call (7.19) a modified variable structure control.
Since in the TMR motor control system the input voltage is applied to the D. C. motors via a
Pulse Width Modulation (PWM) circuit, chattering in the control inputs has a very weak direct

influence.

7.4 Numerical Simulation

The tracking control performance of the variable structure dynamic tracking control algorithm is
simulated based on the dynamic model described in Chapter 5. In the simulation, the dynamics of
the wheeled mobile robot is calculated by the full dynamic model described by (5.34)-(5.41) with
Dugoff's tire model. Therefore, unmodeled uncertainties are included in all simulatiions. We refer
to the control (7.14) as a variable structure control if the nonlinear term Av is determined by
(7.15), or a modified variable structure control if the nonlinear term Av is determined by (7.19).

The C matrix in the switching manifold is determined by the structure of (7.11) with
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[ 0 c14}

The limit in the modified nonlinear term (7.19) is selected to be €= 0.1 in the simulation. The
dynamic model is integrated by means of a fourth order Runge-Kutta method. The simulation code
is written with in Matlab on a Macintosh Q80 computer.

Fig. 7.1 is the simulation results of the variable structure control algorithms with a straight line
reference path. There is initial position error, while the initial orientation is exact.

Fig. 7.2 is the simulation results of the modified variable structure control algorithm with the

same reference path and initial condition as in Fig. 7.1. It is worth noting that the oscillations in

the control input curves in Fig. 7.1 and Fig. 7.2 are not merely caused by the chattering of the
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Fig. 7.1 Variable Structure Control with Straight Line Reference Path
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Fig. 7.2 Modified Variable Structure Control with Straight Line Reference Path

variable structure control. Because Dugoff's tire model in the full dynamic model is highly
sensitivity to wheel slippage, the oscillation in the control inputs is necessary to overcome the

wheel slippage. For the wheel slippage calculated by the full dynamic model one can reference the

simulation results in Chapter 6.

It is clear that the chattering influence in the control inputs is greatly reduced by the modified

variable structure control algorithm, and thus it will be used in all of the following simulation.

The robustness of the variable structure control to unmodeled system dynamics is proved by
the simulation results in Fig. 7.1, Fig. 7.2, and all the simulation results in following part of this

section. This is because the systems dynamics are calculated by the full dynamic model and it

includes all the unmodeled uncertainties.

Copyright 2011, AHMCT Research Center, UC Davis

89



Fig. 7.3 is the simulation results of the modified variable structure control algorithm with a
sinusoidal reference path and exact initial conditions.

Fig. 7.4 shows the tracking control performance of the modified variable structure control
algorithm with a circular reference path. In addition to the unmodeled dynamics, an external
disturbance tool force is applied to the system at t=10.

Fig. 7.5 shows the tracking control performance of the modified variable structure control
algorithm with a sinusoidal slope reference path and non zero initial orientation error. The

uncertainty influence includes the unmodeled system dynamics and the external tool force.
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In Fig. 7.6, the reference path and the initial conditions are the same as in Fig. 5 with the
exception that a 20% error perturbation of system parameters is included in addition to the
uncertainty influence of the unmodeled dynamics and external disturbances. The variable structure

dynamic tracking control algorithm has high tracking control ability and possesses good robustness

to all the system uncertainties.

7.5 Conclusion

On the basis of the variable structure control method, a variable structure dynamic tracking

control algorithm for mobile robots with two independent driven wheels is developed. The
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93
variable structure tracking control algorithm forces the dynamic system to reach a switching
surface. The response of the dynamic system on the switching surface is called a sliding mode. In
the sliding mode, the tracking error of the dynamic system exponentially converges to zero. Since
we have proved in Chapter 5 that the uncertainties in the mobile robot dynamics all enter the system
through the input channels (that is, the matching condition is hold for the mobile robot dynamics),
then the sliding mode of the variable tracking control algorithm for the mobile robots is invariant to
all the uncertainties. Simulation results show that the variable structure dynamic tracking control

algorithm has high tracking control ability and possesses good robustness to all the system

uncertainties.
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CHAPTER 8
PATH PLANNING IN HIGHWAY MAINTENANCE

8.1 Introduction

In the previous chapters, we have developed the kinematic model, dynamic model, and
tracking control algorithms for mobile robots with two independent driven wheels. The purpose of
our research is for tracking control of the Tethered Mobile Robot in highway maintenance
operations. In this chapter, we will discuss the application of the developed modeling and control

algorithms to highway maintenance.

8.2 Reference Trajectory and Reference Path

The tracking control algorithms developed in previous chapters are based on the trajectory
tracking control problem, and we do not distinguish between reference path and reference
trajectory. In the highway maintenance application, however, the mobile robot is typically required
to accurately follow a reference path not a reference trajectory. For example, the reference path
could be a crack in the pavement, which is independent of time. To use the tracking control
algorithms described earlier to path following control, we must establish the relation between the
reference path and the reference trajectory.

The reference path is considered to be a geographical curve on a planar surface. However, for
a mobile robot to follow a reference path, the robot must move along the reference path with a
certain speed, and in this way the reference path is related to time. Therefore, we consider the
reference path to be a reference trajectory when the motion speed of the vehicle is determined.
Thus, we do not strictly distinguish between the reference path and reference trajectory.

Due to the restriction that the mobile robot is on a planar surface, the reference path is a curve

in the two dimensional plane represented as

S={f(xy)=01 f: R >R} (8.1)
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If we use the curve length s , which is measured from the starting point on the curve to a point

(x,y) on the curve, to be the parameter shown in Fig. 8.1, a reference path can be written as

(s20). (8.2)

{x=x(s)
y=x(s)

The reference orientation is defined to be the angle between the x direction and the tangential

direction of the reference path; that is

w(s) = atan 2L (8.3)
x,(s)

where

ny=§%Q
and

_ay(s)
>uw—75<
X
s=0
0 y

Fig. 8.1 Parameterized Reference Path
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Since the parameter s is the along path distance, s is a function of time once the speed of the vehicle

is determined; that is

s=s(t) (8.4)
and
$(1)= dt

is the along path motion speed of the vehicle. Substituting (8.4) into (8.2) we have

{X(t)= x(s()) 8.5)

y(t)=y(s(t))

Therefore, (8.5) becomes a reference trajectory. The reference orientation trajectory is thus

expressed as

w(t) = atan 25 (8.6)

x,(s(1))

For the reference trajectory (8.5), we have the following time derivatives:

dx(t) _ dx(s)é:xs

(1) = 8.7
*(t) dt ds dt ° 8.7
. dy(t) dy(s)ds
)= _ D45 8.8
YO === @ (8.8)
and
#)=Fegpxi=x @ vxs (8.9)
dt
ji(1) = ‘ZS S+y.5=y.8 +y5 . (8.10)
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The time derivatives for the reference orientation trajectory (8.6) that result are

W(t)=ys= __.u_xsis; ;zszxss § (8.11)
and
V(t)=w, s +ys. (8.12)

From (8.5)-(8.12), we can see that when the reference path (8.2) and the motion speed of the
vehicle are determined, the reference trajectory and the time derivatives are also determined.

In the highway crack sealing task, a vision sensor system is used to determine the crack
location on the road surface. The sensed crack data is then filtered to reduce the noise and the
reference path is then produced. The reference path with a determined vehicle speed will define the
reference trajectory. Therefore, the crack following or reference path following problem can be

solved by the previous described tracking control algorithms.

8.3 Speed Manipulation

The motion speed of the mobile robot is determined by the task's requirements. For the
highway crack sealing application, a typical motion speed is 0.8939 m/s (2 mph). In application, it
is often required to manipulate the motion speed of the mobile robot to match given initial and
terminal conditions. Here, we use a quintic polynomial to describe the along path length function

s(t); that is
2 3 4 5
S(t)=a0+a1t+a2t +a3t +a4t +a5t . (813)

We set the initial conditions and terminal conditions to be

t=0,50)=0,50)=0,5(0)=0 (8.14)
and

t=T,8(T)=s,,8(T)=0,5(T)=0 (8.15)

m?
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where, T is the terminal time, and s,, is the terminal along path length of the reference path.

