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ABSTRACT

This document reports on the development of the Tethered Mobile Robot (TMR) at the
Advanced Highway Maintenance and Construction Technology (AHMCT) Center at the
University of California, Davis. This application of automation has the primary objective of
improving the level of safety of a variety of highway maintenance and construction activities.

The TMR system is a self-propelled wheeled mobile robot that works in close proximity to a
support vehicle for purposes of power, etc. The robot's position relative to the support vehicle is
measured with high accuracy. As such, the support vehicle contains the associated maintenance
supplies (sealant, etc.), power supply (hydraulic power supply, electrical generator, etc.), and, in
many cases, the primary maintenance operation sensing devices (e.g., machine vision for crack
sealing operations) and/or path planning components.

The TMR project has involved the following: a detailed literature search, development of
global machine specifications, development of system design concept, and the design and
construction of a downsized prototype TMR for the initial development of both the mechanical
system and the required controls. This was followed with the evaluation of the first generation
prototype, which led to the design and construction of a full-sized prototype TMR and relative
position system. This report addresses each of the development aspects, and includes discussions
of operational requirements, system configuration, system modeling, downsized system testing,
control system architecture and approach, and test results of the full-size unit. Technical
drawings are included as are control software listings. Finally, recommendations for further

work are discussed.
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EXECUTIVE SUMMARY

Many highway maintenance operations involve the use of materials and tooling within close
proximity to a support vehicle. Other operations involve the use of tools which are powered by a
supply on the support vehicle, etc. Considering the weight of many road maintenance devices,
such as routers, and the forces that occur during their operation, the use of conventional
robot/end effectors is not possible. Highway maintenance activities almost always require an
end-effector to follow a specific path as opposed to merely moving from one location to another
without path following requirements as in most manufacturing automation applications. Another
aspect relates to the fact that most highway maintenance operations require the specific
placement of the device relative to the pavement (e.g., paint nozzles, routers, etc.), which
additionally complicates the use of conventional robots.

Accordingly, unique concepts have been developed to overcome the inherent disadvantages
of the use of conventional robots for highway maintenance operations. This document reports on
the development of the Tethered Mobile Robot (TMR) at the Advanced Highway Maintenance
and Construction Technology (AHMCT) Center at the University of California, Davis. The
TMR involves the use of a self-propelled robot working in close proximity to a support vehicle
for purposes of power, etc., and allowing for the measurement of the robot's position relative to
the support vehicle with high accuracy. As such, the support vehicle contains the associated
maintenance supplies (sealant, etc.), power supply (hydraulic power supply, electrical generator,
etc.), and, in many cases, the primary maintenance operation sensing devices (e.g., machine
vision for crack sealing operations). Furthermore, a support system accurately determines the
location of the robot relative to the support vehicle.

This development effort has involved a detailed literature search (Kochekali and Velinsky,
1994), development of global machine specifications, development of system design concept
(Winters and Velinsky, 1992; Winters, et al., 1994), design and construction of a downsized

prototype TMR for the initial development of both the mechanical system and the required
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controls (Hong, et al., 1994a), and design and construction of a full-size prototype TMR and
relative position system. Additionally, significant effort has addressed both control issues
(Zhang and Velinsky, 1994a & 1994b; Hong, 1994a; Hong, et al., 1994b) and accurate dynamic
modeling of such a wheeeled mobile robot (Boyden and Velinsky, 1993, 1994a, 1994b). In the
TMR development, we have used the crack sealing task as the primary application. Accordingly,
a mobile robot sized to carry the sealant dispenser was developed, and the control algorithms are
highly related to crack following.

This document concisely reviews some of the important aspects of the TMR system
development. The opefational requirements are first presented. Next, the TMR configuration is
discussed in detail, including the unique controller hardware configuration. A passive linkage is
one of the approaches employed for measuring the robot's position with respect to the support
vehicle, and design details are presented including error analysis.

A downsized TMR was built to examine the configuration and to perform initial control
system development. Test results of this system are presented. Since the TMR differs from
previously researched wheeled mobile robots due to the anticipated high loads, detailed dynamic
modeling has been part of this study. Herein, the important features of the devloped models are
discussed as are model limitations.

Due to the unique nature of the TMR and its potential applications, much effort has gone
towards the development of control algorithms. There are three basic modes of TMR control.
The first is Manual Control with Joystick performed by a human operator. This control mode
can be used for cases when the operator needs to manually place the TMR at a specific position
or for manual path tracing of the TMR. The second is Automatic Trajectory Tracking Control.
Using this mode, the TMR can automatically track a specific path without any manual
operations. The reference path for this mode can be a pre-defined curve in a computer file.
Also, the path can be generated with a real-time sensor, laser range finding sensor for the crack
sealing operation for example, which forms a sensor-based real-time navigation problem. The

third mode is Robust TMR Velocity Control. Many highway maintenance operations require a
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control system that is very robust to external force disturbances, which are hard to estimate. The
important features of the control algorithms are presented, and detailed testing of the TMR for
the first two modes is additionally reported. Finally, recommendations for future development

efforts are presented.
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CHAPTER 1
INTRODUCTION

Many highway maintenance operations involve the use of materials and tooling within close
proximity to a support vehicle. For example, crack sealing operations involve maintenance
personnel dispensing sealant from a wand that is attached to a vehicle housing the sealant melter.
Other operations involve the use of tools, which are powered by a supply on the support vehicle,
etc. While the use of conventional robots seems at first consistent with many of the positional
requirements of maintenance tasks, their use is hindered due to several reasons. First and
foremost, commercial robots have relatively low load carrying capacity relative to their weight.
Considering the weight of many road maintenance devices, such as routers, and the forces that
occur during their operation, the use of conventional robot/end effectors is not possible.
Highway maintenance activities almost always require an end-effector to follow a specific path
as opposed to merely moving from one location to another without path following requirements
as in most manufacturing automation applications. Another aspect relates to the fact that most
highway maintenance operations require the specific placement of the device relative to the
pavement (e.g., paint nozzles, routers, etc.), which additionally complicates the use of
conventional fobots.

Accordingly, unique concepts have been developed to overcome the inherent disadvantages
of the use of conventional robots for highway maintenance operations. A prime example is the
positioning system concept used on the Automated Crack Sealing Machine developed through
the Strategic Highway Research Program's SHRP H-107A project (Velinsky, 1993). In this
concept, a conventional SCARA manipulator was inverted and mounted on a linear slide to
provide a redundant degree of freedom allowing the manipulator to avoid singular positions in its
motion and move through any prescribed path in its dexterous workspace. In a routing
configuration, the SCARA manipulator is used to guide process carts over the pavement along

specific paths (following cracks). Such an approach provides accurate and consistent relative
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positioning between the maintenance device and the pavement, and additionally relieves the
manipulator of the burden of carrying the weight of that maintenance device. The
robot/slideway's use is restricted to the movement of the carts within a plane, and the
determination of the carts' location through the robot joint positioning. One problem is that the
mechanical advantage of the robot is dependent on its joint positions.

A natura] evolution of the SHRP H-107A concept involves the use of self-propelled robot
working in close proximity to a support vehicle for purposes of power, etc., and allowing for the
measurement of the robot's position relative to the support vehicle with high accuracy. As such,
the support vehicle would contain the associated maintenance supplies (sealant, etc.), power
supply (hydraulic power supply, electrical generator, etc.), and in many cases the primary
maintenance operation sensing devices (e.g., machine vision for crack sealing operations). The
Tethered Mobile Robot (TMR) concept was thus developed which involves the supply of
necessary maintenance materials and power through a tether to the support vehicle. Furthermore
a support system accurately determines the location of the robot relative to the support vehicle,
and this relative position system could be based on any of a variety of technologies; i.e., it could
be through a mechanical connection (e.g., linkage), an optical connection, etc.

The TMR project has developed such a system. This development effort has involved a
detailed literature search (Kochekali and Velinsky, 1994), development of global machine
specifications, development of system design concept (Winters and Velinsky, 1992; Winters, et
al., 1994), design and construction of a downsized prototype TMR for the initial development of
both the mechanical system and the required controls (Hong, et al., 1994a), and design and
construction of a full-size prototype TMR and relative position system. Additionally, significant
effort has addressed both control issues (Zhang and Velinsky, 1994a & 1994b; Hong, 1994;
Hong, et al., 1994b) and accurate dynamic modeling of such a robot (Boyden and Velinsky,
1993, 1994a, 1994b). In the TMR development, we have used the crack sealing task as the
primary application. Accordingly, a mobile robot sized to carry the sealant dispenser was

developed, and the control algorithms are highly related to crack following.
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This document concisely reviews some of the important aspects during the TMR system
development. The interested reader is referred to Boyden and Velinsky (1993), Hong (1994),
Kochekali and Velinsky (1994), Winters and Velinsky (1992), and Zhang and Velinsky (1994b),
which are detailed interim reports of this project and provide significant detail on all of the areas

covered.
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CHAPTER 2
OPERATIONAL REQUIREMENTS

2.1 Introduction

The objectives of the Tethered Mobile Robot (TMR) are as follows: self-propelling,
controllable, robust, and compact, with the ability to accurately follow a designated path. Since
the TMR will be used primarily on asphalt and/or concrete roadways, which are considered fairly
smooth and hard surfaces, only wheels for self-propelling will be considered. This is because
wheels are much more energy efficient than legged or treaded concepts under these conditions
(Muir and Neuman, 1987). The cart must be steerable, being able to follow a defined path in the
roadway. The ability to control the position, velocity, and acceleration of the cart is a must.
Robustness, the ability to attenuate disturbances, is also of prime importance. Disturbances, such
as irregular surfaces and sealant affixations (for highway maintenance), must not affect the

TMR's performance.

2.2 Tractive Force Ability

In order for the TMR to be self-propelled, it must be able to produce enough tractive force
(between the drive wheels and contact surface) to counteract the tool's resultant force (for
highway maintenance) and other applied loads, while still accelerating the TMR to proper
speeds. For example, during the routing operation, the resultant force from the router's blade is
approximately 200 1bf (890 N) in the direction opposing the forward motion. Additionally, the
total normal force necessary to ensure proper pavement cutting is approximately 500 1bf (2224
N). From this information and assuming an adequate acceleration and minimal tire slip, the
minimum tire tractive force needed to propel the cart is about 300 Ibf (1334 N); i.e., 200 Ib (890
N) to overcome the router force plus 100 Ibf (445 N) for .2 g acceleration of the 500 Ibf (2224 N)

vehicle.
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2.3 Robustness

Robustness, as defined here, will mean the ability of the wheel configuration (and wheels) to
handle disturbances and irregularities without effecting the TMR's overall performance. In
addition to the wheel configuration, the other components, such as control hardware, tracking
sensors, etc., must also exhibit this characteristic. In highway maintenance work, wheel
disturbances will consist of, but are not limited to problems with paint and sealant making

contact with the wheel and the ability to travel on irregular surfaces, such as roadways.

2.4 Controllability

Although the TMR is expected to move at relatively slow speeds, the forces acting upon it
may be high. As such, the method of ignoring vehicle dynamics, which is used widely in control
strategies for automatic guided vehicles (AGV's) due to their low speeds and accelerations
(Smith and Starkey, 1991), is not valid; this subject has been studied in detail as part of this
project (Boyden & Velinsky, 1993, 1994a, 1994b). Furthermore, actuating the different wheel
configurations may be difficult depending upon the selected approach; e.g., ball wheels are

difficult to actuate.

2.5 Versatility
In order to be able to perform a wide variety of highway maintenance tasks, the TMR should
operate in several control modes, including: operator joystick control, local sensor based

feedback control, and planned path control.
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CHAPTER 3
TMR CONFIGURATION

3.1 Introduction
The TMR's configuration includes the configurations of the wheels, tracking system,

sensing, and controls, all of which are discussed below.

3.2 Wheel/Robot Configuration

Many wheeled mobile robot architectures have been discussed in detail (e.g., Muir and
Neuman, 1987; Alexander and Maddocks, 1989; Feng and Krough, 1991). Of the many wheel
configurations, three main wheel types have been used: conventional, omnidirectional, and ball
wheels.

Gentile and Mangialardi (1992) have classified conventional wheeled mobile robots with
three or more wheels into nine configurations, and they have discussed the characteristics of
each. The conventional wheeled mobile robot is the simplest to construct, and this type of
configuration generally allows for two degrees of freedom (DOF) in travel. Both the
omnidirectional wheel and the ball wheel allow for three DOF. However, these are generally
much more difficult to construct and/or actuate‘than conventional wheels.

The TMR configuration must allow for common highway maintenance operations. The
most challenging task and that closest to application is pavement routing. This provides two
main constraints to the system configuration selection. First, the TMR must always allow for the
router to move tangent to the path for proper cutting, and secondly, the TMR's wheel
configuration must produce enough tractive force to overcome the routing blade's resultant force.

The tractive force ability of each wheel configuration is a determining factor concerning the
efficiency of each configuration. If the wheel configuration cannot produce enough tractive

force for our application, it is not practical. Of the various configurations considered, it was
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concluded that all systems which use some type of pneumatic or semi-pneumatic tire could
produce adequate force, and all other non-compliant (plastics, metal, etc.) tires would most likely
not. It was further determined that the conventional wheel configuration is more robust than the
omnidirectional configuration when considering surface irregularities and sealant problems.

The wheel configuration selected is most similar to that of a previous design noted as Newt
(see Muir and Neuman, 1987). The TMR has front caster(s) and two parallel driven rear wheels.
The TMR is differentially steered, that is, the drive wheels are driven at different speeds to cause
the vehicle to steer. Such a system has two DOF and it can follow a path in a plane, but has
singularities in its workspace. The configuration does not allow for motion perpendicular to the
rear wheels' centerline. Accordingly, added path planning, for example, will be required to place

the robot at the start of a crack.

3.3 Tracking System Configuration
In order to control the position and path trajectory of the TMR, the spatial position must be
known very accurately. Based on the nature of crack sealing and other maintenance operations
and the intended use of the TMR, the primary sensing system will be housed on the support
vehicle, and it will only be necessary to locate the relative position of the TMR. Tracking
- devices for autonomous and semi-autonomous vehicles have been discussed extensively in the
literature. The majority of autonomous and semi-autonomous vehicles use dead reckoning as
their tracking method, while other systems include vision systems, infrared systems, sonar
systems, and knowledge based systems (McGillem and Rappaport, 1988; Sugimoto, et al., 1988;
Smith and Starkey, 1991; Zelinsky, 1991; Dainis and Juberts, 1985). Of these methods, the
equipment cost for dead reckoning is lowest, but it suffers from error accumulation, and such
error accumulation would be greatly amplified based on the high tractive forces that will be
necessary to accomplish the maintenance tasks of interest.
An alternative approach to the electric/electronic methods noted could be the use of a

mechanical linkage between the support vehicle and the Tethered Mobile Robot. In this
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configuration, ideally, no forces are applied to the linkage which freely follows the motion of the
TMR. The linkage system, is a passive device which allows the TMR to be tracked very
accurately. It should be noted that the concept of tethering the mobile robot to a support vehicle
through the use of a linkage for position measurement has not been discussed in the literature,
although water and air based systems have used umbilical cords as a method of tethering
vehicles. The main advantage of the linkage arrangement is its absolute positioning
determination, without error accumulation. Another advantage is that it provides a means of
running power and other needed cables to the TMR from the support vehicle. The disadvantages
of this system would be the possible errors involved, such as linkage deflection and resolution
which could not be taken into account easily.

After examining the different possibilities in tracking the TMR, it was determined that the
popular methods, such as dead reckoning, infrared optics, and sonar would not meet the needed
accuracy and reliability of the tracking system requirements. Therefore, the initial design
concept chosen has the TMR connected to the support vehicle via a mechanical linkage. Since
the TMR has self-driving capabilities, passive elements without driving capabilities are adequate
for the linkage system which can be adapted to handle irregular road surfaces and a wide range
of workspaces. The general configuration of the planar linkage has an encoder mounted on each
joint in order to calculate the relative position of the TMR to the support vehicle. The TMR
system concept configuration is depicted in Figure 3-1, and the robot configuration is shown in
Figure 3-2.

