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Abstract

The relative location of a robot’s end- effector to objects in the robot’s workspace
is sometimes unknown. Tactile sensing fixtures, when used with a touch probe at-
tached to the robot, can determine the relative location of these objects. Currently,
the work on the design of tactile fixtures for this purpose has been limited. This
dissertation addresses this issue by creating a theoretical framework for the design
of tactile fixtures. In this framework, fixtures are analyzed based on the geometric
surfaces that compose them and the contacts that are made to them.

The analysis of fixtures based on their geometric surfaces relies upon the Euclidean
grouf) and its subgroups. Using these groups, several propositions are introduced and
proven. These propositions form the basis of a new theory that can aid in the design
of touch sensing fixtures by analysis of the continuous and finite groups that represent
them. Using these propositions, fixtures involving different geometric elements are
analyzed for their usefulness in determining the relative position between two bodies.

This analysis is taken one step further by looking at contacts needed to make
a “useful” reference fixture. Contacts between spheres, planes, cylinders, points,
and lines are studied, and group representations are found for every possible contact

v
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that could exist between these geometric elements. Using the group representations,
all possible combinations of contacts are studied. During this enumeration, 17,465
"useful” contact combinations are found.

Finally, using the information obtained from the contact analysis, two simple yet
novel touch sensing fixtures for referencing are developed. One of those fixtures uses
a plane-cylinder geometry to uniquely locate a frame. The other fixture uses a tripod
shaped probe and a planar surface (in the final design a digitizer is used) to uniquely

locate a reference frame.
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Chapter 1

Introduction

In the last fifty years, our view and use of robots has evolved from the stuff of
science fiction films to the reality of computer controlled actuators integrated into
a wide variety of devices for use in many different environments. Regardless of the
environment, robots always need to know two things to be useful, they need to know
the location of their end-effector relative to their base, the determination of this
location is commonly referred to as calibration, and the location of any parts in
the workspace that will be manipulated, the determination of the part locations is
commonly referred to as workspace referencing or part referencing.

Part referencing is the process of determining the relative location of a part with
respect to a tool (such as a machine tool, a robot, or a material handling system)
or with respect to a world coordinate system (see Figure 1.1). Part location data is

necessary for automated machine tool programming and part processing. In manu-
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End-Effector
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Figure 1.1: Relationship between frames

facturing, mechanical fixtures have been designed (see, for example, [10] or [38]) that
would allow repeatable po'sitioning of a pallet with respect to a machine tool at a
pre-determined location.

In robot calibration, the position of the end-effector is usually measured at a set of
pre-determined locations using some form of a sensing syétem (see Figure 1.1). This
data is then combined with joint encoder readings from the same set of locations to
update the kinematic parameters of the robot in its programming system (see, for
example, [36] or [16]) to improve its positioning accuracy.

Since both part referencing and calibration require measurement of relative loca-
tions between two objects, mechanical fixtures are usually used to simplify the sensing
function and to improve repeatability. There are also approaches that have relied on

directly measuring elements of feature surfaces of the parts eliminating the need for
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mechanical fixtures. These approaches have usually been based on the use of non-
contact type sensing systems such as use of theodolites in robot calibration [43] or
laser interferometry (see for example, [13] or [19]). Mechanical fixtures, however, are

used (most of the time) in conjunction with touch or tactile sensing.

1.1 Motivation

Much of the existing work related to tactile sensing~ fixtures have reported one
of a kind and ad hoc systems. There has been very little effort on developing a
broader design method or theory for such fixtures or for better understanding of key
design parameters. An exception to this is the work of McCallion and Pham [23] in
relationship to their work in developing sensing fixtures for robotic assembly.

McCallion and Pham used kinematic mobility criterion to systematically deter-
mine the number of touches necessary for different sensing arrangements using faces
of a cubical eleﬁent to determine the location of an end-efféctor with respect to a
cubical fixture. Such cube shaped tactile sensing fixtures have also been used in robot
calibration by Mooring and Pack [26]. Other common shapes used for the mechanical
fixtures are three spheres [10] [38].

Although a cubical fixture and a three sphere fixture can be used for referencing,
they are only two of many different reference fixture geometries. Moreover, these two
fixtures are designed based on the use of a touch probe that makes point contacts

on the surfaces of the fixture to determine the location of the fixture; a point-surface
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contact is only one of an infinite number of contact possibilities.