The initial and terminal conditions described by (8.14) and (8.15) mean that the mobile robot
originally stops at the start point, it then moves from the start point to the terminal point, and then
stops at the terminal point.

Using the initial and terminal conditions of (8.14) and (8.15), the coefficients in the quintic
polynomial (8.13) can be determined, and (8.13) becomes

s(t)=s,[10(t/T) = 15(t/T)* +6(:/T) ]. (8.16)

The along path motion speed and acceleration of the mobile robot can be determined by the time

derivatives of the function s(¢) . From (8.16), we have

s(t)=(s,, /T)[30(t/T)" —60(t/T)’ +30(t/T)*] (8.17)
and

§(t)={(s, /T?)[60(t/T)—180(t/T)* +120(t/T)’ ]. (8.18)

The s(t) function and its time derivatives are as shown in Fig. 8.2.

Taking the time derivative of (8.18), we have

§(t)=(s, /T’ )[60-360(t/T)+360(t/T)’ ] (8.19)
Now, setting
5(t)=0
leads to
(t/T),, = 3 J—“;/? . (8.20)
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Fig. 8.2 Quintic Polynomial And lts Derivatives

Substituting (8.20) into (8.18), we get the maximum and minimum accelerations as

by =2y 100 5
6 3 T

~5 7735%

and
Suin = 81 333 T)= -Mﬂ"—;— ~ 57735
6 3 T T

Setting
s(t)=0

we can determine that
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v, m

(t/T) =§ . (8.23)

Now substituting (8.23) into (8.17), we get the maximum speed as

5 =s(lr)=125m -1 g75%m (8.24)
2 8 T T

The average acceleration is then

- S"l

a = 'F
and the average speed is expressed as

p=2u

T.

It can be seen that (8.21) and (8.22) give the maximum and minimum acceleration with respect
to the average acceleration. The relation between the maximum speed and the average speed is
described by (8.24).

In tracking control, the motion speed of the mobile robot must be determined according to the
task allowable maximum speed and maximum acceleration. The maximum acceleration is also

limited by the drive system.

8.4 Basic Path Planning

There are two aspects of path planning in a highway maintenance task. One is the task
determined path planning, such as a pavement crack; another is the initial locating path planning.
For crack sealing, a vision sensing system is used to sense the crack and the reference path is then
determined by the crack. When the task determined path is given, the mobile robot must move
from its original location to the start point of the operation path and a locating reference path is then

required.
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8.4.1 Task Operation Path Planning
Highway crack sealing task path planning was studied by Lasky and Ravani (1993). A vision

sensing system acquires gray scale images of the road using a line scan camera. Each line scan is

1.58 mm (7% in) deep and 3.6576 m (12 ft) wide (approximately one lane width). These scans

are buffered up to build up an image consisting of 64.5 mm (2 in) tiles, each of which consists of a

32x32 grid of 1.58 mm (% in) square pixels. The vision software then builds a histogram of

each tile, and then computes a statistical moment of each histogram. Then the software compares
the statistical moments within independent 5x5 tile areas. The software uses eight comparison
patterns to detect both the presence and preferred direction of a crack. The raw vision data is
insufficient, as it is just an array of potential crack locations, without any sense of a relationship
between pixels, or tiles. A path planning algorithm processes this data by filtering out noise,
filling in blank but potentially cracked areas, forming connected, ordered sets, and extracting the
appropriate portions of the planned paths for the current workspace.

Since the planned path is an ordered set of discrete points on the planar surface, that is

R={(x, y)k=12..,NJ, (8.25)

we can use an interpolating polynomial to get the parameterized reference path as

x(s)=p (sIX) (8.26)
and

y(s)=p,(sIR) (8.27)

where, p (-) and p (-)are interpolating polynomials on the basis of the set of ordered points X.
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8.4.2 Initial Locating Path Planning

There are many ways to plan the initial locating path, and we use only straight line and circular

curve segments for this purpose. The path starts from the point (x,, y,) and the mobile robot is
initially located at the tracking point (x,, y,) with initial orientation Y, as shown in Fig. 8.3.

We use a three-step method for the initial locating path planning. Let us draw a line through
point (x,, ¥,) in the tangential direction of the reference path. The angle between this tangential
line and the x axis is y,. The point (x';, y',) is at the tangential line with a distance b to the point
(x,, y;), where, b is the distance from the tracking point to the center of the baseline on the mobile
robot. The center of the baseline of the mobile robot is initially located at point (x'), y,). Then,
we draw a line through the two points (x/,, y);)and (x’;, y',). The angle between the x axis and

the line through points (x';, ¥, J)and (x';, y';) is y,,. We then denote

Ay, =y, — Y, (8.28)
and Ay, =y, -y, (8.29)

(Xl'l’ylll)
Ayl

Fig. 8.3 Initial Locating Path Planning
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The three-step reference path can then be planned as follows.

Step 1: Pure rotation with angular displacement Ay,. The tracking point moves from
point (x,, y,) to point (x",, ¥, ). Here, the point (x",, ¥",) is on the line linking
the points (x'), ¥, Jand (x';, y';) with a distance b to the point (x',, ¥, );

Step 2: Pure straight line motion along the line through the points (x'), y'))and (x;, ¥',)
with the tracking point moving from (x"), y",) to (x",, ¥",). Here, the point
(x";, ¥";) is on the line through the points (x'), ') Jand (x';, y',) with a distance b
to the point (x';, ¥, ). It is clear that the center of the baseline of the mobile robot
moves form the point (x';, y)) to the point (x';, ¥, );

Step 3: Pure rotation with angular displacement Ay,. The tracking point moves from point
(x",, ¥";) topoint (x,, y,). The point (x,, y,) is the starting point of the reference
path, and the initial locating process is, therefore, completed.

Since (x,, y,), (X, y;), ¥, are known, the three-step initial locating reference path can be
mathematically described as follows.

We first determine the coordinates of related points and the value of the related angle. The

original initial location of the center point of the baseline is

{x’o =x,—bcosy, (8.30)
Yo= Yo —bsiny, .
The coordinates of the point (x',, y',) is
{x}:xl—bcost//] 831)
Y=y, —bsiny,
where
¥:(0)
= atan=+—=. 8.32
Y, %.(0) ( )
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The angle y,, can be calculated as

W, = atan21=20. (8.33)

! 1
XXy

1 !

The coordinates of points (x",, y",) and (x";, y", ) are

{x”o =x'y+bcos y,, (8.34)
Y=y, tbsiny,,
and
{x”, =x",+bcosy,, (8.35)
Y=y, +bsiny,,’
respectively

Then, we describe the three-step reference path. The reference path in step 1 is the circular arc

1

from point (x,, y,) to point (x",, y",) with a radius b; that is

=x"+b /
{x(s) x',+bcos(s/b+y,) [0<s<b(y, —w,)]. (8.36)

y(s)=y',+bsin(s/b+y,)

r

The reference path in step 2 is the line segment from point (x",, y",) to (x";, y", ); that is

x(s)=x",+cosW,s -
{ o [0S s <A(x" =x" P+ (" =y )P . (8.37)

y(s)=y",+siny,s

The reference path in step 3 is the circular arc from point (x”;, y”;) to point (x,, y,) with a radius

b represented as

= x' b - b
{x(s) x';+bcos(y, —s/b) [0<s<b(y, —v,)]. (8.38)

y(s)=y',+bsin(y,, —s/b)
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Therefore, the three-step initial locating reference path is described by Equations (8.36), (8.37),
and (8.38).

8.5 Conclusion

Path planning of the Tethered Mobile Robot in highway maintenance is studied in this Chapter.
Because the tracking control algorithm developed earlier in this report is based on reference
trajectory tracking control, a parameterized reference path planning and quintic polynomial based
speed manipulation method is used to produce the reference trajectory. The task determined
reference path (e.g., crack following reference path) results from vision sensing and image
recognition. A three-step initial locating path planning algorithm is developed to plan the reference
path for the mobile robot so that it moves from the original parking position and orientation to the

start point of a task determined reference path.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

Tracking control algorithms for a mobile robot with two independent driven wheels are

thoroughly and systematically studied in this report. Its purpose is to provide a theoretical basis

for tracking control of the Tethered Mobile Robot as applied to highway maintenance. The

tracking control algorithms developed in this report are valid for any differentially steered wheeled

mobile robot or ground vehicle.