We have also been testing the use of triangulation via linear encoders. In this approach, we
measure relative position of the robot from two different locations on the support vehicle. It is
likely that a combination of the techniques may be employed to add redundancy to the system.
Additionally, a laser range finder based sensor is employed to profile the surface in the vicinity
of cracks, and this sensor then provides feedback allowing the TMR to follow the crack's path.
In this project, the laser range sensor was purchased, which has a significantly larger field of

view than that used in the Automated Crack Sealing Machine developed in SHRP H-107A.
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10

Figure 3-3 is a diagram of the TMR showing the configuration of the linkage and linear
transducers. The laser range finder based local sensor is additionally depicted on the robot. The
prototype TMR system is shown in Figure 3-4. Figure 3-5 is a close-up view of the local sensor
on the TMR. Appendix A includes detailed drawings of linear transducer components, linkage
system components, and system mounts. Numerous components have been purchased

commercially, and Appendix B is a list of the most critical commercially purchased components.
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Figure 3-3. TMR Schematic
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Figure 3-5. Close-up View of the Local Sensor on the TMR

3.4 Control System Configuration

The newest method for controller hardware is that of Application Specific Integrated Circuit
(ASIC) technology. This high density semiconductor design method provides a highly integrated
microelectronics component for industrial use, which resulté in higher reliability, lower cost and
compactness of the control equipment. Besides the compaction of hardware, these newer
controllers allow flexible implementation of software for control purposes (Yamazaki and
Numazawa, 1990). The control system configuration, shown in Figure 3-6, is based on this new

technology.
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Figure 3-6. General Control System Configuration

In one method of operation, the initial location of the TMR will be based on the assumed
crack starting position as determined by vision system data and the Integration and Control Unit
(ICU) of the Automated Crack Sealing Machine. Actual placement of the TMR will occur
through the control of each wheels. The local sensor, located at the front of the TMR, determines
exact crack position and provides this data to the robot controller, which then places the TMR on
this crack position. The control system consists of the robot controller, the actuators that drive
the TMR wheels, the actuator controllers, and the corresponding control algorithms and software.

The 80486-based robot controller produces the control commands of the actuators by
performing the motion kinematics, path planning, display functions, and information transfer to
each actuator controller through ISA bus connection. Linkage joint angle data is provided by the
optical encoders, and with this data, the posture vector (that is defined as a row vector containing
the x-y position and the angular lotation of the TMR) are calculated. The posture vector is fed
back to the tracking control to produce appropriate control input commands. Based on their
superior performance, brushless DC (BLDC) motors are used to drive the TMR wheels, and gear
reduction is employed to achieve high wheel torque.

The current state-of-the-art in motor control technology, Flexible Servo Control (FSC),

directly controls each driving motor (Yamazaki, et al., 1987; Yamazaki, et al., 1988). The FSC

Copyright 2011, AHMCT Research Center, UC Davis
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has been developed by using the ASIC (Application Specific Integrated Circuit) technology and
can do the current loop servo control calculation, including the feed forward control within 60
microseconds. This technology has been modified for use in the TMR as discussed in Hong, et
al. (1994a, 1994b).

The motor controller employs multi-loop feedback with the use of two sensors: a Hall sensor
to detect the current and an incremental optical encoder to detect the position and velocity. Once
a position command is given for generating a motion, the position loop controller calculates a
velocity command so as to eliminate the position error. This velocity command is supplied to the
velocity loop, and, having a similar control treatment in the velocity loop and in the current loop,
the final voltage output is supplied via the PWM (Pulse Width Modulation) circuit to the motor.
The velocity controller controls the velocity of the rotor inertia and compensates for external
forces, such as frictional forces, load forces, etc. The current controller controls the current in
the R-L circuit and compensates for the back electromotive force generated inside the motor

proportional to the motor velocity.
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CHAPTER 4
LINKAGE/WORKSPACE CONSIDERATIONS

In designing the configuration for the linkage system, initially, some general constraints for
the workspace had to be addressed. It was decided that two main workspace areas would be
needed in order to have a versatile and usable highway maintenance system; one is 12 ft (3.7 m)
wide, allowing the system to address a full lane width, and the second is 8 ft (2.4 m) wide,
confining work to fall behind the transport vehicle and within its width, but of greater depth than
the first area. The linkage system needs to be stored easily within the confines of the truck and
the linkage must not have any singularity points within the workspace. Based on an extensive
literature review and on the planar nature of the linkage, a general serial two degree of freedom
manipulator, which would allow the largest usable work area and the simplest configuration, was
selected. The manipulator link lengths are eéual and each joint allows approximately 360
degrees of rotation without restriction. The design method of Gosselin and Guillot (1991) was
then employed to arrive at an optimal 7 ft (2.1 m) total linkage length (3.5 ft [1.07 m] for each
link). This corresponds to a workspace with a total area of 153 ft2 (14.2 m2), and the defined
workspaces of 12 ft (3.7 m) and 8 ft (2.4 m) having depths of 3.6 ft (1.1 m) and 5.7 ft (1.7 m),
respectively. |

In order to properly size and design the linkage, one must understand the general bias or
systematic errors. These errors include items such as calibration errors, deformation errors, and
limitations of system resolution to name a few. Generally, the tooling of the TMR will be
required to operate in specific locations in Cartesian space. As such, the limitations imposed
upon the Cartesian coordinates by system resolution follows.

For a simple planar two degree of freedom manipulator, the uncertainty, Y,,..,., in the end

effector ordinate, y, is expressed as

Y —_ Yerror

uncert.
y
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_ }cos(6,)66, + 8l sin(6,) + 1, cos(6, +6,)(66, + 66,) + 61, sin(6, + 6,)
Isin(6,)+ 1L, sin(6, + 6,)

4.1)

where: 6,,60, = link angles, [,l, = link lengths, 6l = discrete uncertainty of link I, &I, =
discrete uncertainty of link [,, 66, = discrete uncertainty of angle 6,, and 66, = discrete

uncertainty of angle 6,.

Evaluating Eqn. (4.1) numerically will give a general description of the uncertainty for a

given set of parameters. A corresponding x-component error can similarly be written as

X' —_ Xerror

uncert. x
_ —1;sin(6,)60, + 61, cos(0,) — 1, sin(6, + 6,)(66, + 86,) + 61, cos(b, + 6,)
L cos(6,)+1,cos(6, + 6,) '

(4.2)

Equations (4.1) and (4.2) can now be used to show the positional uncertainty as a function of
angular orientation. Values for the encoders and the link length uncertainties must be included to

determine the actual values.
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CHAPTER 5
PHYSICAL MODEL CONCEPT TESTING

A scaled-down physical model of the TMR was built in order to examine the performance of
the controllers, kinematics, and path trajectories. The down-sized TMR wheel configuration
chosen is similar to a tricycle having two driven wheels at one end and one passive castor at the
other. The main frame of the TMR prototype is made of aluminum and is approximately 7.1 in
(18 cm) wide by 9.8 in (25 cm) long. Attached to the frame are two D.C. motors that are
connected to the two driven wheels. The wheels are aluminum and employ very tractive type
tires with radii equal to 1.16 in (2.95 cm). The track width of the driven wheels is approximately
8.3 in (21 cm) and the castor is located 5.3 in (13.5 cm) from the driven wheels. Stated
otherwise, this configuration has two diametrically opposed drive wheels and a single free-
rolling castor. This general configuration will allow two dimensional motion; therefore, any path
in a plane may be traced.

The down-sized TMR was exercised in both open loop and closed loop tests. The main
purpose of the open-loop testing was to determine how well the TMR's trajectory, under constant
velocity, followed the theoretical path derived using the same velocities. The closed loop test
showed the TMR's ability to follow a defined path given simulated error data similar to that
provided by the local sensor in the actual system. In the closed-loop test, the tracking system
(linkage) was ignored, and supplemented with dead reckoning as the means of positional
information; this did not cause any significant errors due to the short duration of each test.

Figure 5-1 shows the results from a closed loop test which used a sinusoidal reference for
simulated local sensor data. Overall the TMR tracked the reference very well (errors are
sufficiently small that they are not visible in the figure), showing only minor errors while turning
sharp corners, and proving the basic validity of the approach. These errors could possibly be

reduced by adjusting the control gains or using a better algorithm.
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CHAPTER 6
DYNAMIC MODELS

A significant amount of research is being done and has been published on the subject of
Wheeled Mobile Robots (WMRs). Of this work, a great deal is dedicated toward the
development of control strategies for tracking WMRs and for the generation of path planning
techniques. A fundamental aspect of research in this area involves the manner in which the
WMR's position and orientation is tracked. Most researchers have used kinematic models to
accomplish this task (Segovia et al., 1991; Alexander and Maddocks, 1989), arguing that because
of the low speeds, low accelerations, and lightly loaded conditions under which WMRs operate,
these kinematic models are valid. However, as WMRs are designed to perform heavy duty work
and travel at higher speeds, dynamic modeling of these vehicles becomes increasingly important.
A few researchers have derived dynamic models for wheeled mobile robots (Hemami et al.,
1990; Hamdy and Badreddin, 1992), but for large, high load vehicles these models may not be
valid due to imposed restrictions and potentially inaccurate tire models. As such, during the
course of the TMR project, the importance of dynamic modeling of WMRs and the
determination under which conditions it is necessary to use a complex tire model for high load
applications has been investigated (Boyden & Velinsky, 1993, 1994a, 1994b).

The work of Boyden and Velinsky shows the importance and significance of dynamic
modeling of wheeled mobile robots for high load applications. The kinematic model, which is
the method most researchers have used to track WMRs, was compared to a dynamic model
through computer simulation. For both differentially and conventionally steered WMRs, it was
found that a kinematic model cannot accurately predict the position and orientation of a 'working'
WMR under almost any conditions. Use of the kinematic model must be limited to lightweight
vehicles that operate under very low speeds, very low accelerations, and under lightly loaded
conditions. From these results, it is concluded that dynamic modeling of any 'working' WMR is

absolutely necessary and a kinematic representation should never even be considered.
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The kinematic model is also used to track the position of real vehicles by measuring wheel
speeds directly, a process called dead reckoning. It has been shown that for both differentially
and conventionally steered WMRs, the potential error associated with this method is large, even
when the tires are producing forces at only a fraction of their friction potential, where dead
reckoning is generally assumed to be relatively accurate. This demonstrates that vehicle tracking
through the use of dead reckoning for a WMR when wheel speeds are measured off of the
driving wheels is much less accurate than commonly assumed. As such, dead reckoning is only
valid on small, lightweight vehicles that operate under very low speeds, very low accelerations,
and are lightly loaded.

Another aspect of this work was to determine the importance of using a complex tire
representation when dynamically modeling a WMR. A dynamic model without a tire model was
created to investigate this. For differentially steered vehicles, this dynamic (without tire) model
was surprisingly accurate, even approaching the friction limits of the tires. A complete and
accurate tire model (such as the Dugoff tire model) is irreplaceable for any complete dynamic
model that may encounter situations where the tire limits are approached or reached. However,
for a differentially steered WMR which is known to stay well within the traction limits of the
tires, very simple tire models can be used with excellent accuracy. A reasonable rule of thumb
for differentially steered WMRs is as follows: if the WMR is known to stay within 50% of the
tire traction limits, simple tire models (or no tire model) provide excellent accuracy and can be
used with confidence; if the WMR is expected to exceed 50% of the traction limits, a more
accurate tire model (one that incorporates the friction circle concept) is in order to ensure
accurate simulation results.

For conventionally steered WMRs, the dynamic (without tire) model was only accurate to a
fraction of the tire friction limits. In fact, the dynamic (without tire) model had an accuracy
range similar to that of the dead reckoning method. Because the limits of accuracy were found to
be at such low tire friction levels, it is suggested that dynamic modeling incorporating the use of

an accurate tire model should always be used when simulating conventionally steered wheeled
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mobile robots. This result is expected since a tire develops force through slip which is

significant in high load conditions.
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CHAPTER 7
CONTROL ALGORITHMS

Since the TMR is a differentially steered wheeled mobile robot, control algorithms specific
to this type of configuration have been investigated. Two detailed reports have been generated
(Zhang and Velinsky, 1994b; Hong, 1994), and to follow is a synopsis of the subject.

The development of a control algorithm is always based on a mathematical model, and
kinematic and dynamic models of WMRs have been studied by many authors. Muir and
Neuman (1987), and Alexander and Maddocks (1990) studied the general WMR kinematics
problem. Hamdy and Badreddin (1992), and Boyden and Velinsky (1994a & 1994b) developed
dynamic models for WMRs. Related to control algorithm research, various approaches have
been taken for the development of tracking control algorithms from PID types to fuzzy and
neural network approaches. The knowledge-based algorithms are mainly suitable for real
environment guidance type problems. However, for the problem of accurate path tracking
control, kinematic or dynamic model based control algorithms are essential. For actual
applications, the dynamic model of a WMR may contain considerable uncertainty arising from
the driven force and payload, and furthermore, the computational complexity of a dynamics
model is considerable.

Accordingly, kinematic models have played an important role in WMR control algorithm
development. Kanayama, Nilipour, and Lelm (1988) proposed a PID control algorithm for
WMR tracking control. The kinematic model was used to transform the posture error in world-
coordinates to robot-fixed coordinates. A similar control algorithm was developed by Lee and
Williams (1993). Kanayama, et al. (1990) proposed a nonlinear control algorithm based on a
kinematic model, and they also gave a proof of the stability of the algorithm. Winters and
Velinsky (1992) used a PID based control algorithm on a WMR tracking control study, and this

included both simulation and experiment on their prototype "Tethered Mobile Robot."
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Taking the kinematic features as a basis, the influence of WMR kinematics on tracking
control performance was studied in Zhang and Velinsky, 1994a. Based on its inherent
kinematics, the control structure of a differentially steered wheeled mobile robot (WMR) was
studied. A global exponentially convergent control algorithm and a globally convergent tracking
control algorithm were developed according to the position of the tracking point on the robot.
These algorithms can track any differentiable reference path with zero steady-state error. An
orientation equation under the condition of exact position tracking was proposed, and the
fundamental relation between position tracking and orientation tracking was given. When the
control system exactly tracks a reference path, the orientation of the WMR is completely
determined by the location of the tracking point on the robot, and its desired speed and
acceleration along the reference path. Examples have illustrated the position tracking control
ability and orientation behavior of the developed control algorithms. Finally, it can be concluded
that the exact tracking of position and orientation concurrently is not possible except for the
special case when the tracking point is on the center of the baseline of the WMR.

Although dynamic model based tracking control algorithm is vital for accurate tracking
control of wheeled mobile robots, it is impossible to use a full dynamic model for the control
system design because of the computational complexity. Also described in Zhang and Velinsky
(1994b), a systematic method for the dynamic model based tracking control algorithm for
differentially driven wheeled mobile robots was developed. This method ensures the application
of the nonlinear robust control system design method to the dynamic model based tracking
control problem of wheeled mobile robots. On the basis of a full dynamic model, a reduced
order dynamic model was developed and the influence of uncertainty was analyzed. This led to a
tracking control algorithm which is exponentially convergent and robust to both unmodeled
dynamics and external disturbances while maintaining the calculation simplicity. Numerical
simulations showed the tracking control ability under uncertainties, such as unmodeled dynamics

and payload disturbances.
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Concurrently, Hong (1994) reports on the control issues which are briefly discussed below.
In order to cope with all possible situations that the TMR would meet for highway maintenance
operations, three different modules were proposed for the TMR control system. The first is
Manual Control with Joystick performed by a human operator. This control mode can be used
for cases when the operator needs to manually place the TMR at a specific position or for manual
path tracing of the TMR. The second is Automatic Trajectory Tracking Control. Using this
mode, the TMR can automatically track a specific path without any manual operations. The
reference path for this mode can be a pre-defined curve in a computer file. The roadway sign
stenciling, for example, needs a sequence of pre-defined reference path commands to draw a pre-
defined roadway sign. Also, the path can be generated with a real-time sensor, such as a laser
range finding sensor for the crack sealing operation, which forms a sensor based real-time
navigation problem. The third mode is Robust TMR Velocity Control. Many highway
maintenance operations require a control system that is very robust to external force disturbances
that are hard to estimate. The routing process for the crack sealing operation is a good example.
The routing force is difficult to predict and also severely fluctuates during the process.

A new path tracking control algorithm for a 2 DOF differentially steered mobile robot is
presented for the Automatic Trajectory Tracking Control and its exponential stability is proven in
this research. There has been no research that has applied the feedback linearization method for
non-holonomic mobile robot control due to the non-square nature of the governing equations of
motion. A new idea is proposed to overcome the inherent problem and an exponentially stable
non-linear control law is successfully derived using the feedback linearization. This
exponentially stable control algorithm would be more appropriate to the applications to highway
maintenance operations than the control algorithms developed for general purpose mobile robots.

In the TMR control, the biggest concerns are the non-linear terms due to centrifugal forces
and the routing force that is very hard to estimate. However, the upper and lower bounds of the
fluctuating routing force can be estimated using an appropriate experimental method. Therefore,

the robust control using the sliding mode technique is very appropriate for the TMR control
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problem. Much research has been conducted about wheeled mobile robot control, but there have
not been any papers concerning the application of sliding mode control to the wheeled mobile
robot. In this research, sliding mode control for the wheeled mobile robot is formulated.

To implement the developed algorithms, a new mobile robot controller is optimally designed
using an 80486 CPU and the motor controller equipped with the Flexible Servo Controller ASIC
(Application Specific Integrated Circuit) chip developed by de Schepper, et al., 1990. The motor
controller is the most important part in the TMR controller hardware. The motor controller board
is designed with the Flexible Servo Controller (FSC) chip and fabricated using the printed circuit
board CAD software (OrCAD). The TMR controller has the unique feature of utilizing the
advantages of the servo motor controller board equipped with the FSC.