1.2 Overview of the Dissertation

In this dissertation a relatively general theoretical foundation is developed that
alds in the design of tactile sensing fixtures using group theory by exploiting the
symmetry of different measuring a,fra,ngements. This group theoretical foundation
includes the analysis of fixture geometries that form reference fixtures and the analysis
of the contacts made to the fixture geometries for determination of the location of the
fixture. The use of group theory is appropriate since the idea behind part referencing
i1s to determine the relative displacement between two parts which forms the well
known Euclidean group or one of its sub-groups. The organization of the paper is as
follows.

Chapter two describes related work that has an impact on the work described in
this dissertation. Including important work by Hervé [15], Torras and Thomas [41],
and Liu and Popplestone [21].

Chapter three discuss a few relevant aspects of symmetry groups, describes a
systematic method for finding the continuous subgroups of the Euclidean group, and
introduces and proves several propositions that form the basis of our new theory that
can aid the design of touch sensing fixture systems. Then, mechanical fixtures with
surfaces consisting of spheres, planes (this will include cubes with planar faces), right

cylinders and their combinations are studied, using group theory and the propositions
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developed, for use as touch sensing fixtures.

Chapter four uses group theory for type synthesis or enumeration of contacts
between geometric elements necessary in the design of tactile sensing mechanical
fixtures for robotic applications. Although the scope of this dissertation is limited
to geometric contacts involving points, planes, spheres, lines, and right cylinders, the
techniques developed are general and can be applied to other geometric features and
non tactile sensing elements used in robotic referencing and calibration.

Chapter five discusses two simple yet novel touch sensing fixture for part refer-
encing and calibration in manufacturing and robotics that originate from our study
of fixture design.

Chapter six evaluates the significance of this work, its contributions and limita-

tions, and envisions possible future research based on what has been accomplished.
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Chapter 2

Existing Literature

Fixture design for referencing and calibration is related both directly and indirectly
to many research fields. For example, analysis of feature interactions are discussed
in the field of robotic assembly, and motion analysis is frequently discussed in the
field of mechanisms. In the proceeding sections an introduction is given to existing

literature on the subjects pertinent to this dissertation.

2.1 Mechanism Analysis Using Group Theory

Hervé [15] introduced a classification of mechanisms by applying the theory of
continuous groups. He used the subgroups of the Euclidean group to represent each
joint in a mechanism. Using the dimension of the subgroups that corresponded to
each mechanical joint, he formulated equations making it possible to analyze a series

of mechanism connections (composition relation) and a set of parallel mechanism
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connections (conjoined relation).

Hervé represented the intersection and composition of constraints in terms of
groups. If there are two relations L), L, between body; and body, then the conjoined
relation of body; and body; is L1 N L,. When relations are composed, one has the

following relationship between the dimensions:

dim{L(i,k)} = dim{L(i,5)} + dim{L(j,k)} — dim{L(i,§) N L(j, k)}

(2.1)

where i,j,k refer to three distinct bodies. With his analytical tools, Hervé made it
possible to determine the degree of freedom of any mechanism. Furthermore, he
created a classification of mechanisms based on his results.

Fanghella, Galletti and.others (see, for example, [11], [12], and [2]) have extended
Hervé’s research using a combination of group theory and geometry in the analysis
of mechanisms and robot manipulators.

This work is relevant to the analysis of touch sensing fixtures because the inter-
actions of a touch sensor and a fixture are similar to joints in a mechanism. In fact,
the contact between different geometric elements can be represented using mechanical

joints. This relationship is explored further in Chapter four.

2.2 Robotic Assembly Planning

In 1980, Popplestone applied the theory of continuous groups to robotic assembly

planning to obtain new results [34]. He observed that features of a body are useful
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Figure 2.1: Constraints between bodies during assembly

O

descriptors, perhaps even more important than the symmetry group of the body itself.
In his analysis, he treated a body as a set of infinite primitive surfaces where the
surfaces bounded the body or solid. This made interactions between bodies simpler
because just the surfaces of the bodies in contact need to be studied to determine
the possible motions between the bodies. With his results, he modified his robot
programming language RAPT to use his methods for solid body interactions in robot
task planning. .

Thomas and Torras [41] extend Popplestone’s ideas to find the configuration or
configurations that satisfy all constraints between a given set of bodies (see Fig-
ure 2.1). Their method is based on the symbolic manipulation of chains of matrix
products. The matrices used are derived from the theory of continuous groups applied
to the Euclidean group, commonly denoted as SE(3). They tabulated the outcomes
of intersections and multiplications of certain continuous groups of SE(3).