The tracking control algorithms are developed both on the basis of kinematic models and

dynamic models. The main effort is made to develop a tracking control algorithm with strong

robustness to uncertainties, such as system perturbations and external disturbances. The main

confributions of this report is as follows:

A kinematic model with wheel slippage is developed. The slippage influence is treated to
be equivalent to parameter uncertainty in the system;

An orientation equation for this kind of wheeled mobile robot is developed. It reveals the
inherent relation between position tracking and orientation tracking;

The influence of the location of the tracking point on the tracking ability is thoroughly
studied. Two globally stable tracking control algorithms are developed according to the
location of the tracking point relative to the baseline;

A kinematic robust tracking control algorithm is developed on the basis of a kinematic
model with uncertainty;

Based on a full dynamic model with a detailed tire-ground contact model, reduced order
dynamic models are developed. The influence of uncertainty on the dynamic system is

analyzed and a matching condition is proven;
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» An exponential position dynamic tracking control algorithm is developed. The control
algorithm is based on the reduced order dynamic model and possesses strong robustness to
system uncertainties;

» Variable structure control theory is used to construct a variable structure dynamic tracking
control algorithm. Because the matching condition is hold for the uncertainties in the
dynamic system, the exponential tracking control performance of the variable dynamic
tracking control algorithm is invariant to system uncertainties, such as parameter
perturbations, external disturbances, and unmodeled system dynamics.

The performance of the tracking control algorithms are studied through numerical simulations.
The full dynamic model with detailed tire model is used in all simulations examining the dynamic
tracking control algorithms.

The path planning problem related to highway maintenance is discussed. Since the tracking
control algorithm is based on reference trajectory tracking, a mobile robot speed manipulation

algorithm is proposed to produce the reference trajectory from the reference path.

9.2 Recommendations

As a final section of this report, we will make recommendations concerning the tracking control
algorithm development and application. Although we have thoroughly studied both the kinematic
and dynamic tracking control problem of the Tethered Mobile Robot, tracking control theory for
this type of wheeled mobile robot is still an open research area. In order to improve the real-time
performance and robustness, neural-network technology can be used in the tracking control
algorithm to calculate the kinematic or dynamic compensation terms. An adaptive control algorithm
is also a possible solution based on the strong uncertainties in the tracking control algorithm of the
Tethered Mobile Robot. For tracking control of the Tethered Mobile Robot, application related
control algorithms are also vital. Because of the computational complexity of the tracking control
algorithm and the sensed data processing, a distributed computer control system should be

developed to ensure flexibility, reliability and real-time performance. To improve total system
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reliability, the control system must possess the self-diagnosis and fault detection. Application

specific control software for this kind of mobile robot is also required.
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APPENDIX A
MATLAB SIMULATION CODE

A.1 - Exponential Kinematic Tracking Control Algorithm

ot R
% MOBILE ROBOT EXPONENTIAL KINEMATIC TRACKING CONTROL
% ALGORITHM SIMULATION SOFTWARE

%

% Author: Dr. Yulin Zhang
%

%o Professor

% Changsha Institute of Technology
% Changsha, Hunan 410073, China

%
% Visiting Research Scientist
% Department of Mechanical and Aeronautical Engineering

% University of California
% Davis, California 95616, U. S. A.

%

% Copyright: Advanced Highway Maintenance and Construction Technology Center
% May 25, 1994

%

% Programming language: Matlab

TotHHHHHHEHEHEHHHE R
clg

clear

% para: the file to set parameters to be
%  global variables;

% c_track:distance from the track point to
% the center of base line;

% ¢_base:1/2 leigth of wheel base line;
% rwheel:radius of wheel;

%

rwheel=0.3048;

e_base=0.9144/2;

c_track=0.9144,

pai=3.1415926;

Zosetfb: set feedback matrix and solve
%  static Riccati equation;
Q=zeros(2,2);

Q(1,1) = 1.0;

Q(2,2) = 1.0;

Kp=zeros(2,2);

Kp(1,1) = 3.0;
Kp(2,2) = 3.0;
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ke=1;

B=zeros(2,2);
A=-Kp
P=are(A.B,Q)

global rwheel e_base c_track Kp P kc pai;

tmax=4,;
t0=0;tf=tmax*2*pai;
x0=[0 0 0.7854]’;
%x0=[0 4 0]’;
%x0=[0 0 071’
h=0.1;
im=(tf-t0)/h;
te=t0;
xc=x0;
t(1)=t0;
x(1,:)=x0";
for i=2:im+1
XX=XC;
tt=tc;
[tc,xcl=rk42_on(tt,xx,h,3);
t(1)=tc;
x(1,:)=xc';
end
%
for i=0:tmax*20*pai;
ti=0.1%i;
tf(i+1)=ti;
xff=refe_on(ti);
xxf(i+1,)=xff(:,1);
end;
subplot(221),plot(x(:,1),x(:,2),xxf(:,1),xx1£(:,2))
xlabel('x,meter");
ylabel('y,meter');
grid;
subplot(222),plot(t(:),x(:,3),tf,xxf(:,3))
xlabel('time,second");
ylabel('orientation');
grid;
subplot(223),plot(t(:),x(:,1),tf,xxf(:,1))
xlabel('time,second");
ylabel('x,meter");
grid;
subplot(224),plot(t(:),x(:,2),tf,xxf(:,2))
xlabel('time,second’);
ylabel('y,meter’);
grid;

%

%rk4:function of Runge-Kutta method
function [t,x]=rk42_on(t0,x0,h,n)
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x=zeros(n,1);
xt=zeros(n,1);
h2=h/2;

h6=h/6;
dxdt=diff_on(t0,x0);
th=t0+h2;
xt=x0+h2*dxdt;
dxt=diff_on(th,xt);
xt=x0+h2*dxt;
dxm=diff_on(th,xt);
xt=x0+h*dxm;
t=tO+h;
dxm=dxt+dxm;
dxt=diff_on(t,xt);
x=x0+h6*(dxdt+dxt+2.0*dxm);

%
% function for kinematics
function xdot=diff on(t,x)
% initialization

g=[0 07,

=[0 0]}

h=[0 0T’

u=1[00],

xdot = [0 0 0]";

xfdotp=[0 O];
aal=zeros(2,2);
inaal=zeros(2,2);

gtg=[0 O’;

% calculation of the kinematics
cita=x(3);
aareal=kinemm_on(1.0,1.0,cita);
aa=kinemm_on(1.0,1.0,cita);
aal(l,1)=aa(l,1);
aal(1,2)=aa(1,2);
aal(2,1)=aa(2,1);
aal(2,2)=aa(2,2);
g(1)=aa(3,1);

g(2)=aa(3,2);

inaal=inv(aal);
gtg=inv(g*g)*g;

f=aal*gtg;

h=g'*inaal;

% calculation of the reference path
xxf=refe_on(t);

xf=xxf(:,1);

xfdot=xx£(:,2);
xfdotp(1)=xfdot(1);
xfdotp(2)=xfdot(2);

% caculation of the errors
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ep=zeros(2,1);
ep(1)=x(1)-xf(1);
ep(2)=x(2)-x£(2);
ec=x(3)-xf(3);

% calculation of linearized control law
v=xfdotp-Kp*ep+f*kc*ec;
v3=-kc*ec;

% caculation of control inputs
u=inaal *v+g'*gtg*v3;
xdot=aareal*u;

Yo

% KINEMM: function for wheeled mobile robot
% kinematics matrix;

% e_base: one second of the wheel base line
% distance;

% c_track: distace of track point to the

% center of wheel base line;

% rwheel: radius of wheel;

% e_base,c_track,rwheel are global variables;
% ccl: slippage coefficient of left wheel;

% ccr: slippage coefficient of right wheel;

% cita: orientation angular;