Appendix C provides the circuit diagrams for the servo motor controller in addition to the
printed circuit board traces. Appendix D provides software listings of Hong's control programs.
The flow charts of the main program and some important subroutines are shown in the Figure 7-

1. The other control software listings appear in Zhang and Velinsky, 1994b.
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Figure 7-1a. Flow Chart of Control Program, Main Program
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Figure 7-1b. Flow Chart of Control Program, Tracking Control
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Figure 7-1c. Flow Chart of Control Program, Get Current Posture of TMR
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Figure 7-1e. Flow Chart of Control Program, Tracking Control with Laser
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CHAPTER 8
EXPERIMENTAL RESULTS

8.1 Introduction

The developed tracking control law is implemented with the TMR platform and controller
discussed earlier. Additional detail of the TMR controller hardware used is explained in Hong,
1994.
8.2 Manual Control with Joystick

The Manual Control with Joystick is successfully implemented with the TMR controller.
The joystick is connected to the game port of the 80486 computer. The game port can be read
using DOS BIOS interrupt routines. The joystick values are converted to the linear velocity and
the angular velocity. These velocity commands are then filtered with a second order Butterworth
filter. These filtered velocity commands are sent to the motor controller boards through the ISA
bus interface. The position and orientation of the TMR are displayed on the screen. The control
sampling time was about 0.029 second including the display. Figure 8-1 shows an experimental
result of Manual Control with Joystick. The plot in the figure contains the unfiltered velocity
command that is transformed with the joystick output, its filtered velocity command, and the real
command following for the left wheel. The control algorithm for the wheel motor control is the
Proportional and Integral (PI) control law. The performance of the joystick control was good
when the proportional control gain was set to 20000 and the integral control gain to 1500.
8.3 Automatic Trajectory Tracking Control

The Automatic Trajectory Tracking Control mode is also implemented with the TMR
platform and controller. The TMR control software consists of two levels, robot control and
actuator (BLDC motor) control as shown in Figure 8-2. The flexible servo motor control board
performs motor current and speed regulations. The TMR tracking control law resides in the

80486 machine. The TMR tracking control law produces the speed commands for each driving
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Figure 8-1. Joystick Control Example
Joystick command following of the left wheel when K,=20000, K,=1500, solid: unfiltered

reference command from joystick, dashed: filtered reference command, dashdot: actual response
of the left wheel motor.
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Figure 8-2. TMR Control System Software Structure
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wheels and sends them to the servo motor controller. The speed command is controlled using the
PI control algorithm with fast sampling time, 500 ps, in the servo motor controller.

The reference table method for a reference posture is applied for the tracking control
performance test. The reference posture is generated in an off-line program and stored in a disk
file. Then, this reference posture is read every control sampling time within the tracking control
program. There are two purposes for which this table reference method is tested. First of all,
this method can be utilized for the applications that require tracking a pre-programmed path,
such as a highway stenciling operation. We can draw a roadway sign by making the TMR
follow a pre-defined path. Another purpose is that it is a pre-test before implementing the
tracking control with a real-time sensor, the laser range sensor for the crack sealing operation.
The reference path shown in Figure 8-3a is used for the test. The reference path consists of two
sinusoidal curves. The first part of the reference curve is one cycle of a sine curve and the other
is a negative sine back to the initial position. Each graph shows trajectory tracking on the X-Y
plane, angular position tracking, tracking errors, and control inputs while the TMR is following
the reference posture.

Figure 8-4a shows artificial cracks routed on plywood in order to test the tracking control
with the laser range sensor in a laboratory environment. Three different shapes of cracks, A, B,
and C, are used for the test. Crack A is 6.35 mm (.25 in) wide. Cracks B and C are 12.7 mm (.5
in) wide. Figure 8-4b shows tracking control results along cracks A, B, and C. The linear speed
was 127 mm/sec (5 inch/sec). The lateral deviation of the actual TMR trajectory from the
reference crack is very small along the crack except along the high curvature region. The lateral
error around a steep curve region is large relative to that of a smooth region. This is unavoidable
to some extent for a non-holonomic cart moving forward with a constant speed. This error is
mainly caused by the inertia of the robot platform.

8.4 Sliding Mode Control
The sliding mode control law is tested through computer simulations. The following

reference trajectories are used to assess the tracking performance,
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q,;, =0.2+0.1sin(2mt/5)
q,, =0.5sin(2mt/5)

whose units are meters per second and radians per second, respectively. The following linear

relationships are assumed for the external forces,

P, =—100u
P, =-10r
M, =-10r.
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Figure 8-3. Trajectory Tracking Control Example
Reference posture table, K=[20 0; 0 20]. (a) reference path tracking, (b) reference angle
tracking, (c) tracking errors, and (d) control inputs.
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Figure 8-4. Crack Tracking Test Example
Solid: actual TMR trajectory; Dashed: crack path detected with laser sensor

The previous relationships state that the routing forces and moment are proportional to the

linear velocity and the angular velocity. The first linear equation about P, has been proved
through a simple test.

In order to see the robustness of the control law to the uncertainties, some parameters are
varied and then control simulations are performed. The equations of motion are rewritten for

easy programming as

i=ar’+a,P,+a,(1,+7,)
r=bur+b,P,+b;M,+b,(7,—T,)

where the coefficients a,, a,, a;, b,, b,, b,, and b, are easily obtained from the original

equations of motion. The coefficients a,, a;, b,, and b, are varied as

a,=a,(1+0.1sin(m)),
a; =d;(1+0.1sin(0.5mt)),
b, = b,(1+0.1sin(27t)), and
b, =b,(1+0.1sin(1 571))
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and the control simulation is performed in order to see the robustness to the parametric
uncertainties. Figure 8.5a shows the tracking errors and 8.5b represents the control inputs. We

can see that the tracking control performance and the robustness to the parametric uncertainties

are very good.
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(b) Smooth control inputs; solid: left wheel torque; dotted: right wheel torque, unit: N-m.

Figure 8-5. Controller Robustness to Coefficient Uncertainty

Smooth control inputs and resulting control performances when including coefficient
uncertainties, such that: 4 =[20 0; 0 201, n=[0.1;0.1], &=0.8
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Figure 8-6 shows the tracking control performance when the uncertainties on the external

forces and moment are included as

P, =P (1+0.1sin(m)),

P, =P (1+0.1sin(2nt)), and

M, = M,(1+0.1sin(1.5m)).
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(a) Tracking errors; solid: linear speed; dotted: angular speed.
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(b) Smooth control inputs; solid: left wheel torque; dotted: right wheel torque, unit: N-m.

Figure 8-6. Controller Robustness to External Force Uncertainty

Smooth control inputs and resulting control performances when including the uncertainties in the
external forces, such that: A =[20 0; 0 20], n=[0.1; 0.1], @=0.8.
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The plots of tracking errors show that the control performance is very good even though the
external forces are not exactly estimated. Also, control chattering disappears as shown in Figure
8.6b.

From several simulations assessing tracking control performance and robustness, we can

conclude that the developed sliding mode controller is very appropriate for our purposes.
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CHAPTER 9
CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The Tethered Mobile Robot (TMR) has been developed at the Advanced Highway
Maintenance and Construction Technology (AHMCT) Center at the University of California,
Davis to address the many unique requirements of highway maintenance and construction
activities. The TMR involves the use of a self-propelled robot working in close proximity to a
support vehicle for purposes of power, etc., and allowing for the measurement of the robot's
position relative to the support vehicle with high accuracy. As such, the support vehicle contains
the associated maintenance supplies (sealant, etc.), power supply (hydraulic power supply,
electrical generator, etc.), and, in many cases, the primary maintenance operation sensing devices
(e.g., machine vision for crack sealing operations). Furthermore, a support system accurately
determines the location of the robot relative to the support vehicle.

This development effort has involved a detailed literature search (Kochekali and Velinsky,
1994), development of global machine specifications, development of system design concept
(Winters and Velinsky, 1992; Winters, et al., 1994), design and construction of a downsized
prototype TMR for the initial development of both the mechanical system and the required
controls (Hong, et al., 1994a), and design and construction of a full-size prototype TMR and
relative position system. Additionally, significant effort has addressed both control issues
(Zhang and Velinsky, 1994a & 1994b; Hong, 1994; Hong, et al., 1994b) and accurate dynamic
modeling of such a wheeled mobile robot (Boyden and Velinsky, 1993, 1994a, 1994b). In the
TMR development, we have used the crack sealing task as the primarily application.
Accordingly, a mobile robot sized to carry the sealant dispenser was developed and the control
algorithms were highly related to crack following. This document has concisely reviewed some
of the important aspects of the TMR system development. The interested reader is referred to the

noted reports for additional detail.
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9.2 Recommendations

While the TMR concept has considerable applicability to the highway maintenance area, a
system comprised of the coordinated actions of multiple wheeled mobile robots will provide
much additional flexibility. Such a system will allow for completion of the majority of
maintenance tasks that involve several subtasks. For example, it will allow for the entire crack
sealing process to be accomplished including routing and sealing. Accordingly, it is
recommended that a second wheeled mobile robot with adequate size and power to accomplish
such tasks as routing be built, and the two robots be integrated for coordinated tasks.
Furthermore, software developments and system architectures should be developed in such a
manner to later accommodate the coordinated actions of several wheeled mobile robots.

The coordinated activities of multiple robots has been the subject of numerous recent
studies; e.g., Xia, et al. (1994), Ishida, et al. (1994), Borenstein (1994). Much like the previous
wheeled mobile robot work outside of the AHMCT Center, the research on coordinated multiple
wheeled robots has been mostly concerned with laboratory research type vehicles. The published
papers do not address high load and/or high speed practical applications. It is likely that some of
the approaches do, however, have the potential to be extended to allow the control of multiple
"working" wheeled mobile robots. As such, the detailed literature review should be continued
with emphasis on multiple robot systems. Due to the rapidly changing technology, this is an
essential component.

Concurrently, other critical tasks should be undertaken. First, the implementation of more
complex and robust control algorithms should occur on the existing TMR. This should be
coupled with extensive testing of the relative position measurement systems. Design
specifications for the enlarged WMR needs to be developed to best meet the needs of a variety of
possible operations, including routing. Also, potential applications outside of crack sealing
should be identified with the long term plan of identifying a specific task for TMR

implementation.
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The initial TMR control hardware is based on the Flexible Servo Control (FSC) architecture
as discussed earlier in this report. Use of this approach has allowed rapid development of the
TMR. However, the motor control hardware is tied to the specific FSC computer chip which is
not commercially available. While this approach has expedited the TMR demonstration, the long
term interests are better served with the use of commercially available and more general
hardware. Thus a transition to such hardware is necessary.

‘To couple a second mobile robot to the system, a relative measurement system between the
two mobile robots will be necessary. It would be desirable to utilize many of the same
components on the robots and on the measurement systems. Also, control algorithms for the
coordinated activities of multiple wheeled mobile robots should be developed. Based on the
intended application area, the controllers need to be particularly robust, and methods for
analytically incorporating uncertainties in the models needs to be continued.

It is recommended that any developments be first tested in a laboratory environment to
ensure proper operation under controlled conditions. Following the laboratory test, the integrated
system should also be tested outside of the laboratory with the use of a support vehicle.

The ultimate goal of future development should be the demonstration of the coordinated
multiple wheeled mobile robot system in an actual highway maintenance task. Potential
application tasks include, but are not limited to: crack routing and sealing, automated highway

system's magnetic sensor installation, and mud-jacking of pavement slabs.
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APPENDIX A

TECHNICAL DRAWINGS
Drawing # Title

TMR-001 Overall View
TMR-002 Applicator Plate
TMR-003 Linear Transducer Base
TMR-004 Set Off Block
TMR-005 Pulley

TMR-006 Pulley Standoffs
TMR-007 Rotation Assembly
TMR-008 Line Connection
TMR-009 Rotary Components
TMR-010 Encoder Platform
TMR-011 Extra Components
TMR-100 Arm Assembly
TMR-101 Arm Base Mount
TMR-102 Vari Plate

TMR-103 Height Adj. Rod/..
TMR-104 Bearing Capture
TMR-105 Arm Tubes

TMR-106 Outside Pipe
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Description
Linear Transducer Assembly Picture

Linear Transducer Component
Linear Transducer Component
Linear Transducer Component
Linear Transducer Component
Linear Transducer Component
Linkage/Lin. Trans. Mount to TMR
TMR Rotation Mount Component
TMR Rotation Mount Component
TMR Rotation Mount Component
TMR Rotation Mount Component
Linkage Assembly Picture
Linkage Component

Linkage Component

Linkage Component

Linkage Component

Linkage Component

Linkage Component
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_I_VIanufacturer

Reliance Motion Control

6950 Washington Avenue South
Eden Prairie, Minnesota 55344
Tel. (612) 942-3600

Fax (612) 942-3636

Component

Model

Brushless DC Motor
Stall torque: 20 Ib-in
Max continuous speed: 5000 rpm
Torque const.: 2.5 Ib-in/A
Voltage const.: 34 V/KRPM

Electro-Craft .
S-3016-N-HOOAA

BAYSIDE CONTROL Gear Box RA90-010
INC. Rated torque: 800 Ib-in
27 Seaview Blvd. Peak torque: 1328 lb-in
Port Washington, NY 11050 Rated input speed: 4000 rpm
Tel 516-484-5353 Std backlash: 10 minutes
Fax 516-484-5496 Minimum efficiency: 85%
Radial load: 600 lbs
Axial load: 600 Ibs
Encoder Products Co. Encoders for Linkage ACCU-CODER
Sandpoint, IDAHO 2500 pulse per revolution T55A
Tel 208-263-8541 Differential line drive
A, B quadrature output and Z
index pulses
Celesco Linear Transducer PT9150-0150-111-1110
7800 Deering Ave. Encoder based unit; two channel
P.O Box 7964 square wave quadrature output

Canoga Park, CA 91309-7964
Tel 800-423-5483
Fax 818-340-1173

Cable tension: 25 oz. typical
Max vibration: 5 G's RMS

APPRO International Inc. | 80486 Computer 486DX-33MHz Rackmount
3687 Enochs St. 486DX-33MHz motherboard System
Santa Clara, CA 95051 w/64K cache
Tel 408-732-6091 4Meg. RAM
Fax 408-732-6096 213MB IDE HDD
FDD and HDD controllers
2 serial & 1 parallel ports
1 MB VGA card

14" VGA color monitor
Rackmount keyboard and case
w/250 watt

KEITHLEY METRABYTE
440 Myles Standish Blvd.
Taunton, MA 02780
Tel 508-880-3000
Fax 508-880-0179

Encoder Interface Board

Accepts inputs from incremental or
quadrature encoders

Digitally filtered inputs

333 kHz max quadrature input
pulse rate

24-bit pre-settable counters

3-axis version

M5312

Modular Vision System Inc.
3195 De Miniac
Montreal, Quebec, H4S 159
Tel 514-333-0140
Fax 333-8636

Laser Range Finding Sensor
Resolution along scan: 0.0625in
Vertical resolution: 0.0625 in
Accuracy of crack position: 0.125
in
Field of view: 12in
System response freq.: 18 Hz

Laser Vision System
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/* File Name BVELIJS6.C */
/* Function TMR control program */
/* 7 . menu\n"); */
/* a : set motor velocity control gains */
I* b : tracking control - table reference */
/* d : display speeds of each wheels */
I* g : go signal (reset all gains and power */
/* h : stop the motors */
r* j : Joystick operation */
I* 1 : Tracking control with offset table */
r* m : Tracking control with laser sensor */
/* P : point-to-point control */
/* q : quit and exit */
¥ r : record speeds of both motors */
/* s : change speeds of both motors */
/* t : ADC reading */
/* v : return to default video mode (text screen) */
/* Programed by Dahie Hong */
/* Date Aug., 30, 1994 */
/* Version 6.0 */
#include <stdio.h>

#include <math.h>

#include <dos.h>
#include <time.h>
#include <graph.h>
#include <conio.h>
#include <malloc.h>

#include <stdlib.h>

#include <c:\hong\tmr\fscreg.h> /* attached */

#include "c:\encoder\source\m5312.c” /* refer M5312 manual L7
- #include "laser.c" /* attached */

// define sound generation related parameters

#define TIMER_FREQ 1193180L
#define TIMER_COUNT 0x42
#define TIMER_MODE 0x43
#define TIMER_OSC 0xb6
#define OUT_8255 0x61
#define SPKRON 3

/I define display related parameters
#define dashed 0xAOAO
#define solid OxFFFF
#define red 4

#define cyan 3

#define green 2
#define yellow 14
#define white 7
#define 1t_blue 9

#define brt_green 0
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#define It_magenta 13

#define black 0

#define blue 1

#define no_vert_lines 18

#define xconstant 35

#define no_horiz_lines 11

#define yconstant 35

#define pi 3.1415927

#define cga 2.0833333  /* distance from front of TMR to applicator in inches */
#define cgb 0.416667 /* distance from rear of TMR to applicator in inches */
// define joystick and gameport related parameters