Liu and Popplestone [20] [21] have continued research in this area by studying a
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family of the subgroups of the proper Euclidean group. Each member of this family
is called a TR group since it is a semi-direct product of a translation group T and
a rotation group R. Some examples of TR groups are the translation subgroups T,
T?, and T3, the rotation subgroups SO(2), SO(3), and O(2), platonic groups, planar
motion groups, and cylindrical motion groups.

They have used their analytical results to develop a program A A3. This program
is an assembly planning system. K A3 uses geometric boundary models of assembly
components provided by a geometric solid modeller as input. It then finds a set
of detailed robotic assembly task specifications using its programmed knowledge of
geometry and symmetry.

An understanding of the work on robotic assembly planning is essential for the
analysis of tactile fixtures because the assembly of components is similar to the nec-
essary ”constraint” of a referénce fixture in Euclidean space for determination of the
relative location between the fixture frame and robot. This relationship is explored

further in Chapter three.

2.3 Robotic Calibration and Part Referencing

Although referencing fixtures have been used for many years, there is a limited
amount of published papers on the design of these fixtures. In 1984, McCallion and
Pham developed a procedure for finding the relative location of a robot manipulator to

a cube shaped fixture using tactile and force/moment sensors [23]. Duffie et al. [10]
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developed a procedure similar to McCallion’s and Pham’s, however, three spheres
were used in place of the cube as the reference fixture and only tactile sensors were
used. Mooring et al. [27] described a calibration fixture that determined the relative
position of the robot manipulator to a fixture by aligning a cube attached to the
manipulator with three perpendicular surfaces on the fixture. Each of these methods

are described in more detail in the following sections.

2.3.1 Cubical Referencing Fixtures

McCallion’s and Pham’s [23] procedure for find the relative location of a robot
manipulator’s frame to the frame of a body in three dimensional Euclidean space
uses either tactile or force/moment sensors. In both cases, the robot’s manipulator is
equipped with a touch sensitive wand, and the body is outfitted with a cube shaped
fixture. The cube shaped fixture can be supplied with either a force/moment sensor
in 1ts base or touch sensors on its surfaces.

When the cube shaped fixture is equipped with a force/moment sensor in its
base, the sensor can feed back the information necessary to calculate the force ”line
of action.” Using the fixture with the force/moment sensor, the location of a touch
on the fixture can be calculated. McCallion and Pham found that three touches to
the fixture is sufficient for the calculation of the relative location of the two frames.

McCallion and Pham also found that the relative location of the cube to the

manipulator can be found by touching the touch sensitive surfaces of the cube with
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Workspace

Frame
“Touch Sensor

N er

Cubical
Reference
Fixture

Figure 2.2: Cubical reference fixture

. the manipulator’s wand in six different locations, two touches on three sides of the
cube (Figure 2.2). Using the location of these touch points, in the manipulator’s
frame, the location of the cube’s sides can be calculated. By finding the relationship
between the three edges of the cube and the frame of the manipulator, the relative

location can be determined.

2.3.2 Three Sphere Referencing Fixtures

Duffie et al. [10] developed a procedure similar to McCallion’s and Pham’s, how-
ever, three spheres were used in place of the cube as the reference fixture and the
ﬁxturg was only equipped with touch sensitive surfaces. In this case, the three spheres
were touched with the robot manipulator’s touch sensitive wand. They found that if
each sphere was touched four times then the location of the center of the sphere could
be found, and if this was done on each of the three spheres, the relative location of

the three sphere fixture to the robot manipulator could be found (Figure 2.3).
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Figure 2.3: Three sphere reference fixture
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Figure 2.4: Full pose reference fixture
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2.3.3 Existing Calibration Fixtures

Mooring et al. [27] described a completely different fixture that determined the
relative position of the manipulator to a fixture by aligning a solid body attached
to the robot manipulator with three perpendicular surfaces on the fixture. The solid
body, having a known shape, uniquely describes the location and orientation of the
end effector of the robot when the solid body touches all‘three perpendicular surfaces
of the fixture. Figure 2.4 illustrates this idea using six LVDT’s (the six LVDT’s are
equivalent to the three perpendicular surfaces) to locate the solid body attached the

end effector of the rohot.
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Chapter 3

Group Theory and Referencing

In this chapter a few relevant aspects of group theory and symmetry groups are
discussed and several propositions are introduced and proven. These propositions
form the basis of a new theory that can aid the design of touch sensing fixture systems.
Then, mechanical fixtures with surfaces consisting of spheres, planes (this will include
cubes with planar faces), right cylinders and their combinations are studied using
group theory and the propositions developed. The result being the development of

new and useful touch sensing fixtures.