%

function aa=kinemm_on(ccl,ccr,cita)
aa=zeros(3,2);

aa(1,1) = ccl*rwheel*(c_track*sin(cita)+e_base*cos(cita));
aa(2,1) = ccl*rwheel*(-c_track*cos(cita)+e_base*sin(cita));

aa(3,1) = -ccl*rwheel;

aa(1,2) = ccr*rwheel*(-c_track*sin(cita)+e_base*cos(cita));
aa(2,2) = ccr*rwheel*(c_track*cos(cita)+e_base*sin(cita));

aa(3,2) = ccr¥*rwheel;
aa = aa/(2*e_base);

%

% refe:function for caculating the

%o control reference;

% xf(i,1):position and orientation of
% reference path;

% x1f(i,2):derivatives of reference path;
%

function xf=refe_on(t)
xf=zeros(3,2);

xf(1,D)=t;

xf(2,1)=t+4*sin(t/4);
xf(3,1)=atan(1+cos(t/4));
xf(1,2)=1;

xf(2,2)=1+cos(t/4);

cs=1+cos(t/4);

cs2=1+cs*cs;
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xf(3,2)=-sin(t/4)/4/cs2;
vaalalalaalaidlaldalaracaidalaaelardaaiafalcialcciord el cCICACIC)

Copyright 2011, AHMCT Research Center, UC Davis



A.2 - Global Convergence Kinematic Tracking Controel Algorithm

TR R
% MOBILE ROBOT GLOBAL CONVERGENCE KINEMATIC TRACKING CONTROL
% ALGORITHM SIMULATION SOFTWARE

%

% Author: Dr. Yulin Zhang
%

% Professor

%o Changsha Institute of Technology

% Changsha, Hunan 410073, China

%

% Visiting Research Scientist

% Department of Mechanical and Aeronautical Engineering
% University of California

% Davis, California 95616, U. S. A.

%

% Copyright: Advanced Highway Maintenance and Construction Technology Center
% May 25, 1994

%

% Programming language: Matlab

G R
clg

clear

% para: the file to set parameters to be
%  global variables;

% c_track:distance from the track point to
% the center of base line;

% e_base:1/2 leigth of wheel base line;
% rwheel:radius of wheel;

%

rwheel=0.3048;

e_base=0.9144/2;

c_track=0.9144;

pai=3.1415926;

Yosettb: set feedback matrix and solve
%  static Riccati equation;
Q=zeros(2,2);

Q(1,1) = 1.0;

Q2,2) = 1.0;

Kp=zeros(2,2);
Kp(1,1) = 3.0;
Kp(2,2) = 3.0;
ke=5;

B=zeros(2,2);
A=-Kp
P=are(A,B,Q)

global rwheel e_base c_track Kp P ke pai;
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tmax=4;
t0=0;tf=tmax*2*pai;
%x0=[0 0 1.10717";
%x0=[0 0 0.78547"
%x0=[0 4 0]";
x0=[0 0 07’
h=0.1;
im=(tf-t0)/h;
tc=t0;
xc=x0;
t(1)=t0;
x(1,)=x0";
for i=2:1m+1
XX=XC;
ti=tc;
[tc,xc]=rk42_base(tt,xx,h,3);
t(i)=tc;
x(i,:)=xc";
end
%
for i=0:tmax*20*pai;
ti=0.1%1;
tf(i+1)=ti;
xff=refe_on(ti);
xxf(i+1,:)=xff(:,1);
end;
subplot(221),plot(x(:,1),x(:,2),xxf(:,1),xx1(:,2))
xlabel('x,meter");
ylabel('y,meter");
grid;
subplot(222),plot(t(:),x(:,3),tf,xxf(:,3))
xlabel('time,second');
ylabel('orientation,degree’);
grid;
subplot(223),plot(t(:),x(:,1),tf,xxf(:,1))
xlabel('time,second");
ylabel('x,meter");
grid;
subplot(224),plot(t(:),x(:,2),tf,xxf(:,2))
xlabel('time,second");
ylabel('y,meter");
grid;

%

York4:function of Runge-Kutta method
function [t,x]=rk42_base(t0,x0,h,n)
x=zeros(n,1);

xt=zeros(n,1);

h2=h/2;

h6=h/6;

dxdt=diff_base(t0,x0);

th=t0+h2;
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xt=x0+h2*dxdt;
dxt=diff_base(th,xt);
xt=x0+h2*dxt;
dxm=diff_base(th,xt);
xt=x0+h*dxm;

t=tO+h;

dxm=dxt+dxm;
dxt=diff_base(t,xt);
x=x0+h6*(dxdt+dxt+2.0*dxm);

%

% function for kinematics
function xdot=diff_base(t,x)
% initialization

u=1[00];

xdot =[0 0 0]’;

xfdotp=[0 07';
aal=zeros(2,2);
inaal=zeros(2,2);

% calculation of the kinematics
cita=x(3);
aareal=kinemm_base(1.0,1.0,cita);
aal=uk_base(1.0,1.0);
inaal=inv(aal);

% calculation of the reference path
xxf=refe_on(t);

xf=xx1{(:,1);

xfdot=xx1f(:,2);
xfdotp(1)=xfdot(1);
xfdotp(2)=xfdot(2);

citaf=xf(3);

% caculation of the errors
ep=zeros(2,1);

ep(1)=x(1)-x£(1);

ep(2)=x(2)-xf(2);

ec=x(3)-xf(3);

cita=x(3);

eeta = ep(1)*cos(cita)+ep(2)*sin(cita);
ezta =-ep(1)*sin(cita)+ep(2)*cos(cita);

etaf=xfdotp(1)*cos(citaf)+xfdotp(2)*sin(citaf);

cfdot=xfdot(3);

% calculation of linearized control law
v=[0 0T

km=Kp(1,1)’;

v(1)=etaf-km*eeta;
v(2)=cfdot-kc*sin(ec/2)-2*etaf*ezta;
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% caculation of control inputs
u=inaal*v;
xdot=aareal*u;

%o

% KINEMM: function for wheeled mobile robot
% kinematics matrix;

% e_base: one second of the wheel base line
% distance;

% c_track: distace of track point to the

% center of wheel base line;

% rwheel: radius of wheel;

% e_base,c_track,rwheel are global variables;
% ccl: slippage coefficient of left wheel;

% ccr: slippage coefficient of right wheel;

% cita: orientation angular;

%

function aa=kinemm_base(ccl,ccr,cita)
aa=zeros(3,2);

aa(1,1) = 0.5*ccl*rwheel*cos(cita);

aa(2,1) = 0.5*ccl*rwheel*sin(cita);

aa(3,1) = -ccl*rwheel/(2*e_base);

aa(1,2) = 0.5*ccr*rwheel*cos(cita);

aa(2,2) = 0.5*ccr*rwheel*sin(cita);

aa(3,2) = ccr*rwheel/(2*e_base);

%

% refe:function for caculating the

% control reference;

% x1(i,1):position and orientation of
% reference path;

% x£(i,2):derivatives of reference path;
%

function xf=refe_on(t)
xf=zeros(3,2);

xf(1,1)=2%t;

xf(2,1)=2+t;

xf(3,1)=atan(1/2);

xf(1,2)=2;

xf(2,2)=1;

xf(3,2)=0;

%@Q@QQRRLPAPPLAEEPPAPRPEPEPLRPEPPEPPPEPELPPLPLRERE
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A.3 - Robust Kinematic Tracking Control Algorithm

Dot R
% MOBILE ROBOT GLOBAL CONVERGENCE KINEMATIC TRACKING CONTROL
% ALGORITHM SIMULATION SOFTWARE

%

% Author: Dr. Yulin Zhang
%

%o Professor

% Changsha Institute of Technology

% Changsha, Hunan 410073, China

%

%o Visiting Research Scientist

% Department of Mechanical and Aeronautical Engineering
% University of California

% Davis, California 95616, U. S. A.