#define THUMB 0x10

#define TRIGGER 0x20

#define JS 0x15

#define NAVE 10

#define ticks 3

// define 2-nd order filter coefficients

#define a2 -1.561

#define a3 0.6414

#define bl 0.0201

#define b2 0.0402

#define b3 0.0201

#define S_limit 500  /* speed limit of motor, rpm */

#define CRACK_END 10000

#define PI 3.141592654

extern unsigned short enc_base; /* globoal address for int_handler for encoder */

int X_pos, y_pos, x0, x1, X2, x3, x4, yy0, yy1, y2, y3, y4;
int tx1, tx2, tx3, tx4, tx5, tx6, tx7, tx8;

int tyl, ty2, ty3, ty4, ty5, ty6, ty7, ty8;

int s_laser_init;

double Xs[2000], Ys[2000], Ts[2000], rr[2000];
int main()

void init_encoder(int, int, int, int, int, short);
void load_cntr(int, long, short);

long read_cntr(int, short);

int read_ip(int, short);

void sound_on(unsigned);

void sound_off(void);

double aatan(double, double, double, double);

void Display_Menu(void);

void init_motors(void);

void Joystick_Control(void);

void Point_to_Point(void);

int Tracking_Control(void);

void Send_Velocity_ Commands(int, int);

void draw_tmr(double, double, double, int, int, int, int, int, int);
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void create_replace_grid(void);

void mark_ origin(int, int);

void set_workspace(void);

void draw_tmr_trajectory(void);

int Tracking_Control_Laser(void);

int Tracking_Control_Laser_real(void);

int j,K, xorigin, yorigin;

int left_corner_x, left_corner_y, right_corner_x, right_corner_y;
int x_old, x_new, y_old, y_new;

int hor_lines, ver_lines, line_start_x, line_start_y;

char xvalue, yvalue, thetavalue;

double angular_pos, Xx_pos, y_pos, X, ¥;

FILE *infile;

double Xc, Yc, Tc, thl, th2, th3;

int 1, n_dp,wl,wr, ii;

double Xr[10], Yr[10], Tr[10], X0, YO, TO, Tt, ddt, Td;
double wwc, vvc, aw, ww,ddtt;

char sf[20];

float wc=0.8; /* cart's angular velocity (rad/s) */
float vf=0.8; /* cart's forward velocity (ft/s) */
float gr=10.; /* gearbox ratio */

float r=.4167; /* radius of wheel (ft) */
float d=2.; /* axle length (ft) */

int cmd, kel, ke2,1_g_r, torque_angle, kvl, kv2;
int vel_r,vel_12, ik, ij, vel_tmp;

int cmd_n,pwm_onoff,vel_fb_1,vel _fb_2,tmp_read;
char cch, ch_tmp, ccl;

clock_t ticksnow;
double tused, dtl;
FILE *f2, *fl;

1mnon

f2=fopen("c:\\hong\\tmr\\joy.m","w");

/* Initialization */
s_laser_init=0;

/**  get initial parameters **/
printf("\nEnter the base address the 5312 is strapped at in hexadecimal - ");
scanf("%x", &enc_base);

/** initialize each encoder - see manual for detail parameter setting **/

init_encoder(AXIS_A, MCR, ICR, OCCR, QR, enc_base); /* init a */
init_encoder(AXIS_B, MCR, ICR, OCCR, QR, enc_base); /* init b */
init_encoder(AXIS_C, MCR, ICR, OCCR, QR, enc_base); /* init ¢ */

init_motors();
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printf("\n");
do

printf("......waiting for z pulse\r");

}while(inpw(FSC_z_encountered) != 0);

printf("\n z pulse is encountered\n");

do {
printf("\rPlace the robot at the initial position and type y when ready");
ccl = getchar();

}while( ccl I="y");

load_cntr(WR_ALL, 01, enc_base); /* zero counters */
printf("\n\n\n");

kel = 4900;
kc2 = 600;

printf("\n\nType '?' for help.\n\n");
do
{
printf("\nTMR>> ");
cch = getchar();
switch (cch) {
case '? :
Display_Menu();
break;

case 'a' :
printf("Type kv1, kv2, vel_rl, vel_12.");
scanf("%d %d %d %d",&kvl,&kv2,&vel_r,&vel_r2);
do {
outpw(FSC_kcl_r.kcl);
tmp_read = inpw(FSC_kc1_r);
}while( tmp_read != kcl);
do {
outpw(FSC_kc2_r.kc2);
tmp_read = inpw(FSC_kc2_r);
}while( tmp_read != kc2);
do {
outpw(FSC_kv1l_rkvl);
tmp_read = inpw(FSC_kv1_r);
}while( tmp_read !=kv1);
do {
outpw(FSC_kv2_rkv2);
tmp_read = inpw(FSC_kv2_r);
}while( tmp_read != kv2);
do {
outpw(FSC_vel_r_r,vel_r);
tmp_read = inpw(FSC_vel_r_r);
}while( tmp_read != vel_r);
do {
outpw(FSC_vel_r_r_1,vel_12);
tmp_read = inpw(FSC_vel_r_r_1);
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}while( tmp_read != vel_r2);

break;

case 'b':

ik = Tracking_Control();

if (ik 1=0)
printf("\n

Tracking sinusoidal curve.

Type any key to stop.");

else
printf("\n
break;

case'c':

Error on tracking control mode.");

Get_Posture_Linkage(&thl,&th2,&th3,&Xc,&Yc,&Tc);
printf("\nth1: %If, th2: %If, th3: %If, Xc: %If,Yc: %lf, Tc: %lf",
th1,th2,th3,Xc,Yc,Tc);

break;

case 'd' :
printf("\n\n\nVel
do {

1

Vel 2\n");

vel_fb_1 = inpw(FSC_vel);
vel_fb_2 = inpw(0xcf16);

for ( ik = 0; ik <100; ik++) {
printf("%5d %5d\",vel_fb_1,vel_fb_2);

}while(!kbhit());
break;

case 'g':
cmd = 3;
do {

outpw(FSC_wait_or_go,cmd);
tmp_read = inpw(FSC_wait_or_go);
}while(tmp_read != cmd);

Send_Velocity_Commands(0,0);

ik = Tracking_Control_Laser();

......

break;

case 'h':
break;

case j':
Joystick_Control();
break;

case 'l :
if (ik '=0)

printf("\n

else

Tracking crack path. Type any key to stop.");

printf("\n......Error on tracking control with laser.");

break;
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case 'm':
ik = Tracking_Control_Laser_real();
if (ik1=0)
printf("\n...... Tracking crack path. Type any key to stop.");
else
printf("\n......Error on tracking control with laser.");
break;
case 'p':
Point_to_Point();
break;
case'q':
kc1=0; kc2=0; kv1=0; kv2=0; vel_r=0; vel_r2=0;
do {
outpw(FSC_kc1_rkel);
tmp_read = inpw(FSC_kc1_1);
}while( tmp_read != kcl);
do {
outpw(FSC_kc2_r,kc2);
tmp_read = inpw(FSC_kc2_r);
}while( tmp_read != kc2);
do {
outpw(FSC_kv1_rkvl);
tmp_read = inpw(FSC_kv1_r);
}while( tmp_read !=kvl);
do {
outpw(FSC_kv2_r.kv2);
tmp_read = inpw(FSC_kv2_r);
}while( tmp_read != kv2);
do {
outpw(FSC_vel_r_r,vel_r);
tmp_read = inpw(FSC_vel_r_r);
}while( tmp_read != vel_r);
do { :
outpw(FSC_vel_r_r_1,vel_r2);
tmp_read = inpw(FSC_vel _r_r_1);
}while( tmp_read != vel_r2);
exit(1);
case 'r':

printf("Input the file name to save data : ");
scanf("%s",sf);
fl=fopen(sf,"w");
printf("\n\nlnput vel_rl, vel_12: ");
scanf("%d %d",&vel_r, &vel_r2);
do {
outpw(FSC_vel_r_r,vel_r);
tmp_read = inpw(FSC_vel_r_r);
}while( tmp_read != vel_1);
do {
outpw(FSC_vel_r_r_1,vel_12);
tmp_read = inpw(FSC_vel_r_r_1);
}while( tmp_read != vel_r2);
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fprintf(f1,"wl = %d, wr = %d",vel_r,vel_r2);
fprintf(f1,"Xc Yc Tc FSC timer\n");

for (ik = 0; ik < 500; ++ik)

{
Get_Posture_Linkage(&thl,&th2,&th3,&Xc,&Ye,&Tc);
fprintf(f1," %1f %lf %If %u\n",
Xc,Ye, Tc,inpw(FSC_current_time));
Prntf(M e Jod\r" ,ik);

}

break;

case's':

printf("\n\nInput vel_rl1, vel_r2: ");
scanf("%d %d",&vel_r, &vel_12);
do {
outpw(FSC_vel_r_r,vel_r);
tmp_read = inpw(FSC_vel_r_r);
}while( tmp_read != vel_r);
do {
outpw(FSC_vel_r_r_1,vel_12);
tmp_read = inpw(FSC_vel_r_r_1);
}while( tmp_read != vel_r2);

break;
case't':
do {
printf("ADC reading: %d %d\n",
inpw(FSC_adc0),inpw(FSC_adcl));
}while(1);
break;
case 'v':
_setvideomode( _ DEFAULTMODE );
break;
N
}while(1);
}
int GetJoystick(x,y) /* read gameport */
int *x, *y;
{
union REGS regs;

regs.h.ah = 0x84; /* Joystick interrupt */
regs.x.dx = 0x01; /* 0 = switches, 1 = position */
int86(JS, &regs, &regs); /* Issue DOS interrupt */
*X = regs.X.ax;

*y = regs.Xx.bx;

return regs.x.cflag;
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}
int GetSwitches(s)  /* read status of joystick switches  */
char *s;
{
union REGS regs;
regs.h.ah = 0x84; /* Joystick interrupt */
regs.x.dx = 0x00; /* 0 = switches, 1 = position */
int86(JS, &regs, &regs); /* Issue DOS interrupt */
*s = regs.h.al;
return regs.x.cflag;
}

// read encoders on the linkage and calculate the posture of the robot
Get_Posture_Linkage(double *th1, double *th2, double *th3,
double *Xc, double *Yc, double *Tc)

{
long a_cnt, b_cnt, c_cnt;  /* counter values */
double thl_0=13.56483,th2_0=2.295119,th3_o0=-4.289152, L =42.0;
double CF = 0.000628319;
a_cnt = read_cntr(AXIS_A, enc_base); /* read counters */
b_cnt = read_cntr(AXIS_B, enc_base);
c_cnt =read_cntr(AXIS_C, enc_base);
if (a_cnt > 20000) a_cnt = a_cnt - 16777215;
if (b_cnt > 20000) b_cnt =b_cnt - 16777215;
if (c_cnt > 20000) c_cnt = c_cnt - 16777215;
*th1l = (double) a_cnt;
*th2 = (double) b_cnt;
*th3 = (double) c_cnt;
*thl = CF * *thl + thl_o;
*th?2 = CF * *th2 + th2_o;
*th3 = CF * *th3 + th3_o;
*Xc =L * cos(¥thl) + L * cos(*thl + *th2);
*Yc =L * sin(*thl) + L * sin(¥*thl + *th2);
*Tc = *thl + *th2 + *th3;
}
void Display_Menu() /* display menu after the prompt TMR >> ¥/
{

printf("\n\n ? : menu\n");

printf(" a: set motor velocity control gains\n");
printf(" b : tracking control - table reference\n");
printf(" d : display speeds of each wheels\n");
printf(" g : go signal (reset all gains and power\n");
printf(" h : stop the motors\n");

printf(" j : Joystick operation\n");

printf(" 1: Tracking control with offset table\n");
printf(" m : Tracking control with laser sensor\n");
printf(" p : point-to-point control\n");

printf(" q : quit and exit\n");

printf(" r : record speeds of both motors\n");
printf(" s : change speeds of both motors\n");
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void

void

printf(" t: ADC reading\n");
printf(" v : return to default video mode (text screen)\n");

init_motors() /* initialize motor control parameters */

int torque_angle=2000, tmp_read;
int cmd=2, kc1=0, kc2=0, kv1=0, kv2=0, vel_r=0, vel_r2=0;

do {
outpw(FSC_torque_angle,torque_angle);
tmp_read = inpw(FSC_torque_angle);
}while( tmp_read != torque_angle);
cmd=2;
do {
outpw(FSC_wait_or_go,cmd);
tmp_read = inpw(FSC_wait_or_go);
}while( tmp_read != cmd);

do {
outpw(FSC_kc1_rkcl);
tmp_read = inpw(FSC_kc1_r);
}while( tmp_read != kcl);
do {
outpw(FSC_kc2_rkc2);
tmp_read = inpw(FSC_kc2_r);
}while( tmp_read != kc2);
do {
outpw(FSC_kv1_rkvl);
tmp_read = inpw(FSC_kv1_r);
}while( tmp_read !=kvl);
do {
outpw(FSC_kv2_r.kv2);
tmp_read = inpw(FSC_kv2_r);
}while( tmp_read != kv2);
do {
outpw(FSC_vel_r_r,vel_r);
tmp_read = inpw(FSC_vel_r_r);

. }while( tmp_read != vel_r);

do {
outpw(FSC_vel_r_r_1,vel_r2);
tmp_read = inpw(FSC_vel_r_r_1);
}while( tmp_read != vel_12);

Joystick_Control()

char sw;

nt thumb, trigger,wlt,wrt,errs,errj,xcent,ycent,wl,wr;
int X,y,Xsum,ysum,err,i,tmp_read,safty;

float wrtf,wltf,xx, yy;

float wlxn=0.0, wixn_1=0.0, wlxn_2=0.0;
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/
/

float wlyn=0.0, wlyn_1=0.0, wlyn_2=0.0;
float wrxn=0.0, wrxn_1=0.0, wrxn_2=0.0;
float wryn=0.0, wryn_1=0.0, wryn_2=0.0;

float wc=0.8; /* cart's angular velocity (rad/s) */
float vf=0.8; /* cart's forward velocity (ft/s) */
float gr=10.; /* gearbox ratio */

float r=.4167, /* radius of wheel (ft) */
float d=2.; /* axle length (ft) */

int 1.k, xorigin, yorigin;

int left_corner_x, left_corner_y, right_corner_x, right_corer_y;

nt x_old, x_new, y_old, y_new;

int hor_lines, ver_lines, line_start_x, line_start_y;

char xvalue, yvalue, thetavalue, buffer2[100];

double angular_pos, X_pos, y_pos, Xc, yc,thl,th2,th3, dist,dist_old, ang_old;
FILE *infile, *joyout;

char sf[20];

double tused;

clock_t ticksnow;

printf("Input the file name to save data : ");
scanf("%s",sf);
joyout=fopen(sf,"w");

printf("Calibrating Joystick. Please Wait\n");
xsum = ysum = 0;
for(i=0;i<NAVE;i++){
err = GetJoystick(&x,&y);
if(err){
printf("Error reading joystick. Exiting\n");
exit(1);

Xsum += X;

ysum +=y;

}

xcent = xsum / NAVE;

ycent = ysum / NAVE;

printf("Done calibrating joystick. Press Enter to proceed with manual operation.\n");
printf("You must hold the trigger in order to control the mobile robot.\n");

_setvideomode( _VRES16COLOR );
set_workspace();
k=0;

/* MAKES GRIDLINES FOR WORKSPACE */

xorigin = 9+no_vert_lines/2*xconstant;
yorigin = 65+(no_horiz_lines-2)*yconstant;
mark_origin(xorigin, yorigin);

/¥ SCANS FIRST POSTURE OF TMR */

Get_Posture_Linkage(&thl,&th2,&th3,&xc,&yc,&angular_pos);
x_old = xorigin+(int)(xc*xconstant/12);
y_old = yorigin-(int)(yc*yconstant/12);
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dist_old = sqrt(xc*xc+yc*yc);
ang_old = angular_pos;
do {
errj = GetJoystick(&x,&y);
errs = GetSwitches(&sw);
trigger = (THUMB&sw);
thumb = (TRIGGER&sw);
Xx=X-Xcent;
y=y-ycent;
y=-y;
if (trigger){
xx= (float) x;
yy= (float) y;

else {
xx=0.;
yy=0.;
}

Get_Posture_Linkage(&th1,&th2,&th3,&xc,&yc,&angular_pos);

dist = sgrt(xc*xc + yc*yc);

safty = 0;

if ( (dist >= 72) && (dist > dist_old) ) {
yy =yy*0.1;
safty = 1;

if ( (dist <= 18) && (dist < dist_old) ) {
yy =yy*0.02;
safty = 2;

}

if ( (angular_pos < -1.571) && (angular_pos < ang_old) ) {
xx =xx ¥0.1;
safty = 3;