3.1 Group Theory

Group theory was originally developed in the nineteenth century to measure sym-
metry. Therefore, it is commonly used when looking at the symmetry of an object [44].

In the proceeding parégra.phs, the definitions for a group, a subgroup, and order of a

Copyright 2011, AHMCT Research Center, UC Davis



15

group are given. To ald in the understanding of group theory, the set of real numbers
and the set of integers are proven to be a group and subgroup, respectively, using ad-
dition as the binary operation. For more information on group theory the interested

reader is referred to [3], [4], [8], and [22].

Definition 3.1 A group is a set G together with an operation defined between pairs
of elements a,b € G (the operation is a binary operation, and it is commonly re-
ferred to as multiplication — the operation is usually written as ab.) which satisfy the

following azioms:

~

. Ya,be G,abe G (closure).

IS

. Ya,b,c € G, (ab)c = a(bc) (associative).
3. There exists an element 1 where Va € G,a(1) = (1)a = 1 (identity).
4. For each a € G 3a™" such that a(a™) = (a™')a = ¢ (inverse).

Definition 3.2 A subset of a group is a subgroup if all of the properties of a group

are satisfied (i.e., closure, identity, and inverse).

Definition 3.3 The order of any group G is the number of its elements. This 1s

often denoted as |G| = number of elements.

Proposition 3.1 If we let G = {z|z € R}, and we let addition be the binary op-
eration (called multiplication), then, G is a group, and the set S = {z|z € I} is a

subgroup of G.
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proof: Let a,b € G. The element ab is always an element of the real numbers, the
real numbers are assoctative, ;zero is the identity element, the inverse of an element
is the negative of that element (which is also a real number), therefore, G is a group.
S 15 a subgroup because two integers add to become another integer, the inverse of an

integer is the negative of the integer, and the identity element, zero, is in S.

Proposition 3.1 proves that real numbers and integers, using addition as the binary
operation, form a group and a subgroup respectively. However, the real power of group
theory comes when it is applied to objects to evaluate their symmetry. In the next
section symmetry groups, the proper Euclidean group, and displacements (which are

elements of the Euclidean group) are described and applied.

3.2 Euclidean Group and Symmetry Groups

Symmetry groups, also known as permutation groups, are used to measure an
objects symmetry. In the past they have been used to study molecular structures in
chemistry [44]. More recently, the Euclidean group, a symmetry group, has been used
in mechanical design to study geometric relationships between solids. In this section
the definition of a symmetry group is given and the Euclidean group and its elements

are described.
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3.2.1 Theory

Definition 3.4 let S(X) be the set of bijections from X into itself, then S(X) together
with the operation of composition form a group called the symmetry group or the

permutation group of S.

Definition 3.4 does not describe the binary operation used to make a symmetry
group because the binary operation used is independent of the definition. If an op-
eration can be found that satisfies the definition of a group then it can be used.
One such binary operation is the disblacement operation. This operation is com-
monly used in the fields of robotics and mechanism design to represent changes in
location of solids [9]. A displacement in these fields is usually represented using a
matrix transformation. Equation 3.1 is the matrix ‘fepresentation for a displacement.

Equation 3.2 is the homogeneous matrix representation for a displacement [28].

T a1 a2 a3 T 12
Y2 | T | @21 @G22 a23 Yo | T | ty |- (3.1)
L z3 a3y a3z ass Zg L i,

o _ T
T ay; a2 a3 iy T
Y2 ag1 G232 Q23 Uy Yo
= . (3.2)
z3 azy daszz aszz i 2
1 I 0 0 0 1 1
. -l - L -l
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If the displacement operation is applied to the entire Euclidean space of dimension
three, it forms a special symmetry group called the proper Euclidean group SE(3).
This group contains all possible displacements of a body in the Euclidean space.
Therefore, all possible displacements that»map a solid back to itself form a subset of
SE(3) and, from the definition of symmetry, must form a subgroup of the Euclidean
group. Hence, all solids have a symmetry group, using the displacement operation,
that represents their symmetry. In the case where an object has no symmetry at all,
the object’s symmetry group is only the identity element (commonly denoted as {I}).
The binary operation used in this dissertation for analysis of objects will always be

the displacement operator.