%

% Copyright: Advanced Highway Maintenance and Construction Technology Center
% May 25, 1994

%

% Programming language: Matlab

Do R AR A
clg

clear

% para: the file to set parameters to be

%  global variables;

% c_track: distance from the track point to
% the center of base line;

% e_base: 1/2 leigth of wheel base line;

% rwheel: radius of wheel;

%

rwheel=0.3048;

e_base=0.9144/2;

c_track=0.9144;

pai=3.1415926;

%setfb: set feedback matrix and solve
% static Riccati equation;
Q=zeros(2,2);

Q(1,1) = 1.0;

Q(2,2) = 1.0;

B=zeros(2,2);
A=-Kp
P=are(A,B,Q)

global rwheel e_base c_track Kp P kc pai;
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t0=0;tf=2*pai;
x0=[0 4 -pai/2]’;
%x0=[0 0 0]';
h=0.1;
im=(tf-t0)/h;
tc=t0;
xc=x0;
t(1)=t0;
x(1,)=x0";
for i=2:im+1

XX=XC;

tt=tc;

[tc,xc]=rk42(tt,xx,h,3);

t(i)=tc;

x(1,:)=xc’;
end
%
for i=0:20*pai;

ti=0.1%i;

tf(i+1)=ti;

xff=refe(ti);

xxf(i+1,:)=xff(:,1)";

end;
subplot(221),plot(x(:,1),x(:,2),xxf(:,1),xxf(:,2))
xlabel('x,meter");
ylabel('y,meter');
grid;
subplot(222),plot(t(:),x(:,3),tf,xxf(:,3))
xlabel('time,second');
ylabel('orientation,degree");
grid;
subplot(223),plot(t(:),x(:,1),tf,xxf(:,1))
xlabel('time,second');
ylabel('x,meter");
grid;
subplot(224),plot(t(:),x(:,2),tf,xxf(:,2))
xlabel('time,second’);
ylabel('y,meter’);
grid;

%
%rk4:function of Runge-Kutta method
function [t,x]=rk42(t0,x0,h,n)
x=zeros(n,1);

xt=zeros(n,1);

h2=h/2;

h6=h/6;

dxdt=diff2(t0,x0);

th=t0+h2;

xt=x0-+h2*dxdt;

dxt=diff2(th,xt);

xt=x0+h2*dxt;
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dxm=diff2(th,xt);
Xt=x0+h*dxm;

t=t0+h;

dxm=dxt+dxm;

dxt=diff2(t,xt);
x=x0+h6*(dxdt+dxt+2.0*dxm);

%

% function for kinematics
function xdot=diff2(t,x)
% initialization

2=[0 07}

=[0 0]

h=[0 0T}

u=[00];

xdot = [0 0 07';
xfdotp=[0 0]";
aal=zeros(2,2);
inaal=zeros(2,2);
gtg=[0 O]’

% calculation of the kinematics
cita=x(3);
aareal=kinemm(1.0,1.0,cita);
aa=kinemm(1.0,1.0,cita);
aal(1,1)=aa(1,1);
aal(1,2)=aa(1,2);
aal(2,1)=aa(2,1);
aal(2,2)=aa(2,2);
g(l)=aa(3,1);

g(2)=aa(3,2);
inaal=inv(aal);
gtg=inv(g™*g)*g;

f=aal*gtg;

h=g'*inaal;

% calculation of the reference path
xxf=refe(t);

xf=xxf(:,1);

xfdot=xx1(:,2);
xfdotp(1)=xfdot(1);
xfdotp(2)=xfdot(2);

% caculation of the errors
ep=zeros(2,1);
ep(1)=x(1)-xf(1);
ep(2)=x(2)-xf(2);
ec=x(3)-xf(3);

% calculation of robust control dv
w=P*ep;

alf=1;

km=Kp(1,1);

dd=0.1;
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ro=alf*(2+km*sqrt(ep™*ep));
aw=sqrt(w'*w);
if aw>=dd
dv=-ro*w/aw;
else
dv=-ro*w/dd;
end

% calculation of linearized control law
v=xfdotp-Kp*ep+f*kc*ec+dv;
v3=-kc*ec;

% caculation of control inputs
u=inaal*v+g*gtg*v3;
xdot=aareal*u;

%

% KINEMM: function for wheeled mobile robot
% kinematics matrix;

% e_base: one second of the wheel base line
% distance;

% c_track: distace of track point to the

% center of wheel base line;

% rwheel: radius of wheel,;

% e_base,c_track,rwheel are global variables;
% ccl: slippage coefficient of left wheel;

% ccr: slippage coefficient of right wheel;

% cita: orientation angular;

%o

function aa=kinemm(ccl,ccr,cita)
aa=zeros(3,2);

aa(1,1) = ccl*rwheel*(c_track*cos(cita)-e_base*sin(cita));
aa(2,1) = ccl*rwheel*(c_track*sin(cita)+e_base*cos(cita));

aa(3,1) = -ccl*rwheel,

aa(1,2) = ccr*rwheel*(-c_track*cos(cita)-e_base*sin(cita));
aa(2,2) = ccr*rwheel*(-c_track*sin(cita)+e_base*cos(cita));

aa(3,2) = ccr*rwheel;
aa = aa/(2*e_base);

%

% refe:function for caculating the

% control reference;

% x1(i,1):position and orientation of
Yo reference path;

% x1(i,2):derivatives of reference path;
%

function xf=refe(t)

xf=zeros(3,2);

xf(1,1)=4%sin(t/4);
xf(2,1)=4*cos(t/4);
xf(3,1)=-pai/2-t/4;

xf(1,2)=cos(t/4);
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xf(2,2)=-sin(t/4);
xf(3,2)=-1/4;

vaclalalaaaaaaaaaaiaelaelaaaaaaaalaiaaalccaalcCIONC)
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A.4 - Robust Dynamic Tracking Control Algorithm

Do B AR
% MOBILE ROBOT DYNAMIC TRACKING CONTROL SIMULATION SOFTWARE
%

% Author: Dr. Yulin Zhang

%

% Professor

%o Changsha Institute of Technology

% Changsha, Hunan 410073, China

%

%o Visiting Research Scientist

% Department of Mechanical and Aeronautical Engineering

% University of California

% Davis, California 95616, U. S. A.

%

% Copyright: Advanced Highway Maintenance and Construction Technology Center
% May 25, 1994

%

% Programming language: Matlab
Y i S s i g it

clear

£=9.801;

pai=3.1415926;

m=272;

Izz=407;

Itt=6.78,;

Bt=0.0;

mu=0.8;

roc=0.0;

cx=40034;

cy=40034;

% m---mass of mobile robot, kg

% 1zz---yaw moment of inertia, kg.m.m

% Itt---combined wheel, gearbox, and motor

% moments of inertia, kg.m.m

% mu---road/tire interface coefficient of friction

% cx---longitudinal tire stiffness, N/rad

% cy---lateral tire stiffness, N/rad
To+++++++++++++ structure parameters +++-+-++++++++++++ttb bbb
a=0.762;

b=0.6096;

c=0.2286;

d=0.9144;

e=0.9144;

r=0.3048;

% a---distance from center of mass to the front castor, m
% b---distance from baseline to the center of mass, m

% c---distance from center of mass to the linkage point, m
% d---length of baseline of the two rear wheels, m

% e---distance from the center of mass to the tool
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%  operation point, m

% r---tire radius, m

Jo+++++++++++++ control parameters ++-+++++++++HHHttbbb b
Kd=zeros(2,2);

Kd(1,1)=0.96;

Kd(2,2)=0.96;

Kp=zeros(2,2);
Kp(1,1) =0.16;
Kp(2,2) =0.16;

O=zeros(2,2);
I=zeros(2,2);
1(1,)=1;
112,2)=1;

Q=[I0;01];

B=[0 O;0 O};

A=[O L;-Kp -KdJ;

P=are(A,B,Q)