}

if ( (angular_pos > ang_old) && (angular_pos > 4.712) ) {
xx =xx *0.1;
safty = 3;

}

if (safty == 0) sound_off();

if (safty == 1) sound_on(500);
if (safty == 2) sound_on(1000);
if (safty == 3) sound_on(2000);

dist_old = dist;
ang_old = angular_pos;

wltf=gr/r*(d/2.#*wc/63.*xx+v{/75.¥yy)*9.55;
wrtf=gr/r*(-d/2.%¥wc/63.*xx+vi/75.%yy)*9.55;
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// 2-nd order filteration
wixn_2 = wixn_1; wixn_1 = wlxn; wixn = witf;
wlyn = b1*wlxn + b2*wlxn_1 + b3*wlxn_2 - a2*wlyn_1 - a3*wlyn_2;
wlyn_2 =wlyn_1; wlyn_1 = wlyn;

wrxn_2 = wrxn_1l; wrxn_1 = wrxn; wrxn = wrtf;
wryn = b1*wrxn + b2*wrxn_1 + b3*wrxn_2 - a2*wryn_1 - a3*wryn_2;
wryn_2 = wryn_1; wryn_1 = wryn;

wrt= (int) wryn;
wlt= (int) wlyn;

wr = (int) wrtf; WI = -WT;
wl = (int) witf;
wrt = -Wrt;

Send_Velocity_Commands(wlt,wrt);
ticksnow = clock();
tused = (double) ticksnow / CLK_TCK;

/ fprintf(joyout," %I1f\n" tused);
// fprintf(joyout,"%d %d %d %d %d %d %u\n",
wl, wr, wlt,wrt,inpw(FSC_vel),inpw(0xcf16),inpw(FSC_current_time));
k++;
if (k>9){
X_new = xorigin+(int)(xc*xconstant/12);
y_new = yorigin-(int)(yc*yconstant/12);
draw_tmr(xc, yc, angular_pos, xorigin, yorigin,
x_old, x_new, y_old, y_new);
x_old = x_new;
y_old = y_new;
k=0
}

}while(!kbhit());
setvideomode( _ DEFAULTMODE );

void Point_to_Point() /* point to point control mode */
{
double Xe, Yc, Tc, thi, th2, th3;
int i, n_dp,wl,wr, ii, tmp_read;
double Xr[10], Yr[10], Tr[10], X0, YO, TO, Tt, ddt, Td;
double wwc, vve, aw, ww,ddtt;

Get_Posture_Linkage(&th1,&th2,&th3,&Xc,&Yc,&Tc);

Xr[0] = Xc; Yr[0] = Yc, Tr[0] = Tc;

printf("\nPresent posture : (%8.31f, %8.31f, %5.31f)",Xc,Yc,Tc);
printf("\nInput number of destination points: ");
scanf("%d",&n_dp);

for (i=1;i<=n_dp;i++) {
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printf("\nInput posture for point %d : ",i);
scanf("%lf %lf %If",&Xr[i],& Yr[i],&Tr[i]);
}

for (i=0;i<n_dp;i++) {
if (Xr[i+1]-Xc) >=0) && ((Yr[i+1]-Yc) >= 0))
Td = atan((Yr[i+1]-Yc)/(Xr[i+1]-Xc));
if (Xr[i+1]-Xc) < 0) && ((Yr[i+1]-Yc) >= 0))
Td = 3.141592 - atan((Yr[i+1]-Yc)/(Xc-Xr[i+11));
if (Xr[i+1]-Xc) < 0) && (Yr[i+1]-Yc) < 0))
Td =3.141592 + atan((Yr[i+1]-Yc)/(Xz[i+1]-Xc));
if (Xx[i+1]-Xc) >=0) && (Yr[i+1]-Yc) < 0))
Td = - atan((Yc-Yr[i+1])/(Xr[i+1]-Xc));

Tt=Td - Tc;
/% ticksnow = clock();
tused = (double) ticksnow/CLK_TCK; */
wwe =0; aw =0.1;
if (Tt>0) {
wl = -25; wr=wl;
do {
Get_Posture_Linkage(&th1,&th2,&th3,&Xc,&Yc,&Tc);
do {
outpw(FSC_vel_r_r,wl);
tmp_read = inpw(FSC_vel_r_r);
}while(tmp_read != wl);
do {
outpw(FSC_vel_r_r_1,wr);
tmp_read = inpw(FSC_vel_r_r_1);
}while(tmp_read != wr);
}while( Tc < Td);

}
if (Tt<0) {
wl =25; wr = wl;
do { .
Get_Posture_Linkage(&th1,&th2,&th3,&Xc,&Yc,&Tc);
do {
outpw(FSC_vel_r_r,wl);
tmp_read = inpw(FSC_vel_r_r);
}while(tmp_read != wl);
do {
outpw(FSC_vel_r_r_1,wr);
tmp_read = inpw(FSC_vel_r_r_1);
}while(tmp_read != wr);
}while( Tc > Td);

for (1i=0;ii<100;ii++) {
wl=0; wr=0;
do {
outpw(FSC_vel_r_r,wl);
tmp_read = inpw(FSC_vel_r_r);
}while(tmp_read != wl);
do {
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outpw(FSC_vel_r_r_1,wr);

tmp_read = inpw(FSC_vel_r_r_1);
}while(tmp_read != wr);

ddt = sqrt((Xr[i+1]-Xc)*(Xr[i+1]-Xc)+(Yr[i+1]-Ye)*(Yr[i+1]-Yc¢));
X0=Xc; YO=Yc; TO=Tc;
ddtt = 0;
do {
Get_Posture_Linkage(&thl,&th2,&th3,&Xc,&Yc,&Tc);
ddtt = sgrt((Xc-X0)*(Xc-X0)+(Yc-Y0)*(Yc-YO0));
if (ddtt <= 0.2*ddt) wwc = 25;
if ((ddtt > 0.2*ddt)&&(ddtt<0.8*ddt)) wwe = 50;
if (ddtt>0.8*ddt) wwe = 25;
wl = (int) wwc; wr = -wl;
do {
outpw(FSC_vel_r_r,wl);
tmp_read = inpw(FSC_vel_r_r);
}while(tmp_read != wl);
do {
outpw(FSC_vel_r_r_1,wr);
tmp_read = inpw(FSC_vel_r_r_1);
}while(tmp_read != wr);
}while( ddtt < ddt);

for (ii=0;ii<100;ii++) {
wl=0; wr=0;
do {
outpw(FSC_vel_r_r,wl);
tmp_read = inpw(FSC_vel_r_r);
}while(tmp_read != wl);
do {
outpw(FSC_vel_r_r_1,wr);
tmp_read = inpw(FSC_vel_r_r_1);
}while(tmp_read != wr); .

}
}
}
int Tracking_Control(void) /* tracking control mode with reference table */
{
int wli, wri;
double th1,th2,th3, Xr,Yr,Tr, ur,rr, Xc,Ye,Tc, x,y,p, X0,Y0,TO;
double e=0,c=12,T2=125,R=5.0;
double invE[2][2], f[2], K[2][2], z, u[2], ul[2], wl, wr;
char sf[20];
char buffer1[100], buffer2[100];
int j.K, xorigin, yorigin;
int left_corner_x, left_corner_y, right_corner_x, right_corner_y;
int x_old, x_new, y_old, y_new, x_old_r, y_old_r, X_new_r, y_new_r;
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int hor_lines, ver_lines, line_start_x, line_start_y;
char xvalue, yvalue, thetavalue;

double angular_pos, X_pos, y_pos;

double tused;

clock_t ticksnow;

FILE #f1, *ft, *ft2;

printf("Input the file name to save data : ");
scanf("%s",sf);
ft=fopen(sf,"w");

if ( (f1 = fopen("c:\\hong\\tmr\\control\\ref_path.dat","r")) == NULL ) {
printf("\nError! Reference path data file can not be opened");
return(0);

}
ft = fopen(st,"w");
ft2 = fopen("c:\\hong\\tmr\\control\\rt.out","w");

fprintf(ft,"Xr,Yr,Tr,Xc,Yc,Te,x,y,p,ul1],u[2]\n");

/* Set control gain matrix */
printf("\nInput control gains( K(1,1),K(1,2),K(2,1),K(2,2)): ");
scanf(" %lIf %lf %lf %l1f" ,&K[0][0],&K[0][1],&K[1][0],&K[1][1]);

Get_Posture_Linkage(&th1,&th2,&th3,&X0,&Y0,&TO0);
_setvideomode( _VRES16COLOR );
set_workspace();

/¥ MAKES GRIDLINES FOR WORKSPACE */

xorigin = 9+no_vert_lines/2*xconstant;
yorigin = 65+(no_horiz_lines-2)*yconstant;
mark_origin(xorigin, yorigin);

- /* SCANS FIRST POSTURE OF TMR */

x_old = xorigin+(int)(X0*xconstant/12);
y_old = yorigin-(int)(YO*yconstant/12);

fscanf(f1," %lf %lf %lf %lf %olf\n",&Xr,&Yr1,&Tr,&ur,&rr);
x_old_r = xorigin+(int)(Xr*xconstant/12);
y_old_r = yorigin-(int)(Yr*yconstant/12);

while( 'kbhit() && ((fscanf(f1,"%If %lf %lf %lf %lf\n",&Xr,& Yr,& Tr,&ur,&rr))
'=EOF) ) {
Get_Posture_Linkage(&th1,&th2,&th3,&Xc,&Yc,&Tc);

/* Calculate error posture in body coordinate */

x = (Xr - Xc)*cos(Tc) + (Yr - Yc)*sin(Tc);
y = ~(Xr - Xc)*sin(Tc) + (Yr - Yc)*cos(Tc);
p=Tr-Tc;

invE[0][0] =-1;

invE[O][1] = -y/(e+x+c);

invE[1][0] = 0;

invE[1][1] = -1/(e+x+c);

f[0] = ur*cos(Tc);
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f[1] = ur*sin(Tc¢) + c*rr;

z=y +c*p;

ul[0] = -f[0] - K[0][0] * x -K[O][1] * z;

ul[1] =-f[1] - K[1][0] * x -K[1][1] * z;

u[0] = invE[0][0] * ul[0] + invE[O][1] * ul[1];
u[1] = invE[1][0] * ul{[0] + invE[1][1] * ul[1];
wl = (u[0] - T2*u[1] ) /R *9.55;

wr = (u[0] + T2*u[1] ) /R * 9.55;

wli = (int)wl; wri = (int)wr; wri = -wri;
Send_Velocity_Commands(wli,wri);
x_new = xorigin+(int)(Xc*xconstant/12);
y_new = yorigin-(int)(Yc*yconstant/12);

x_new_r = xorigin+(int)(Xr*xconstant/12);
y_new_r = yorigin-(int)(Yr*yconstant/12);

/* DISPAYS X AND Y COORDINATES AND THETA */

_settextcolor(white);

_settextposition(3,10);

sprintf(buffer2,"x: %If in y: %If in theta: %If degrees",
Xc, Yc, Tc*180/pi);

_outtext(buffer2);

/* DRAWS REFERENCE PATH  */

_setcolor(green);
_moveto(x_old_r, y_old_r);
_lineto(x_new_r, y_new_r);

/* DRAWS TMR PATH */

/
1

_setcolor(lt_magenta);
_moveto(x_old, y_old);
- _lineto(x_new, y_new);

Xx_old = x_new;
y_old = y_new;

x_old_r=x_new_r;
y_old_r=y_new_r;

ticksnow = clock();

tused = (double) ticksnow / CLK_TCK;

fprintf(ft," %lf %If %lf Jolf %lf %lf Jolf Jolf %lf %If %1f\n",
Xr,Yr,Tr,Xc,Yc,Te,x,y,p,ul0],u[1]);
fprintf(ft2," %If\n" tused);

}

wli = 0; wri=0;
Send_Velocity_Commands(wli,wri);
fclose(ft);

fclose(fl);
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return(1);
}
int Tracking_Control_Laser(void) /* tracking control mode with offset table */
{
int wli, wri;
double thl,th2,th3, Xr,Yr,Tr, ur, Xc,Yc,Tc, x,y,p, X0,Y0,TO;
double e,c, T2, R;
double invE[21[2], {121, K[21[2], z, u[2], ul[2], wl, wr;
char sf[207;
char buffer1[100], buffer2[100];
int j-K, Xorigin, yorigin;
int left_corner_x, left_corner_y, right_corner_x, right_corner_y;
nt x_old, x_new, y_old, y_new, x_old_r, y_old_r, Xx_new_r, y_new_r;
int hor_lines, ver_lines, line_start_x, line_start_y;
char xvalue, yvalue, thetavalue;
double angular_pos, X_pos, y_pos;
double tused;
clock_t ticksnow;
FILE *f], *ft, *ft2, *ff1;
int nd, i, i1, kn, kn1, rind, found_ref value, status = 0;
int Nit;
double D, offset, ds, sinT, cosT;
double rrd, dt, xnd, ynd, Ts0, Xs0, Ys0, ndf, di;
double Xcx, Xexn, Xcxn_1, Xexn_2, Xcyn_1, Xcyn_2;
double Ycx, Yexn, Yexn_1, Yexn_2, Yeyn_ 1, Yeyn_2;
double Tcx, Texn, Texn_1, Texn_2, Teyn_1, Teyn_2;
double Xsx, Xsxn, Xsxn_1, Xsxn_2, Xsyn_1, Xsyn_2;
double Ysx, Ysxn, Ysxn_1, Ysxn_2, Ysyn_1, Ysyn_2;
double Tsx, Tsxn, Tsxn_1, Tsxn_2, Tsyn_1, Tsyn_2;
double an2, an3;
double bnl, bn2, bn3;

an2 = -1.926; an3 = 0.9286;
bnl = 0.0007; bn2 = 0.0013; bn3 = 0.0007;

e=0;c=12;T2=12.5;R=5.0;
Nitt = 2000, D =9.75;

for (i = 0;i < Ntt;i++) {

Xsli] = 0.0;
Ys[i] =0.0;
Ts[i] = 0.0;
rrfi] = 0.0;

}

if ( (f1 = fopen("c:\\hong\\tmr\\control\\ref_off.dat","r")) == NULL ) {
printf("\nError! Reference offset data file can not be opened");
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return(0);

printf("Input the file name to save data : ");
scanf("%s",sf);
ft=fopen(sf,"w");

ft2 = fopen("c:\\hong\\tmr\\control\\rt.out","w");
ff1 = fopen("c:\\hong\\tmr\\control\\off.out","w");

/*Set linear speed*/

printf("\nInput linear speed( inch/sec ): ");
scanf("%If" ,&ur);

/*Set sampling time*/

printf("\nInput sampling time( sec ): ");
scanf("%lf",&dt);

/* Set control gain matrix */

printf("\nInput control gains( K(1,1),K(1,2),K(2,1),K(2,2)): ");

scanf(" %lf %lIf %lf %lf",&K[0][0],&K[0][1],&K[1][0],&K[1][1D);

ds = ur*dt;

Get_Posture_Linkage(&th1,&th2,&th3,&X0,&Y0,&T0);

Xcexn = X0; Xexn_1 = X0; Xexn_2 = X0; Xcyn_1 = X0; Xcyn_2 = XO0;
Yexn=Y0; Yexn_1=Y0; Yexn_2 = YO; Yeyn_1=YO0; Yeyn_2 =YO0;
Texn = TO; Texn_1 = TO; Texn_2 = TO; Teyn_1 =TO; Tcyn_2 = TO;

_setvideomode( _VRES16COLOR );
set_workspace();

/* MAKES GRIDLINES FOR WORKSPACE */

xorigin = 9+no_vert_lines/2*xconstant;
yorigin = 65+(no_horiz_lines-2)*yconstant;
mark_origin(xorigin, yorigin);

Xsxn = X0; Xsxn_1 = X0; Xsxn_2 = X0; Xsyn_1 = X0; Xsyn_2 = XO0;
Ysxn=YO0; Ysxn_1=Y0; Ysxn_2=Y0; Ysyn_1=Y0; Ysyn_2=YO0;
Tsxn = TO; Tsxn_1 =TO; Tsxn_2 =TO; Tsyn_1 =TO; Tsyn_2 =TO;

fscanf(fl,"%1f\n",&offset);
Xs0 = X0 + D*cos(TO0) - offset*sin(TO);
Ys0 = YO + D*sin(TO0) + offset*cos(TO0);
Ts0 = TO + atan(offset/D);

nd=D/ds;
ndf = (double) nd;
xnd = (Xs0 - X0) / ndf;
ynd = (Ys0 - YO) / ndf;
ii=0;
for(i = 0;i < nd;i++) {
di = (double) i;
Xs[i] = X0 + xnd*di;
Ys[i] = YO + ynd*di;
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Ts[i] = TsO;

/¥ Xsxn_2 = Xsxn_1; Xsxn_1 = Xsxn; Xsxn = Xsx;
Xslii] =bnl1*Xsxn + bn2*Xsxn_1 + bn3*Xsxn_2 - an2*Xsyn_1 - an3*Xsyn_2;
Xsyn_2 = Xsyn_1; Xsyn_1 = Xs[ii];

Ysxn_2=7Ysxn_1; Ysxn_1=Ysxn; Ysxn= Ysx;
Yslii] =bnl*Ysxn +bn2*Ysxn_1 + bn3*Ysxn_2 - an2*Ysyn_1 - an3*Ysyn_2;
Ysyn_2 =7Ysyn_1; Ysyn_1 = Ys[ii];

Tsxn_2 =Tsxn_1; Tsxn_1 =Tsxn; Tsxn = Tsx;
Ts[ii] = bn1*Tsxn + bn2*Tsxn_1 + bn3*Tsxn_2 - an2*Tsyn_1 - an3*Tsyn_2;
Tsyn_2 =Tsyn_1; Tsyn_1 = Tslii];
*/
ii++;

}

/¥ SCANS FIRST POSTURE OF TMR */
x_old = xorigin+(int)(X0*xconstant/12);
y_old = yorigin-(int)(YO*yconstant/12);

kn=1;

Xr = Xslkn];
Yr = Ysikn];
Tr = Tslkn];

x_old_r = xorigin+(int)(Xr*xconstant/12);
y_old_r = yorigin-(int)(Yr*yconstant/12);

while( kbhit() ) {

Get_Posture_Linkage(&thl,&th2,&th3,&Xc,&Yc,&Tc);

/* Xcexn_ 2 =Xcexn_1; Xexn_1 = Xcxn; Xcxn = Xcx;
Xc =bnl*Xcxn + bn2*Xcxn_1 + bn3*Xcxn_2 - an2*Xcyn_1 - an3*Xcyn_2;
Xcyn_2 =Xcyn_1; Xcyn_1 =Xc;

Yexn 2=Ycexn_1; Yexn_ 1 =Ycexn; Yexn = Ycx;
Yc=bnl*Ycxn +bn2*Ycxn_1 + bn3*Ycxn_2 - an2*¥Ycyn_1 - an3*Ycyn_2;
Ycyn_2 = Ycyn_1; Yeyn_1 = Yc;

Texn_2 = Texn_1; Texn_1 = Texn; Texn = Tex;
Tc =bnl*Tcxn + bn2*Tcxn_1 + bn3*Tcexn_2 - an2*Tcyn_1 - an3*Tcyn_2;
Teyn_2 =Tcyn_1; Teyn_1 =Tec;

*/
sinT = sin(Tc);
cosT = cos(Tc);
if( (fscanf(f1,"%If\n",&offset)) != EOF ) {
Xs[ii] = Xc + D*cosT - offset*sinT;
/! Xsxn_ 2 = Xsxn_1; Xsxn_1 = Xsxn; Xsxn = Xsx;
/! Xs[ii] = bn1*Xsxn + bn2*¥Xsxn_1 + bn3*Xsxn_2 - an2*Xsyn_1

- an3*Xsyn_2;
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/I Xsyn_2 = Xsyn_1; Xsyn_1 = Xs[ii];
Ys[ii] = Yc + D*sinT + offset*cosT;

/! Ysxn_2=Ysxn_1; Ysxn_1 =Ysxn; Ysxn = Ysx;

// Ys[ii] = bn1*Ysxn + bn2*Ysxn_1 + bn3*Ysxn_2 - an2*Ysyn_1 -
an3*Ysyn_2;

/! Ysyn_2 = Ysyn_1; Ysyn_1 = Ysl[ii];

Ts[ii] = aatan( Xs[1i-1], Ys[ii-1], Xs[ii], Ys{ii] );
if (i1 == 0) Ts[ii] = aatan( Xs[Ntt-1], Ys[Ntt-1], Xs[ii], Ys[ii] );

// Tsxn_2 =Tsxn_1; Tsxn_1 = Tsxn; Tsxn = Tsx;

/! Ts[ii] = bn1*Tsxn + bn2*Tsxn_1 + bn3*Tsxn_2 - an2*Tsyn_1 -
an3*Tsyn_2;

/! Tsyn_2 =Tsyn_1; Tsyn_1 = Ts[ii];

/! fprintf(ff1," %lf %If Jolf %lf %lf %lf %lf\n",

offset,Xc,Yc,Tc, Xs[ii], Ysl[ii], Ts[ii]);
ilse Xs[ii] = CRACK_END;
1++;
if @i>=Ntt)ii=0;
[k etk Searching reference values ****‘k************************/
if (Xs[kn] == CRACK_END) {

wli =0; wri =0;
Send_Velocity_ Commands(wli,wri);

fclose(ft);
fclose(f1);
fclose(ft2);
return(1);

}

Xr = Xs[kn];

Yr = Ys[kn];

Tr = Ts[kn];

rrd = rr[kn];

kn++;

if (kn>=Ntt) kn =0;

/* Calculate error posture in body coordinate */
X = (Xr - Xc)*cosT + (Yr - Ye)*sinT;
y =-(Xr - Xc)*sinT + (Yr - Yc)*cosT;
p=Tr-Tc;

invE[0][0] = -1;
invE[O][1] = -y/(e+x+c);
invE[1][0] = O;
invE[1][1] = -1/(e+x+c);
f[0] = ur*cos(Tc);
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fl1] = ur*sin(Tc) + c*rrd;

=Yy +C¥*p;

ul[0] = -f[0] - K[0][0] * x -K[O][1] * z;

ul[1] =-f[1] - K[1][0] * x -K[1][1] * z;

u[0] = invE[0]{0] * ul[0] + invE[O]{1] * ul[l];
u[1] = invE[1][0] * ul[0] + invE[1][1] * ul[1];
wl = (u[0] - T2*u[1] ) /R * 9.55;

wr = (u[0] + T2*u[1] )/ R * 9.55;

wli = (int)wl; wri = (int)wr; wri = -wri;
Send_Velocity_Commands(wli,wri);

X_new = xorigin+(int)(Xc*xconstant/12);
y_new = yorigin-(int)(Yc*yconstant/12);
Xx_new_r = xorigin+(int)(Xr*xconstant/12);
y_new_r = yorigin-(int)(Yr*yconstant/12);

/* DISPAYS X AND Y COORDINATES AND THETA */
_settextcolor(white);
_settextposition(3,10);
sprintf(buffer2,"x: %lIf in y: %lf in theta: %If degrees",
Xc, Yc, Tc*180/p1);
_outtext(buffer2);

/* DRAWS REFERENCE PATH  */
_setcolor(green);
_moveto(x_old_r, y_old_r);
_lineto(x_new_r, y_new_r);

/* DRAWS TMR PATH */
_setcolor(lt_magenta);
_moveto(x_old, y_old);
_lineto(x_new, y_new);

x_old = x_new;
y_old = y_new;

x_old_r=x_new_r;
y_old_r=y_new_r;

ticksnow = clock();

tused = (double) ticksnow / CLK_TCK;

fprintf(ft," %If %If %If %lf %If %lf %lf %lf %lf\n",Xc,Yc,Te,Xr, Y1, Tr,X,y,p);
fprintf(ft2," %1f\n" tused);

}

wli=0; wri=0;
Send_Velocity_Commands(wli,wri);
fclose(ft);

fclose(f1);

return(1);
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int Tracking_Control_Laser_real(void) /* tracking control mode with laser sensor */

int wli, wri;

double th1,th2,th3, Xr,Yr,Tr, ur, Xc,Yc,Tc, x,y,p, X0,Y0,TO;
double e, c, T2, R;

double invE[2][2], f[2], K[21[2], z, u[2], ul[2], wl, wr;
char sf[20];

char buffer1[100], buffer2[100];

int .k, xorigin, yorigin;

int left_corner_x, left_corner_y, right_corner_x, right_corner_y;
int x_old, x_new, y_old, y_new, x_old_r, y_old_r, x_new_r, y_new_r;
int hor_lines, ver_lines, line_start_x, line_start_y;
char xvalue, yvalue, thetavalue;

double angular_pos, X_pos, y_pos;

double tused;

clock_t ticksnow;

FILE *f1, *ft, *ft2, *ff1,

int nd, i, ii, kn, knl, rind, found_ref value, status = 0;
int Nitt;

double D, offset, ds, sinT, cosT;

double rrd, dt, xnd, ynd, Ts0, Xs0, Ys0, ndf, di;

double Xcx, Xcxn, Xcexn_1, Xcxn_2, Xcyn_1, Xcyn_2;
double Yex, Yexn, Yexn_1, Yexn 2, Yeyn_1, Yeyn_2;
double Tcex, Texn, Texn_1, Texn_2, Teyn_1, Teyn_2;
double Xsx, Xsxn, Xsxn_1, Xsxn_2, Xsyn_1, Xsyn_2;
double Ysx, Ysxn, Ysxn_1, Ysxn_2, Ysyn_1, Ysyn_2;
double Tsx, Tsxn, Tsxn_1, Tsxn_2, Tsyn_1, Tsyn_2;
double an2, an3;

double bnl, bn2, bn3;

float tolerance;

float avg;

float offs;

int run_status = END_PROG;

char reply[10];

#ifdef FILE_OUTPUT
char out_file[32];

if ('s_laser_init !=1) {
printf("Enter the name of the output file>>\n\t");
scanf("%s", out_file);

data_ptr = fopen(out_file, "w"); /* sets pointer to output file */
off_set_ptr = fopen("off_set.out", "w");
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#ifdef DEBUG

1 on 1"

lisa = fopen("lisa.out", "w");
w = fopen("widths.out", "w"),

#endif
// if fopen returns a NULL then there was an error opening the */
// file and the program is exited */

if (data_ptr == (FILE *)NULL)
{

printf("ERROR OPENING %s", "output file");
exit(-1);

#endif /* FILE_OUTPUT */

1

/!
I

do

check_start(&run_status);
}while (run_status = END_PROG);

init(&tolerance, &avg);

printf("\n\nTolerance Value: %f, Average Value: %f\n\n",tolerance,avg);
printf("Enter New Tolerance Value:\t");

scanf("%s", reply);

tolerance = atof(reply);

s_laser_init = 1;

}

an2 = -0.4803; an3 = 0.2127;
bnl =0.1831; bn2 = 0.3662; bn3 = 0.1831;

e=0;c=12;T2=12.5;R=5.0;
Ntt = 2000; D = 9.75;
for (i = 0;i < Ntt;i++) {
Xs[i] =0.0;
Ys[i] = 0.0;
Ts[i] = 0.0;
rr[i] = 0.0;
}

if ( (f1 = fopen("c:\\hong\\tmr\\control\\ref_off.dat","r")) == NULL ) {
printf("\nError! Reference offset data file can not be opened");
return(0);

}

printf("Enter the name of the output file>>\n\t");
scanf("%s", out_file);

ff1 = fopen(out_file, "w");  /* sets pointer to output file */

ft = fopen("c:\\hong\\tmr\\control\\traj.out","w");
ft2 = fopen("c:\\hong\\tmr\\control\\rt.out","w");
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/*Set linear speed*/

printf("\nInput linear speed( inch/sec ): ");
scanf("%If" ,&ur); ’

/*Set sampling time*/

printf("\nInput sampling time( sec ): ");
scanf("%If" ,&dt);

/* Set control gain matrix */
printf("\nInput control gains( K(1,1),K(1,2),K(2,1),K(2,2)): ");
scanf(" %lf %If %lf %lf",&K[0][0],&K][0][1],&K[1][0],&K[1][1]);

ds = ur*dt;
Get_Posture_Linkage(&thl,&th2,&th3,&X0,&Y0,&T0);

Xcexn = X0; Xcxn_1 = X0; Xcxn_2 = X0; Xcyn_1 = X0; Xcyn_2 = XO0;
Yexn =YO0; Yexn_1 =Y0; Yexn_2 =YO0; Yeyn_1=Y0; Yeyn_2 = YO0;
Texn =TO; Texn_1 =TO; Texn_2 = TO; Teyn_1 =TO; Tcyn_2 = TO;

_setvideomode( _VRES16COLOR );
set_workspace();

/* MAKES GRIDLINES FOR WORKSPACE */
xorigin = 9+no_vert_lines/2*xconstant;
yorigin = 65+(no_horiz_lines-2)*yconstant;
mark_origin(xorigin, yorigin);

// fscanf(fl,"%1f\n" ,&offset);

wait_for_profile();
find_clean_crack(tolerance,avg,&offs);
offset = (double) offs;

Xs0 = X0 + D*cos(T0) - offset*sin(T0);
Ys0 = YO + D*sin(TO) + offset*cos(TO0);
Ts0 = TO + atan(offset/D);

nd=D/ds;
ndf = (double) nd;
xnd = (Xs0 - X0) / ndf;
ynd = (YsO - YO) / ndf;
ii=0;
for(i = 0;1 < nd;i++) {
di = (double) i;
Xs[i] = X0 + xnd*di;
Ys[i] = YO + ynd*di;
Ts[i] = TsO;
i++;

}

/* SCANS FIRST POSTURE OF TMR */
x_old = xorigin+(int)(X0*xconstant/12);
y_old = yorigin-(int)(YO*yconstant/12);
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/¥

*/

/¥

*/

/"

I/

/"

I
/

101

kn=1;

Xr = Xs[kn];
Yr = Ys[kn];
Tr = Ts[kn];

Xsxn = Xs[ii-1]; Xsxn_1 = Xs[ii-2]; Xsxn_2 = Xs[ii-3];
Xsyn_1 = Xs[ii-1]; Xsyn_2 = Xs[ii-2];

Ysxn = Ys[ii-1]; Ysxn_1 = Ys[ii-2]; Ysxn_2 = Ys[ii-3];
Ysyn_1 = Yslii-1]; Ysyn_2 = Ys[ii-2];

Tsxn = Ts[ii-1]; Tsxn_1 = Ts[ii-2]; Tsxn_2 = Ts[ii-3];
Tsyn_1 = Ts[ii-1]; Tsyn_2 = Ts[ii-2];

x_old_r = xorigin+(int)(Xr*xconstant/12);
y_old_r = yorigin-(int)(Yr*yconstant/12);

while( 'kbhit() ) {

Get_Posture_Linkage(&thl,&th2,&th3,&Xc,&Yc,&Tc);

Xcexn_ 2 = Xcxn_1; Xexn_1 = Xcexn; Xexn = Xcx;

Xc =bnl*Xcxn +bn2*Xcxn_1 +bn3*Xcxn_2 - an2*Xcyn_1 - an3*Xcyn_2;
Xceyn_2 = Xcyn_1; Xcyn_1 = Xc;

Yexn 2=Ycxn_1; Yexn_1 = Ycexn; Yexn = Ycx;
Yc =bnl*Ycxn + bn2*Ycxn_1 +bn3*Ycxn_2 - an2*Ycyn_1 - an3*Ycyn_2;
Ycyn_2 =Ycyn_1; Yeyn_1=Yc;

Texn_2 =Texn_1; Texn_1 = Texn; Texn = Tex;
Tc =bnl*Tcxn + bn2*Tcxn_1 + bn3*Texn_2 - an2*Teyn_1 - an3*Tcyn_2;
Teyn_2 =Tcyn_1; Teyn_1 = Tkc;

sinT = sin(Tc);
cosT = cos(Tc);

wait_for_profile();
find_clean_crack(tolerance,avg,&offs);
offset = (double) offs;

if (offset !=NO_CRACK ) {

Xslii] = Xc¢ + D*cosT - offset*sinT;

Xsxn_2 = Xsxn_1; Xsxn_1 = Xsxn; Xsxn = XsXx;

Xs[ii] = bn1*Xsxn + bn2*Xsxn_1 + bn3*Xsxn_2 - an2*Xsyn_1 -
an3*Xsyn_2;

Xsyn_2 = Xsyn_1; Xsyn_1 = Xs[ii];

Ys[ii] = Yc + D*sinT + offset*cosT;

Ysxn_2=Ysxn_1; Ysxn_1=7Ysxn; Ysxn=Ysx;

Yslii] = bnl*Ysxn + bn2*Ysxn_1 + bn3*Ysxn_2 - an2*Ysyn_1 -
an3*Ysyn_2;

Ysyn_2 = Ysyn_1; Ysyn_1 = Ys[ii];

Ts[ii] = aatan( Xs[ii-1], Ys[ii-1], Xs[ii], Ys[ii] );
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if (ii == 0) Ts[ii] = aatan( Xs[Ntt-1], Ys[Ntt-1], Xs[ii], Ys[ii] );

// Tsxn_2 =Tsxn_1; Tsxn_1 = Tsxn; Tsxn = Tsx;

// Ts[ii] = bn1*Tsxn + bn2*Tsxn_1 + bn3*Tsxn_2 - an2*Tsyn_1 -
an3*Tsyn_2;

/! Tsyn_2 =Tsyn_1; Tsyn_1 = Tslii];

fprintf(ff1," %If %lf %lf %lf %lf %lf %lf\n", offset,Xc,Yc,Tc, Xr, Yr, Tr);
}
else Xs[ii] = CRACK_END;