BI=[Os1];

global pai gm Izz Itt mucx cy abcderroc Bt Kp Kd P BI;

tmax=4,;
t0=0;tf=tmax*2*pai,
%x0=[001.1071 0000 0],
%x0=[000.7854 0000 0],
x0=[040000007;
%x0=[00000000],
%x0=[02 0.4636 0 0 00 0]";
h=0.1;
im=(tf-t0)/h;
tc=t0;
xc=x0;
t(1)=t0;
x(1,:)=x0";
for i=2:1im+1
XX=XC;
tt=tc;
[tc,xc]=rk42_dyn(tt,xx,h,8);
t(i)=tc;
x(1,:)=xc’;
end
%
for i=0:tmax*20*pai;
ti=0.1%1;
tf(i+1)=ti;
xff=refe_path(ti);
xxf(i+1,:)=xff(;,1)"
end;

vslip=x(:,5)-b*x(:,6);

uleft=x(:,4)+(d/2)*x(:,6);
uright=x(:,4)-(d/2)*x(:,6);
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ulslip=r*x(:,7)-uleft;
urslip=r*x(:,8)-uright;

subplot(221),plot(x(:,2),x(:,1),xx1(:,2),xx1£(:,1))
xlabel('y,meter");

ylabel('x,meter");

grid;
subplot(222),plot(t(:),x(:,3),tf,xxf(:,3))
xlabel('time,second’);
ylabel('orientation,radian’);

grid;
Josubplot(223),plot(t(:),x(:,1),tf,xxf(:,1))
subplot(223),plot(t(:),ulslip,t(:),urslip);
xlabel(‘time,second’);
%ylabel('x,meter");

ylabel('longitudinal slip,m/s");

grid;
osubplot(224),plot(t(:),x(:,2),tf,xxf(:,2))
subplot(224),plot(t(:),vslip);
xlabel('time,second’);
%ylabel('y,meter');

ylabel('lateral slip,m/s");

grid;

%
York4: function of Runge-Kutta method
function [t,x]=rk42_dyn(t0,x0,h,n)
x=zeros(n,1);

xt=zeros(n,1);

h2=h/2;

h6=h/6;

dxdt=diff_dyn(t0,x0);

th=t0+h2;

xt=x0+h2*dxdt;

dxt=diff_dyn(th,xt);

xt=x0+h2*dxt;

dxm=diff_dyn(th,xt);

Xt=x0+h*dxm;

t=tO+h;

dxm=dxt+dxm;

dxt=diff_dyn(t,xt);
x=x0+h6*(dxdt+dxt+2.0*dxm);

%
% function qdot=diff_dyn(t,q)

% t:time

% q(8): state variables {x,y,fei,u,v,w_yaw,w_left,w_right)}
function qdot=diff_dyn(t,q)

gdot=zeros(8,1);

Fx=[0 0 0]’;

Fy=[0 0 0]’

Ft=[0 0 0]";
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Tw=[0 07’;

% Ft: tool operation force (Fxt,Fyt,Fnt), Fnt=-Fzt
% Tw: torque applied to wheels (Tw_left,Tw_right)
% Fx: tire forces in x direction (Fxl,Fxr,Fxc)

% Fy: tire forces in y direction (Fyl,Fyr,Fyc)

fei=q(3);
u=q(4);
v=q(5);
w_yaw=q(6);
w_left=q(7);
w_right=q(8);

Ft=toolforce(t);
Tw=control(t,q);

Fnt=Ft(3);
T_left=Tw(1);
T_right=Tw(2);

Fx=[0 0 0]';
Fy=[0 0 0]}

Fne=(b*m*g+(e-b)*Fnt)/(a+b);
Fn=(a*m*g-(a+e)*Fnt)/(a+b)/2;

u_left=u+w_yaw*d/2;
u_right=u-w_yaw*d/2;
v_slip=v-w_yaw*b;

u_c=u;
v_c=v+a*w_yaw;

[Fx(1),Fy(1)]=tiredriven(u_left,v_slip,w_left,T_left,Fn);
[Fx(2),Fy(2)]=tiredriven(u_right,v_slip,w_right,T_right,Fn);
[Fx(3),Fy(3)]=castor(u_c,v_c,Fnc);

udot=(Fx(1)+Fx(2)+Fx(3)+Ft(1))/m+v*w_yaw;
vdot=(Fy(1)+Fy(2)+Fy(3)+Ft(2))/m-u*w_yaw;
wdot=(0.5*d*(Fx(1)-Fx(2))-b*(Fy(1)+Fy(2))+a*Fy(3)-e*Ft(2))/1zz;
xdot=cos(fei)*u-sin(fei)*v;

ydot=sin(fei)*u+cos(fei)*v;

w_ldot=(Tw(1)-Bt*w_left-r*Fx(1))/1tt;
w_rdot=(Tw(2)-Bt*w_right-r*Fx(2))/Itt;

gdot(1)=xdot;
qdot(2)=ydot;
gdot(3)=w_yaw;
qdot(4)=udot;
qdot(5)=vdot;
gdot(6)=wdot;
qdot(7)=w_ldot;
qdot(8)=w_rdot;
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%

function Ft=toolforce(t)
% function for calculating the tool operational forces
% Ft=(FxtFyt,Fnt)', Fnt=-Fzt
Ft=[0 0 0]}
if t<=10,
Ft(1)=0;
Ft(2)=0;
Ft(3)=0;
else
Ft(1)=-200;
Ft(2)=0;
Ft(3)=0;
end;

%o

Yofunction [Fx_c,Fy_cl=castor(u_c,v_c,Fnc)
% for the calculation of castor resistance force
% u_c: longitudinal speed of the mobile robot
% v_c: lateral speed of the castor

function [Fx_c,Fy_c]=castor(u_c,v_c,Fnc)

vv=sqrt(u_c*u_c+v_c*v_c);

if vv==0,
Fx_c=0;
Fy_c=0;

else
udir=u_c/vv;
vdir=v_c/vv;

Fx_c=-roc*udir*Fnc;
Fy_c=-roc*vdir*Fnc;
end

%%

% function for calculation driven wheel tire friction model

% u_w: longitudinal speed of wheel axis
% u_w: lateral speed of wheel axis

% w_w: rotational angular speed of wheel
% T_w: torque applied on wheel

% Fn: normal speed applied on wheel

% return in [Fx_w,Fy_w]

function [Fx_w,Fy_w]=tiredriven(u_w,v_w,w_w,T_w,Fn)

if u_w==0,

if w_w==0,
Fx_w=T_w/r;

else
Fx_w=sign(w_w)*mu*Fn;

end;

if v_w==0,
Fy_w=0;
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else
Fy_w= -sign(v_w)*mu*Fn;
end;
else
lamd=abs(v_w/u_w);
if w_w==0,
slip=1;
else
if w_w*u_w>0,
slip=1-r*w_w/u_w;
if slip<=-3,
slip=-3;
end;
else
slip=1;
end;
end;
clng=0.001*cx*Fn;
clat=0.001*cy*Fn;
scom=sqrt(slip*slip+lamd*lamd);
mudyn=mu*(1-0.0034*abs(u_w)*scom);
if mudyn<=0.7*mu,
mudyn=0.7*mu;
end;
if slip==1,
ccll=sqrt(clng*clng+clat*clat*lamd*lamd);
if ccll<=0.000001,
¢ccll=0.000001;
end;
muf=mudyn*Fn;
Fx_w=-sign(u_w)*clng*muf/ccll;
Fy_w=-sign(v_w)*clat*muf*lamd/ccll;
else
Fxd=-sign(u_w)*clng*slip/(1-slip);
Fyd=-sign(v_w)*clat*lamd/(1-slip);
mud=sqrt(Fxd*Fxd+Fyd*Fyd)/Fn;
if mud<=mudyn/2,
Fx_w=Fxd;
Fy_w=Fyd;
else
mures=mudyn*(1-mudyn/mud/4);
Fx_w=Fxd*(mures/mud);
Fy_w=Fyd*(mures/mud);
end;
end;
end

%
% function for simulating the controller

% t: time

% q: state variables

% Tw=[T_left, T_right]' torque applied to wheels

Copyright 2011, AHMCT Research Center, UC Davis



function Tw=control(t,q)
dz=[0 07

Tw=[0 0]";

ff=[0 0]’;

z=[0 0]

ed=[0 0]

ep=[0 O]}

rqdot2=[0 0]

rqdot=[0 0]’;

rq=[0 O’

ogp=[0 0]

oqdot=[0 0]';
gf=zeros(3,3);
Gp=zeros(2,2);
Dl=m*r*r+2*Itt;
D2=2%r¥r¥1zz42 *m*b*b*r*r+d*d*Itt;
fei=q(3);

u=q(4);

cosfei=cos(fei);

sinfei=sin(fei);

rD1=r/D1;

rbdD2=r*b*d/D2;
Gp(1,1)=rD1*cosfei-rbdD2*sinfei;
Gp(1,2)=rD1*cosfei+rbdD2*sinfei;
Gp(2,1)=rD1*sinfei+rbdD2*cosfei;
Gp(2,2)=rD1*sinfei-rbdD2*cosfei;
ttD1=2*1t/D1,;
ID2=2*r*r*Izz+d*d*1tt)/D2;

ff(1)=-IttD 1 *v*w*cosfei-IID2*u*w*sinfei,
ff(2)=-IttD1*v*w*sinfei+IID2*u*w*cosfei;

oqdot(1)=u*cosfei-b*w*sinfei;
oqdot(2)=u*sinfei+b*w*cosfei;
ogp(1)=q(l);
oqp(2)=q(2);

qf=refe_path(t);
rqdot2(1)=qf(1,3);
rqdot2(2)=qf(2,3);
rqdot(1)=qf(1,2);
rqdot(2)=qf(2,2);
rq(1)=qf(1,1);
1q(2)=qf(2,1);

ed=oqdot-rqdot;