1++;
if{i>=Ntt)ii=0;

[rsksskert Searching reference values ##3s skttt koot ot
if (Xs[kn] == CRACK_END) {

wli=0; wri=0;
Send_Velocity_Commands(wli,wri);

fclose(ft); :
/1 fclose(fl);
fclose(ft2);
printf("Stop at crack end!!!!!1111");
return(1);
}
Xr = Xs[kn];
Yr = Ys[kn];
Tr = Ts[kn];
rrd = rr[kn];
kn++;

if (kn>=Ntt)kn=0;

/* Calculate error posture in body coordinate */
x = (Xr - Xc)*cosT + (Yr - Yc)*sinT;
y =-(Xr - Xc)*sinT + (Yr - Yc)*cosT;
p=Tr-Tc;

invE[0][0] = -1;
invE[O][1] = -y/(e+x+cC);
invE[1][0] = O;
invE[1][1] = -1/(e+x+c);
f[0] = ur*cos(Tc);

f[1] = ur*sin(Tc) + c*rrd;

z=y+c¥p;

ul[0] = -f[0] - K[O][O] * x -K[O][1] * z;

ul[l] = -f[1] - K[1][0] * x -K[1][1] * z;

u[0] = invE[0][0] * ul[0] + invE[O][1] * ul[l];
u[1] =invE[1][0] * ul[0] + invE[1][1] * ul[1];
wl = (u[0] - T2*u[1] ) /R *9.55;

wr = (u[0] + T2*u[1] ) /R * 9.55;
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wli = (int)wl; wri = (int)wr; wri = -wri;
Send_Velocity_ Commands(wli,wri);

X_new = xorigin+(int)(Xc*xconstant/12);
y_new = yorigin-(int)(Yc*yconstant/12);
X_new_r = xorigin+(int)(Xr*xconstant/12);
y_new_r = yorigin-(int)(Yr*yconstant/12);

/* DISPAYS X AND Y COORDINATES AND THETA */
_settextcolor(white);
_settextposition(3,10);
sprintf(buffer2,"x: %]If in y: %If in theta: %If degrees",
Xc, Yc, Tc*180/pi);
_outtext(buffer2);

/¥ DRAWS REFERENCE PATH  */
_setcolor(green);
_moveto(x_old_r, y_old_r);
_lineto(x_new_r, y_new_r);

/* DRAWS TMR PATH */
_setcolor(lt_magenta);
_moveto(x_old, y_old);
_lineto(x_new, y_new);

x_old = x_new;
y_old = y_new;

x_old_r=x_new_r;
y_old_r=y_new_r;

ticksnow = clock();

tused = (double) ticksnow / CLK_TCK; .
fprintf(ft," %If %If %lf %If %lf\n",x,y,p,ul01,u[1]);
fprintf(ft2," %If\n" tused);

}

wli =0; wri =0,
Send_Velocity_Commands(wli,wri);
fclose(ft);

fclose(f1);

return(1);

}

void Send_Velocity_Commands(int wl, int wr) /* send velocity commands to the motor drive */

{

int tmp_read;

if (wl > S_limit) wl = S_limit;
if (wl < -S_limit) wl = -S_limit;
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if (wr > S_limit) wr = S_limit;
if (wr < -S_limit) wr = -S_limit;
do {

outpw(FSC_vel_r_r,wl);
tmp_read = inpw(FSC_vel_r_r);
}while(tmp_read != wl);
do {
outpw(FSC_vel_r_r_1,wr);
tmp_read = inpw(FSC_vel_r_r_1);
}while(tmp_read != wr);

void set_workspace(void)

_setbkcolor (_BLACK);
_clearscreen(_ GCLEARSCREEN);
_settextcolor(white);
_settextposition(1,30);

_outtext ("WORKSPACE OF TMR");
create_replace_grid();

}

/* MARKS ORIGIN */
void mark_origin(int xorigin, int yorigin)

xorigin = 9+no_vert_lines/2*xconstant;
yorigin = 65+(no_horiz_lines-2)*yconstant;
_setcolor(white);

_setlinestyle(solid);
_moveto(xorigin-xconstant, yorigin);
_lineto(xorigin+xconstant, yorigin);
_moveto( xorigin,yorigin-yconstant);
_lineto( xorigin,yorigin+yconstant);

}

/* REPLACES PARITALLY LOST GRID AND ORIGIN MARKER */
void create_replace_grid(void)
{
inti;
_setcolor(cyan);
_rectangle(_ GBORDER, 9, 65, 639, 450);
_settextcolor(white);
_settextposition(13,0);
_outtext ("60\n\n\n\n\n\n\n\n\n\n\n0");
_settextposition(30,18);
_outtext ("-60 0 60");

/% HORIZONTAL LINES */
for(i = 1; i< no_horiz_lines; i++)

_setcolor(red);
_setlinestyle(dashed);

Copyright 2011, AHMCT Research Center, UC Davis



105

_moveto(9, 65+i*yconstant);
_lineto (639, 65+i*yconstant);

}

/* VERITICAL LINES */
for(i = 1; i< no_vert_lines; i++)

_setcolor(red);
_setlinestyle(dashed);
_moveto(9+i*xconstant, 65);
_lineto (9+i*xconstant, 450);

}

/* DRAWS HALF-CIRCLE */
_setcolor(yellow);
_arc(79,135,569,625,569,380,79,380);

}

void draw_tmr(double x, double y, double angular_pos, int xorigin, int yorigin, int X_old, int
X_new, int y_old, int y_new)

int i, j;

extern int X_pos, y_pos, x0, x1, x2, x3, x4, yy0, yy1, y2, y3, v4;
extern int tx1, tx2, tx3, tx4, tx5, tx6, tx7, tx8;

extern int tyl, ty2, ty3, ty4, tyS5, ty6, ty7, ty8;

float tmrlength, tmrwidth, halflength, halfwidth, tirelength, tirewidth;
char buffer1[100], buffer2[100];

tmrlength = 30.0/12;
tmrwidth = 20.0/12;
halfwidth = tmrwidth/2;
halflength = tmrlength/2;
tirelength = 10.5/12;
tirewidth = 3.5/12;

[* REDRAWS THE TMR INBLACK TO HIDE IT  #*/
_setcolor(black);
_moveto(x1, yyl);
_lineto(x2, y2);
_lineto(x3, y3);
_lineto(x4, y4);
_lineto(x1, yy1);
_moveto(tx1,tyl);
_lineto(tx2, ty2);
_lineto(tx3, ty3);
_lineto(tx4, ty4);
_lineto(tx1, ty1);
_moveto(tx5,ty5);
_lineto(tx6, ty6);
_lineto(tx7, ty7);
_lineto(tx8, ty8);
_lineto(tx5, ty5);
_ellipse(_GBORDER, (int)(x_pos-4), (int)(y_pos+4), (int)(x_pos+4), (int)(y_pos-4));
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X_pos = xorigin+(int)(x/12*xconstant);
y_pos = yorigin-(int)(y/12*yconstant);

/* DISPAYS X AND Y COORDINATES AND THETA */

_settextcolor(white);

_settextposition(3,10);

sprintf(buffer2,"x: %If in y: %lf in theta: %If degrees",
X, y, angular_pos*180/pi);

_outtext(buffer2);

/* CALCULATES THE CORNER COORDINATES OF THE TMR */

x0 = (int)(x_pos + xconstant*cga*cos(angular_pos));

yy0 = (int)(y_pos - yconstant*cga*sin(angular_pos));

x1 = (int)(x0 + xconstant*halfwidth*sin(angular_pos));
yy1 = (int)(yy0 + yconstant*halfwidth*cos(angular_pos));
x2 = (int)(x1 - xconstant*tmrlength*cos(angular_pos));
y2 = (int)(yyl + yconstant*tmrlength*sin(angular_pos));
x3 = (int)(x2 - xconstant*tmrwidth*sin(angular_pos));

y3 = (int)(y2 - yconstant*tmrwidth*cos(angular_pos));

x4 = (int)(x1 - xconstant*tmrwidth*sin(angular_pos));

y4 = (int)(yy1 - yconstant*tmrwidth*cos(angular_pos));

/* CALCULATES THE TMR'S TIRE COORDINATES */

tx1 = (int)(x3 - S*sin(angular_pos));

tyl = (int)(y3 - 5*cos(angular_pos));

tx2 = (int)(tx1 - xconstant*tirewidth*sin(angular_pos));
ty2 = (int)(ty1 - yconstant*tirewidth*cos(angular_pos));
tx3 = (int)(tx2 + xconstant*tirelength*cos(angular_pos));
ty3 = (int)(ty2 - yconstant*tirelength*sin(angular_pos));
tx4 = (int)(tx1 + xconstant*tirelength*cos(angular_pos));
ty4 = (int)(ty1 - yconstant*tirelength*sin(angular_pos));
tx5 = (int)(x2 + 5*sin(angular_pos));

ty5 = (int)(y2 + 5*cos(angular_pos));

tx6 = (int)(tx5 + xconstant*tirewidth*sin(angular_pos));
ty6 = (int)(ty5S + yconstant*tirewidth*cos(angular_pos));
tx7 = (int)(tx6 + xconstant*tirelength*cos(angular_pos));
ty7 = (int)(ty6 - yconstant*tirelength*sin(angular_pos));
tx8 = (int)(tx5 + xconstant*tirelength*cos(angular_pos));
ty8 = (int)(ty5 - yconstant*tirelength*sin(angular_pos));

/* DRAWS TMR */

"

_setcolor(lt_blue);
_moveto(x1, yyl);
_lineto(x2, y2);
_lineto(x3, y3);
_lineto(x4, y4);
_lineto(x1, yyl);
_setcolor(blue);
_moveto(tx1,ty1);
_lineto(tx2, ty2);
_lineto(tx3, ty3);
_lineto(tx4, ty4);
_lineto(tx1, ty1);
_moveto(tx5,ty5);
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_lineto(tx6, ty6);

_lineto(tx7, ty7);

_lineto(tx8, ty8);

_lineto(tx5, ty5);

_setcolor(green);

_ellipse(_GBORDER, (int)(x_pos-4), (int)(y_pos+4), (int)(x_pos+4), (int)(y_pos-4));
gevi(x, 7, bufferl);  /* gevt converts a double to a string */

gevi(y, 7, bufferl);

gevt(angular_pos, 7, bufferl);

/¥ DRAWS TMR PATH */
_setcolor(lt_magenta);
_moveto(x_old, y_old);
_lineto(x_new, y_new);

/* ADDING TO DISPLAY TIME */
/¥ for(i = 0; i<20000; i++)

for(j = 0; j<25; j++);
y

/* REPLACES THE ENTIRE GRID AND ORIGIN */
create_replace_grid();
mark_origin(xorigin, yorigin);

}

void sound_on(unsigned freq)

{

unsigned status, ratio, part_ratio;

status = inp(OUT_8255);
outp(TIMER_MODE, TIMER_OSC);
ratio = (unsigned)(TIMER_FREQ/freq);
part_ratio = ratio & Oxff;
outp(TIMER_COUNT ,part_ratio);
part_ratio = (ratio >> 8) & Oxff;
outp(TIMER_COUNT ,part_ratio);
outp(OUT_8255,(status | SPKRON));

}

void sound_off(void)

{

unsigned status;
status = inp(OUT_8255);
outp(OUT_8255,(status & ~SPKRON));
double aatan(double x1, double y1, double x2, double y2)
double dx, dy, ang, dydx;

dx =x2 - x1;
dy=y2-yl;
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if(dx==0) {
if (dy >0 ) ang = PI/2;
else if (dy <0 ) ang = 3*Pl/2;
else ang = 1000;

}

else if (dx>0) {
if(dy==0) ang=0;
elseif (dy>0) {
dydx = dy/dx;
if ( dydx > 100000 ) ang = PI/2;
else ang = atan(dydx);

else {
dydx = dy/dx;
if ( dydx < -100000 ) ang = 3*P1/2;
else ang = 2*PI - atan(-dydx);

}

else {
if (dy ==0) ang = PI,;
elseif (dy>0) {
dydx = dy/dx;
if ( dydx < -100000 ) ang = PI/2;
else ang = PI - atan(-dydx);
else {
dydx = dy/dx;
if ( dydx > 100000 ) ang = 3*P1/2;
else ang = PI + atan(dydx);
}
}
return(ang);
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/******************************************************************/

/* File Name FSCreg.h

/* Function Interface Memory Map for FSC Registers
/* Programed by Dahie Hong

/* Date Aug., 30, 1993

/* Version 1.0

/* Revision History None

*/
*/
*/
*/
*/
*/

/******************************************************************/

/****************************************************************/

/¥ Registers in CPU RW, FSCR */

/¥ Addr 0x00 - Ox7f
/¥ FSC read %
[* External

#define FSC_index
#define FSC_data
#define FSC_kode
#define FSC_address
#define FSC_wait_or_go
#define FSC_init_rotvel
#define FSC_pwmmax
#define FSC_pwmmin

*/

read & write ¥/
/****************************************************************/

0x320 // index register

0x322 //

0x322 //

0x324 //

0x326 // control flag from host

0x720 // initial rotational speed from host
0x722 // max value of pwm

0x724 // min value of pwm

#define FSC_q_pwm_range 0x726 //
#define FSC_pwm_period_2 0xb20 // half pwm period

#define FSC_torque_angle
#define FSC_kpl
#define FSC_vrlimit
#define FSC_b_p_h_rl
#define FSC_b_p_1_r1
#define FSC_vel_max
#define FSC_xvel_max
#define FSC_b_p_h_r2
#define FSC_b_p_1 12
#define FSC_b_p_h_r3
#define FSC_b_p_]_13
#define FSC_pwmst

#define FSC_kcl_r
#define FSC_kc2 r
#define FSC_i_q r r
#define FSC_kv1_r
#define FSC_kv2_r
#define FSC_vel_r_r
#define FSC_vel r r 1
#define FSC_pwm_onoff

#define FSC_act_node
#define FSC_w_datal
#define FSC_rw_addrl
#define FSC_w_data2
#define FSC_rw_addr2
#define FSC_cmd

0xb24 // torque angle

0xb26 // proportional gain of position control
0xf20  // velocity limit

0xf22 // position reference low word

0xf24 // position reference high word

0xf£26 //

0x1320 /!
0x1322 /!
0x1324 /!
0x1326 /!
0x1720 /i
0x1722 /!
0x3320

0x3322

0x3324

0x3326

0x3720

0x3722

0x3724

0x3726

0x7b24 /!
0x7b26 /! write data from host

0x7£20 /! address of read data

0x7122 // write data from host

0x724 // address of read or write data
0x7£26
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/****************************************************************/

[ Registers in CPU R, FSC RW */
[* Address 0x80 - Oxff  */
/* FSC read & write */

/* External read ¥/
/****************************************************************/
#define FSC_h0 0x8320 /"

#define FSC_I0 0x8322 /"

#define FSC_hl 0x8324 /"

#define FSC_I1 0x8326 1

#define FSC_h2 0x8720 /I

#define FSC_I2 0x8722 /

#define FSC_error 0x8320 1/

#define FSC_zeros 0x8322 /!

#define FSC_fives 0x8322 //

#define FSC_aes 0x8324 1

#define FSC_mon_type 0x8324 /[ monitor type

#define FSC_firstaddr 0x8326 /l first address used in memory test routine
#define FSC_lastaddr 0x8720 // 1ast address used in memory test routine
#define FSC_extromaddr 0x8724 /

#define FSC_codelow 0x8726 1/

#define FSC_codehigh 0x8b20 //

#define FSC_cst200h 0x8b22 /"

#define FSC_bit10 0x8b24 /I content is 0000 0100 0000 0000B
#define FSC_answer 0x8b26 /

#define FSC_polefactor 0x8f20 "

#define FSC_theta 0x8f22 // angle

#define FSC_sin 0x8f24 // sin(theta)

#define FSC_cos 0x8f26 /l cos(theta)

#define FSC_sin120 0x9320 /I sin(theta+120)

#define FSC_cos120 0x9322 // cos(theta+120)

#define FSC_kslip 0x9324 /"

#define FSC_slipinc 0x9326 /

#define FSC_sliplow 0x9720 I

#define FSC_sliphigh - 0x9722 /"

#define FSC_i_u 0x9724 // u-axis current

#define FSC_i_v 0x9726 /l v-axis current

#define FSC_i_q 0x9b20 /I g-axis current

#define FSC_i_d 0x9b22 /1 d-axis current

#define FSC_v_q 0x9b24 /I g-axis velocity

#define FSC_v_d 0x9b26 /l d-axis velocity

#define FSC_pwmu 0x91£20 // u phase pwm

#define FSC_pwmv 0x9f22 // v phase pwm

#define FSC_pwmw 0x9124 // w phase pwm

#define FSC_pwmoffset 0x9126 // pwm offset

#define FSC_pfrequency 0xa320 /[ pwm frequency

#define FSC_pdelay 0xa322 // pwm delay

#define FSC_1_q_r 0Oxa324 /I reference of g-axis current
#define FSC_i g_e 0xa326 // error of g-axis current

#define FSC_i_qg_int 0xa720 // butfer for g-axis current PI control
#define FSC_vqlimit 0xa722 /' limit of g-axis velocity

#define FSC_kcl Oxa724 // proportional gain of current control
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#define FSC_kc2 0xa726 // integral gain of current control
#define FSC_i d_r 0xab20 // reference of d-axis current

#define FSC_i_d_e Oxab22 // error of d-axis current

#define FSC_i_d_int Oxab24 /I buffer for d-axis current PI control
#define FSC_vdlimit Oxab26 // limit of d-axis velocity

#define FSC_vel r 0Oxaf20 /I reference velocity

#define FSC_vel_e Oxaf22 /I velocity error

#define FSC_vel_int Oxaf24 / buffer for velocity PI control

#define FSC_iqlimit Oxaf26 /I limit of g-axis current

#define FSC_kv1 0xb320 // proportional gain of velocity control
#define FSC_kv2 0xb322 // integral gain of velocity control
#define FSC_pos 0xb324 /I new value of position counter(encoder)
#define FSC_posl1 0xb326 // old value of position counter(encoder)
#define FSC_increment 0xb720 1/

#define FSC_countmax 0xb722 // max position counter value of encoder
#define FSC_countmax?2 0xb724 // half of counter max

#define FSC_xcountmax2  0xb726 // - countermax?