€p=oqp-1q;

Jerobust control algorithm
Y%dz=robust(ed,ep);
%z=rqdot2-Kd*ed-Kp*ep+dz;

Yovariable structure algorithm
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dz=sliding(ed,ep);
z=rqdot2+dz;

Tw=inv(Gp)*(z-ff);

%
function dz=robust(ed,ep)
dz=[0 0]";
ee=[ep;ed];
bpe=BI'*P*ee;
mm=bpe'*bpe;
mpe=sqrt(mm);
rro=0.5%(1.5+3.5*(e'*e));
if mpe>0.1,
dz=-rro*bpe/mpe;
else
dz=-rro*bpe/0.1;
end

%

% refe: function for calculating the
% control reference;

% x1(i,1): position and orientation of
% reference path;

% x1(i,2): derivatives of reference path;

%

function xf=refe_path(t)
xf=zeros(3,3);
xf(1,1)=4%*sin(t/4);
xf(2,1)=4*cos(t/4);
xf(3,1)= -t/4;
xf(1,2)=cos(t/4);
xf(2,2)=-sin(t/4);
xf(3,2)=-1/4;
xf(1,3)=-(1/4)*sin(t/4);
xf(2,3)=-(1/4)*cos(t/4);
xf(3,3)=0;

raeicelaaaalaealaladaaaaaeiaadadaaadealaaiaaaalclclofe,

Copyright 2011, AHMCT Research Center, UC Davis

134



A.5 - Variable Structure Dynamic Tracking Control Algorithm

o AR
% MOBILE ROBOT VARIABLE STRUCTURE DYNAMIC TRACKING CONTROL
% ALGORITHM SIMULATION SOFTWARE

%
% Author: Dr. Yulin Zhang
% Professor

% Changsha Institute of Technology

% Changsha, Hunan 410073, China

%

% Visiting Research Scientist

% Department of Mechanical and Aeronautical Engineering
% University of California

% Davis, California 95616, U. S. A.

%

% Copyright: Advanced Highway Maintenance and Construction Technology Center
%o May 25, 1994

%

% Programming language: Matlab

Do HHHHHHHHEHEHHEHR AR AR
clear

clg

£=9.801;

pai=3.1415926;

m=272;

1zz=407,

1tt=6.78;

Bt=0.0;

mu=0.8;

roc=0.0;

cx=40034;

cy=40034;

% m---mass of mobile robot, kg

% 1zz---yaw moment of inertia, kg.m.m

% Itt---combined wheel, gearbox, and motor moments of inertia, kg.m.m
% mu---road/tire interface coefficient of friction
% cx---longitudinal tire stiffness, N/rad

% cy---lateral tire stiffness, N/rad

a=0.762;

b=0.6096;

c=(0.2286;

d=0.9144;

e=0.9144;

r=0.3048;

% a---distance from centre of mass to the front castor, m
% b---distance from baseline to the center of mass, m

% c---distance from center of mass to the linkage point, m
% d---leigth of baseline of the two rear wheels, m

% e---distance from the center of mass to the tool

%  operation point, m
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% r---tire radius, m

Kd=zeros(2,2);
Kd(1,1)=0.96;
Kd(2,2)=0.96;

Kp=zeros(2,2);
Kp(1,1) =0.16;
Kp(2,2) =0.16;

O=zeros(2,2);
I=zeros(2,2);
I(1,1)=1;
1(2,2)=1;

Q=[10;01];

B=[O O;0 OJ;

A=[O L;-Kp -KdJ;

P=are(A,B,Q)

BI=[O;1];

global pai gm Izz Itt mucx cy abcderroc Bt Kp Kd P BI;

tmax=4;
t0=0;tf=tmax*2*pai;

P%initial conditions
%x0=[001.1071 0000 07";
x0=[000.7854 0000 0],
%x0=[04000000],
%x0=[00000000];
%x0=[000.4636 0 0 00 0]';

uc=[0 07"

h=0.1;

im=(tf-t0)/h;

tc=t0;

xc=x0;

t(1)=t0;

x(1,:)=x0";

for i=2:1m+1
XX=XC;
tt=tc;
[tc,xc]=rk42_dyn(tt,xx,h,8);
t(i)=tc;
x(i,:)=xc'";
uc=control(tc,xc);
ucc(i,:)=uc";

end

%calculating reference path
for i=0:tmax*20*pai;
ti=0.1%*1;
tf(i+1)=ti;
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xff=refe_path(ti);
xxf(+1,:)=xff(:,1)";
end;

%calculating slippage
vslip=x(:,5)-b*x(:,6);
uleft=x(:,4)+(d/2)*x(:,6);
uright=x(:,4)-(d/2)*x(:,6);
ulslip=r*x(:,7)-uleft;
urslip=r*x(:,8)-uright;

%draw reference path and motion path
subplot(221),plot(x(:,2),x(:,1),xxf(:,2),xxf(:,1))
xlabel('y");

ylabel('x");

grid;

Yedraw orientation trajectory
subplot(222),plot(t(:),x(:,3),tf,xxf(:,3))
xlabel('t,sec");
ylabel('orientation,radian’);

grid;

Yodraw x(t) and y(t)
%subplot(223),plot(t(:),x(:,1),tf,xx{(:,1))
Joxlabel('t";

Yoylabel('x");

Dogrid;
%subplot(224),plot(t(:),x(:,2),tf,xx£(:,2))
Yoylabel('y");

%xlabel('t");

Yogrid;

%draw longitudinal and lateral slip
Josubplot(223),plot(t(:),ulslip,t(:),urslip);
%xlabel('time,second');
%ylabel('longitudinal slip,m/s');

Yogrid;

Josubplot(224),plot(t(:),vslip);
Yoxlabel('time,second');

%ylabel('lateral slip,m/s");

Pogrid;

% draw control inputs
subplot(223),plot(t(:),ucc(:,1));
xlabel('t,sec");

ylabel(‘input 1');

grid;
subplot(224),plot(t(:),ucc(:,2));
xlabel('t,sec");

ylabel('input 2');

grid;
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%
%rk4:function of Runge-Kutta method
function [t,x]=rk42_dyn(t0,x0,h,n)
x=zeros(n,1);

xt=zeros(n,1);

h2=h/2;

h6=h/6;

dxdt=diff_dyn(t0,x0);

th=t0+h2;

xt=x0+h2*dxdt;

dxt=diff_dyn(th,xt);

xt=x0+h2*dxt;

dxm=diff_dyn(th,xt);

xt=x0+h*dxm;

t=tO+h;

dxm=dxt+dxm;

dxt=diff_dyn(t,xt);
x=x0+h6*(dxdt+dxt+2.0*dxm);

%
% function qdot=diff_dyn(t,q)

% t:time

% q(8):state variables (x,y,fei,u,v,w_yaw,w_left,w_right)
function qdot=diff_dyn(t,q)

qdot=zeros(8,1);

Fx=[0 0 0]

Fy=[0 0 0]’

Ft=[0 0 0]';

Tw=[0 0];

% Ft:tool operation force (Fxt,Fyt,Fnt), Fnt=-Fzt
% Tw:torque applied to wheels (Tw_left, Tw_right)
% Fx:tire forces in x direction (Fx1,Fxr,Fxc)

% Fy:tire forces in y direction (FyL,Fyr,Fyc)

fei=q(3);
u=q(4);
v=q(5);
w_yaw=q(6);
w_left=q(7);
w_right=q(8);

Ft=toolforce(t);
Tw=control(t,q);

Fnt=Ft(3);
T_left=Tw(1);
T_right=Tw(2);

Fx=[0 0 0]';
Fy=[0 0 0T}

Fnc=(b*m*g-+(e-b)*Fnt)/(a-+b);
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Fn=(a*m*g-(a+e)*Fnt)/(a+b)/2;

u_left=u+w_yaw*d/2;
u_right=u-w_yaw*d/2;
v_slip=v-w_yaw*Db;

u_c=u;
v_c=v+a*w_yaw;

[Fx(1),Fy(1)]=tiredriven(u_left,v_slip,w_left,T_left,Fn);
[Fx(2),Fy(2)]=tiredriven(u_right,v_slip,w_right,T_right,Fn);
[Fx(3),Fy(3)]=castor(u_c,v_c,Fnc);

udot=(Fx(1)+Fx(2)+Fx(3)+Ft(1))/m+v*w_yaw;
vdot=(Fy(1)+Fy(2)+Fy(3)+Ft(2))/m-u*w_yaw;
wdot=(0.5*d*(Fx(1)-Fx(2))-b*(Fy(1)+Fy(2))+a*Fy(3)-e*Ft(2))/1zz;
xdot=cos(fei)*u-sin(fei)*v;

ydot=sin(fei)*u+cos(fei)*v;

w_ldot=(Tw(1)-Bt*w_left-r*Fx(1))/Itt;
w_rdot=(Tw(2)-Bt*w_right-r*Fx(2))/1tt;

qdot(1)=xdot;
qdot(2)=ydot;
qdot(3)=w_yaw;
qdot(4)=udot;
qdot(5)=vdot;
gdot(6)=wdot;
qdot(7)=w_ldot;
qdot(8)=w_rdot;

%
function Ft=toolforce(t)
% function for calculating the tool operational forces
% Ft=(Fxt,Fyt,Fnt)', Fnt=-Fzt
Ft=[0 0 0]’;
if t<=10,
Ft(1)=0;
Ft(2)=0;
Ft(3)=0;
else
Ft(1)=-200;
Ft(2)=0;
Ft(3)=0;
end;

%
%function [Fx_c,Fy_c]=castor(u_c,v_c,Fnc)
% for the caculation of castor resistance force
% u_c:longitudinal speed of the mobile robot
% v_c:lateral speed of the castor

function [Fx_c,Fy_c]=castor(u_c,v_c,Fnc)
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vv=sqrt(u_c*u_c+v_c*v_c);
if vv==0,
Fx_c=0;
Fy_c=0;
else
udir=u_c/vv;
vdir=v_c/vv;
Fx_c=-roc*udir*Fnc;
Fy_c=-roc*vdir*Fnc;
end

%

% function for calculation driven wheel tire friction model
% u_w:longitudianl speed of wheel axis

% u_w:lateral speed of wheel axis

% w_w:rotational angular speed of wheel

% T_w:torque applied on wheel

% Fn:normal speed apllied on wheel

% return in [Fx_w,Fy_w]

function [Fx_w,Fy_wl]=tiredriven(u_w,v_w,w_w,T_w,Fn)
if u_w==0,

if w_w==0,
Fx_w=T_w/r;
else
Fx_w=sign(w_w)*mu*Fn;
end;
if v_w==0,
Fy_w=0;
else
Fy_w= -sign(v_w)*mu*Fn;
end;
else
lamd=abs(v_w/u_w);
if w_w==0,
slip=1;
else

if w_w*u_w>0,
slip=1-r*w_w/u_w;
if slip<=-3,
slip=-3;
end;
else
slip=1;
end;
end;
clng=0.001*cx*Fn;
clat=0.001*cy*Fn;
scom=sqrt(slip*slip+lamd*lamd);
mudyn=mu*(1-0.0034*abs(u_w)*scom);
if mudyn<=0.7*mu,
mudyn=0.7*mu;
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end;
if slip==1,
ccll=sqrt(clng*clng+clat*clat*lamd*lamd);
if ccll<=0.000001,
ccll=0.000001;
end;
muf=mudyn*Fn;
Fx_w=-sign(u_w)*cIlng*muf/ccll;
Fy_w=-sign(v_w)*clat*muf*lamd/ccll;
else
Fxd=-sign(u_w)*clng*slip/(1-slip);
Fyd=-sign(v_w)*clat*lamd/(1-slip);
mud=sqrt(Fxd*Fxd+Fyd*Fyd)/Fn;
if mud<=mudyn/2,
Fx_w=Fxd;
Fy_w=Fyd;
else
mures=mudyn*(1-mudyn/mud/4);
Fx_w=Fxd*(mures/mud);
Fy_w=Fyd*(mures/mud);
end;
end;
end

%
% function for simulating the controller

% t:time

% q:state variables

% Tw=[T_left, T_right]' torque applied to wheels

function Tw=control(t,q)
dz=[0 0]';
Tw=[0 0]
ff=[0 07’;

z=[0 0],

ed=[0 0]’;

ep=[0 O]}
rqdot2=[0 0]';
rqdot=[0 0]
rq=[0 0]
oqp=[0 0]’;
oqdot=[0 0]';
qf=zeros(3,3);
Gp=zeros(2,2);
Dil=m*r*r+2*Itt;
D2=2%r*r*[zz+2*m*b*b*r*r+d*d*Itt;
fei=q(3);
u=q(4);

v=q(5);

w=q(6);
cosfei=cos(fei);
sinfei=sin(fei);
rD1=1/D1;
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rbdD2=r*b*d/D2;
Gp(1,1)=rD1*cosfei-rbdD2*sinfei;
Gp(1,2)=rD1*cosfei+rbdD2*sinfei;
Gp(2,1)=rD1*sinfei+rbdD2*cosfei;
Gp(2,2)=rD1*sinfei-rbdD2*cosfei;
IttD1=2*Itt/D1;
ID2=2*r*r*Izz+d*d*Itt)/D2;
ff(1)=-1ttD1*v*w*cosfei-IID2*u*w*sinfei;
ff(2)=-1ttD 1 *v*w*sinfei+IID2*u*w*cosfei;

oqdot(1)=u*cosfei-b*w*sinfei;
ogdot(2)=u*sinfei+b*w*cosfei,
ogp(1)=q(1);
oqp(2)=q(2);

gf=refe_path(t);
rqdot2(1)=qf(1,3);
rqdot2(2)=qf(2,3);
rqdot(1)=qf(1,2);
rqdot(2)=qf(2,2);
rq(1)=qf(1,1);
1q(2)=qf(2,1);

ed=oqdot-rqdot;
€p=0qp-1q;

Zvariable structure algorithm
dz=sliding(ed,ep);
z=rqdot2+dz;

Tw=inv(Gp)*(z-ff);

%

function dz=sliding(ed,ep)
dz=[0 0]’

LL=zeros(2,2);
LL(1,1)=0.4;
LL(2,2)=0.4;

SS=LL*ep+ed;
CAE=LI *ed;

ss=SS'*#SS;

vss=sqrt(ss);

if vss>0.1,
dd=2.5*SS/vss;

else

dd=2.5*%SS/0.1;
end
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dz=-CAE-dd;

%%

% refe:function for caculating the

% control reference;

% xf(i,1):position and orientation of
% reference path;

% x1(1,2):derivatives of reference path;
%

function xf=refe_on(t)

xf=zeros(3,3);

sint4=sin(t/4);
costd=cos(t/4);
cs=1+cost4;
cs2=1+cs*cs;

xf(1,1)=t;
xf(2,1)=t+4*sint4;
xf(3,1)=atan(cs);

xf(1,2)=1;
xf(2,2)=14+cost4;
xf(3,2)=-sint4/4/cs2;

xf(1,3)=0;
xf(2,3)=-(1/4)*sint4;

xf(3,3)=-(1/16)*(costd*cs2+2*sint4d*sint4d*cost4)/cs2/cs2;
%@Q@EPREROPERARARAPRAALREAPARAPARAPPOPEPAPREREE@
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