#define FSC_vel 0xbb20 /I feedback velocity

#define FSC_velfactor 0xbb22 /] velocity factor

#define FSC_adcO Oxbb24 /1 ADC #define0 result

#define FSC_adcl 0xbb26 /1 ADC #definel result

#define FSC_i_ul 0xbf20 // first filtered value of u-axis current
#define FSC_i_u2 0xbf22 // second filtered value of u-axis current
#define FSC_i_u3 Oxbf24 // third filtered value of u-axis current
#define FSC_i_u4 0xbf26 // fourth filtered value of u-axis current
#define FSC_i_vl 0xc320 /! first filtered value of v-axis current
#define FSC_i_v2 0xc322 // second filtered value of v-axis current
#define FSC_i_v3 0xc324 // third filtered value of v-axis current
#define FSC_i_v4 0xc326 // fourth filtered value of v-axis current
#define FSC_rot_field_angle 0xc720 // rotational field angle

#define FSC_pos_p 0Oxc722 /!

#define FSC_pos1_p 0xc724 //

#define FSC_increment_p  0xc726 /N

#define FSC_z_encountered 0Oxcb20 /1 0 indicates that z pulse is encountered
#define FSC_current_time  0xcb22 // record timer reading evevry current loop
#define FSC_p_e Oxfb24 /I position error

#define FSC_p_l_e 0xfb26 // position error low word

#define FSC_p_h_e Oxff20 // position error high word

#define FSC_status Oxff22 /1 status of cpu intervention

#define FSC_r_datal 0xff24 /l receive datal

#define FSC_r_data2 0xff26 // receive data2
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/**************************************************************** */

/* File Name laser.c */
/* Function contains functions related to the laser range finding sensor */
/* Programed by D.A. Krulewich, D. Hong, and L. Matsumoto */
/* Date Aug., 30, 1994 */

/**************************************************************** */

#include <signal.h>
#include <bios.h>

#include "calib8.h"
#include "profile.h"

/*#define PRINT_ERR*/
#define FILE_OUTPUT
/*#define DEBUG™*/

#define TIMING_SAMP_INT

#define TOO_SMAILL 1.0 /* width of crack in mm which is too small to seal */
#define TOO_BIG 50.0 /* width of crack in mm which is too large to seal */
#define N 25
#define NOT_FOUND 0
#define FOUND 1
#define CLEAN 0
#define VEGETATION 1
#define YES 1
#define NO 0
#define INTENSITY 9 /* intensity of laser (1-9) */
#define START_PROG 1
#define END_PROG 0
#define FS_MM 101.6
#define NUM_PTS nb_line_field /* number of points in each scan line */
#define FS_BITS 126.0 /* full scale number of bits */
#define SEND_DATA 26
#define NO_CRACK 1000.0
. #define MAX_ERR (FS_MM/2.4) /* Maximum error for saturation */ -

#define MAX_NC_SAMPS 330 /* Maximum consecutive samples of
no crack found before really sending
the no crack signal to the robot */

/* define serial communication constants */

#define WORD_LENGTH _COM_CHRS /* 8 bits per character */

/* _COM_CHRY7 for 7 bits per character */
#define STOP_BITS _COM_STOP1 /* 1 stop bit */

/* _COM_STOP2 for 2 stop bits */
#define PARITY _COM_ODDPARITY /* odd parity */

/* _COM_EVENPARITY for even parity */
/* _NO_PARITY for no parity */
#define BAUD_RATE _COM_4800 /*4800 baud */

/¥_COM_110 O 110 baud */

/¥_COM_150 32 150 baud */

/*¥_COM_300 64 300 baud */

/*_COM_600 96 600 baud */

/*_COM_1200 128 1200 baud */

/¥_COM_240 160 2400 baud */
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/*_COM_4800 192 4800 baud */
/*_COM_9600 224 9600 baud */
/* _COM_XXX for XXX baud */

#define COM1 0 /* coml port assignment */

#define COM2 1 /* com?2 port assignment */

/* set crack profile filter constants (position filter) */

#define Al 1.0000

#define A2 -1.5610

#define A3 . .6414

#define B1 .0201

#define B2 .0402

#define B3 .0201

#define TIME_FILTER
#define SATURATION_CHECK

/* Set time filter constants */
[¥fc=4Hz, fs=33,n=2,r=05%

#define AT1 1.0000

#define AT2 -0.83473496972638
#define AT3 0.37065462937979
#define BT1 0.13397991491335
#define BT2 0.26795982982670
#define BT3 0.13397991491335
[Ffc=1Hz,fs=33,n=2,r=05%/

/*

#define AT1 1.0000

#define AT2 -1.715154

#define AT3 0.763242

#define BT1 0.012022

#define BT2 0.024044

#define BT3 - 0.012022

*/

extern void  p_init_all(void);
extern void  wait_for_profile(void);

extern void  s_cam_to_user(F_COOR *ptC, CALIBRATIONS near *ptCal);

void send_offset(float offset);

void init_serial_port(void);

void init(float *tolerance, float *avg);

void menu2(void);

void set_video(void);

void restore_video(void);

int crack_type(void);

void find_clean_crack(float tolerance, float avg, float *offset);
void find_filled_crack(float tolerance, float avg, float *offset);
float filter(float x[], float y[]);

void emergency_out(int sig);

void last_call(void);

void check_start(int *run_status);

void check_stop(int *run_status);
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void send_not_found(void);

#ifdef FILE_OUTPUT
FILE *data_ptr, *off_set_ptr;
#endif

#ifdef DEBUG

FILE *lisa, *w;
#endif

void check_start(int *run_status)

{
}

void check_stop(int *run_status)

*run_status = START_PROG;

if (kbhit())

*mn_status = END_PROG;
else

*run_status = START_PROG;

}

void init_serial_port(void)

{
unsigned data;
data = (WORD_LENGTH | STOP_BITS | PARITY | BAUD_RATE);
_bios_serialcom(_COM_INIT, COM1, data);

}

void send_offset(float offset)

{

unsigned status;
/* unsigned scaled_offset;*/
[* char scaled_offset;*/

int scaled_offset;

char scaled_output;

static inti = 0;

int data;
int send = NO;
char *error;

char out_error[11];

int dec, sign;

int count = 6;

static float t2=0, t4=0;

float t1, t3;

float filt_offset;

float raw_offset;

static int no_crack_samps = 0O;
static int prev_offset_sign = 1;
int filter it;

intnc =0;
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filter_it=1; /* Do filter the signal this time through */
nc = 0;

#ifdef SATURATION_CHECK
if((offset > MAX_ERR) Il (offset < -MAX_ERR)) {
/* Should indicate "No Crack Found" */
if(no_crack_samps < MAX_NC_SAMPS){ /* For now, send out saturated
value */
offset = MAX_ERR * prev_offset_sign;
no_crack_samps++;

nc =0;
else {
offset = 1000.0; /* Send out No Crack Found. Don't filter this */
filter_it = 0;
nc=1;
}

else { /* The sensor did find a crack */
no_crack_samps = 0;
nc=0;

!
#endif /* SATURATION_CHECK */
raw_offset = offset;

#ifdef TIME_FILTER
/* Filter the offset signal */
/* Currently using a
ripple factor of 0.5, cutoff frequency of 4 Hz, assumed
sampling frequency of 33 Hz. Designed using Matlab's
cheby1() function. The filter structure being used is
a canonical form (see Discret Time Signal Processing,
Oppenheim and Schaffer) */

if(filter_it){
if(offset>=0)
prev_offset_sign = 1;
else
prev_offset_sign = -1;

/! raw_offset = offset;
/* Delay taps */
13 =t4;
tl =12;
filt_offset = BT1*offset + t1;
14 = BT3*offset - AT3*filt_offset;
t2 = t3 + BT2*offset - AT2*filt_offset;

/* Now, reset the input offset value to the filtered value */
offset = filt_offset;
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}

#endif /* TIME_FILTER */

#ifdef FANCY_OUT

_settextposition(15,35);

strepy(error, fevt((double)offset, count, &dec, &sign));

out_error[1] ="\0";
if (dec <=0)
{

strncat(out_error, " ", 1);
dec =0;
}
else
{
strncat{out_error, error, 1);
}
strncat(out_error, ".", 1);

strncat(out_error, (error + dec), 3);
if (sign ==0)

out_error[0] ="";
else

out_error[0] ="-;
strncat(out_error, " mm", 3);

_outtext(out_error);

#endif /*FANCY_OUT*/

#ifdef PRINT_ERR

#endif

/*

[

/%

printf("\nError: %8.3f (mm), %38.3f (raw),",offset,raw_offset);

check to see if "DATA READY" flag is set */
status = 0x100 & _bios_serialcom(_COM_STATUS, COM1, 0);

if (status == 0x100)
while (status == 0x100)

get data from serial port */

data = Oxff & _bios_serialcom(_COM_RECEIVE, COM1, 0);
if (data == SEND_DATA)

send = YES;

status = 0x100 & _bios_serialcom(_COM_STATUS, COM1, 0);

i}f (send)

send error signal to RPS */
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scaled_offset = (int) ((offset*2.0 ) * FS_BITS / FS_MM);

/* Convert the integer scaled_offset to the char scaled_output.
If no crack is indicated, send out FS_BITS+1 */
if(nc){
scaled_output = (char) (FS_BITS+1); /* Indicate no crack
found to RPS */

else {
if(scaled_offset > FS_BITS)
scaled_output = (char) FS_BITS;
else if(scaled_offset < -FS_BITS)
scaled_output = (char) -FS_BITS;
else

}

/*if (offset > FS_MM)
scaled_offset = (FS_BITS + 1); */  // no crack found

scaled_output = (char) scaled_offset;

/* wait until transmit holding register empty flag is set */
do

{
status = 0x2000 & _bios_serialcom(_COM_STATUS, COM1, 0);
} while (status != 0x2000);

status = _bios_serialcom(_COM_SEND, COM1,(unsigned)
scaled_output);

#ifdef PRINT_ERR

printf("error: %4d",(int) scaled_offset);
#endif

if ((status & 0x8000) == 0x8000)

printf("\nError sending offset over serial port!\n");

#ifdef FILE_OUTPUT
fprintf(data_ptr, "%f %f\n", raw_offset, offset);
#endif

}

void init(float *tolerance, float *avg)

{
int i;
if (signal(SIGINT ,emergency_out) == SIG_ERR) /*trap AC*/
{

perror("signal failed");
exit(0);
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atexit(last_call); /* the system will call last_call when the program terminates */

p_trap_kb(); /*save actual key board fct so on return we restore it*/
u_set_dir(); /*See II.3 Definition of proper DOS environment*/
set_LPB_board(0); /*read if present descriptions of the LPB board*/
p_int_reset(); /* resets interrupts 1-6 enable bit in CTRL1 rgister */
p_int_init(); /*must be done once only*/

global_init(); /*read camera parameters*/

p_init_all(); /* initialize board */

set_laser(INTENSITY); /* set laser intensity */
set_video();

_setbkcolor(_ BLUE);
_clearscreen(_ GCLEARSCREEN);
_settextcolor((short)_WHITE);

menu2();

}

void menu2(void)
char dummy;

_clearscreen( GCLEARSCREEN);
_ouUeXK"************************************************hﬁj
_outtext("*  *\n");

_outtext("*  LASER VISION SYSTEM *\n");

_outtext("*  *\n");
OuanK"************************************************“fj

k4

b

_outtext("\nInitialization complete. Ready to begin sampling.\n");
_outtext("Place sensor over section to scanned.\n");

_outtext("Hit any key and enter to continue.>>");

scanf("%s", &dummy);

}

int crack_type(void)

return CLEAN,;
}

float filter(float x[], float y[])
/* discrete realization for a recursive high pass filter */

float vo;
vo=B1 *x[2] + B2 * x[1] + B3 * x[0] - A2 * y[1] - A3 * y[0];

return vo;
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void find_clean_crack(float tolerance, float avg, float *offset)
{

F_COOR f_coor;

int i, j, max=0, min=0, m, mincell, maxcell;

int crack_start, crack_end, rise;

float pos[240], depth[240];

float init_crack_depth, derivative[239], maxmin;

float width;

float vo;

float x[3], y[21];

for (i =0; 1 <nb_line_field; i++)

{
f_coor.line = (float)i;
f_coor.pixel = (float)address[i];
s_cam_to_user(&f_coor, calib8);
pos[i]=f_coor.u;
depth[i]=f_coor.v;

#ifdef DEBUG
x[0] = x[1];
x[1] =x[2];

x[2] = f_coor.v;

vo = filter(x, y);

fprintf(lisa," %f %f %f %t %f\n", f_coor.line, f_coor.pixel, f_coor.u,f_coor.v,vo);
printf("%f %f %f %f %f\n", f_coor.line, f coor.pixel, f_coor.u, f_coor.v, vo);

#endif
}
for(m=0; m<nb_line_field-1; m++)
{
derivative[m] = address[m+1]-address{m];
maxmin=derivative[m];
if(maxmin > max)
{ max=maxmin;
maxcell=m;
else if(maxmin<min)
{ min=maxmin;
mincell=m;
!
}
/* for(m=0;m<nb_line_field-1;m++)
printf("%d %f %f %f\n", m, derivative[m], pos[m], depth[m]);
printf("max is %d and min is %d\n", max, min);
*/

if((max>2)&&(min<-2))

width=fabs(pos[maxcell+2]-pos[mincell-2]);
*offset = (pos[maxcell+2]+pos[mincell-2])/2;
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*offset = (*offset+20.15)*0.0531;
/! send_offset(*offset);
/! printf("crack detected!\ncrack start=line %d and end=line %d\nwidth=%f\n", mincell,
maxcell, width);
/! printf("\roffset: %6.2f",*offset);

else if (min<-2) /* crack end not found */

width = fabs(pos[mincell-2] - pos[nb_line_field-1]);
if (width < TOO_SMALL)
{

printf("Crack too small\n");
send_not_found();

}
else if (width > TOO_BIG)

{
printf ("Crack too big\n");
send_not_found();

}
else
{
*offset = (pos[mincell-2] + pos[nb_line_field-1])/2;
*offset = (¥offset+20.15)*0.0531,;
send_offset(*offset);
}
}
else
{
send_not_found();
}

}

void find_filled_crack(float tolerance, float avg, float *offset)

printf(v"\nProgram incomplete for filled cracks");

void send_not_found(void)

printf("\nNo crack found!\n");
1 send_offset(NO_CRACK);

}
void last_call()
{

p_restore_kb(); //must be done, key board ISR has been changed
p_int_reset();

restore_vectors();

u_reset_dir(); //return to previous directory

set_mode(3);

restore_video();
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void emergency_out(int sig)

exit(0);

void set_video(void)

{
struct videoconfig video_info;
short videomode = _HRESBW;

_getvideoconfig(&video_info); /* Call to find adapter */
switch (video_info.adapter)
{
case _MDPA:
printf("This program needs a graphics adapter.\n");
exit(0);
case CGA:
videomode = _HRESBW; /* 2 color 640x200 CGA mode */
break;
case _EGA:
videomode = _ERESCOLOR; /* 16 color 640x350 EGA mode */
break;
case _VGA:

videomode = _VRES16COLOR; /* 16 color 640x480 VGA mode */
break;

/* Set adapter to selected mode */
_setvideomode(videomode);

/* Call _getvideoconfig again to find resolution and colors */
_getvideoconfig(&video_info);

}

void restore_video(void)

{

_setvideomode(_ DEFAULTMODE);
}
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