3.2.2 Examples

Objects can have a symmetry group of finite order or infinite order. If an object
has a symmetry group of finite order then the object can only be rotated into a finite
number of positions. An example of this is an equilateral triangle, the triangle can be
rotated about its center and it can be flipped. In Figure 3.1, an equilateral triangle
is shown with two axes of rotation. A group multiplication table is also given that
shows all possible orientations for the triangle. As can be seen form Figure 3.1, the
friangle has a finite order of six because their are six elements in the symmetry group.

Many objects have infinite order symmetry groups. For example, a sphere can be

rotated about any axis through its center, and it will be mapped to itself (Figure 3.2).
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Multiplication Table

[ T T S IS ITS

ele r T s IS ITS
rlr m e 15 IS g

IT| IT € r ITS S IS

G={e,r, 1, s, 18, ITS }

Figure 3.1: An equilateral triangle in SE(3), its group, and the group multiplication
table.

Any axis through the center
of the sphere will have a
continuous group about that
axis.

Figure 3.2: A sphere has infinite symmetry about any axis through its center.

On the other hand, a cylinder has only one axis of continuous or infinite symmetry.
This axis of rotation is coincident with the center line of the cylinder. The cylinder,
unlike the sphere, has an infinite number of axes with finite symmetry (Figure 3.3).
These axes are perpendicular to the center line of the cylinder and they go through
the mid-point of the cylinder’s center line.

As stated earlier all solids have a symmetry group and that symmetry group is
a subgroup of the Euclidean group SFE(3). SE(3), which contains all possible trans-

lations and rotations in Euclidean space, has an infinite number of subgroups. The
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<¢— Axis with continuous symmetry

\

Axis with discrete/finite symmetry

Figure 3.3: A cylinder has infinite symmetry about one of its axes and finite symmetry
about all of the others.

continuous subgroups of SFE(3) can be described by their conjugation classes. There
are twelve such classes. Each class represents a type of continuous subgroup in S FE(3).
Some examples of these subgroups are: planar displacements, pure translations, pure
rotations, and one dimensional translations. The most significant of these subgroup
classes are the six mechanical lower pair joints(Figure 3.4), the lower pair joints are
the joints with surface to surface contacts.

These joints are common in many mechanical designs. For example, Hervé [15]
was one of the first to take advantage of the symmetry group SE(3) and its subgroups
to analyze mechanisms using these subgroups. He found a way of determining the
number of degrees of freedom of a mechanism. In the next section all of the classes
of continuous subgroups of SFE(3) will be found using Lie Algebras and Lie Groups.

These subgroups will later be used for analysis of fixtures.
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Figure 3.4: The six mechanical lower pair joints.
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3.3 Finding the Continuous Subgroups of SFE(3)

In this section Lie algebras and Lie groups are used to find the classes of subgroups
of SE(3). In order to find these classes, a brief introduction to Lie Algebras, Lie
groups, the Lie algebra and Lie group of SE(3), and the Lie Algebra and Lie group
of SO(3) are given. Then, the Lie algebra of SFE(3) is broken down in a systematic
method in order to find all of the subgroup classes. For more information on Lie
groups and Lie algebras refer to Varadarajan [42]. For more information on the Lie
algebra and Lie group of SE(3) and SO(3) the interested reader is referred to [17]

[29].

3.3.1 Definitions

Definition 3.5 A vector space V (over R) is a Lie algebra if there exists a bilinear

operator V. x V. — V| denoted [-,-], satisfying:
1. Skew-symmetry: [v,w] = —[w,v] Yv,w € V.
2. Jacobt identity: [[v,w], z] + [[z,v], w] + [[w, 2],v] = 0.

Definition 3.6 A subspace W C V is called a Lie subalgebra if [v,w] € W Vo, w €

W.

Definition 3.7 A subspace H C V is called an ideal if [v,h] € HVv € V and

VheH.
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Definition 3.8 A Lie group is a group G which is also a smooth manifold and for

which the group operation (g,h) — gh and g — g~ are both smooth.

The group of rigid transformations on R3, SE(3), is defined as the set of mappings
g : R® — R? of the form g(z) = Rz + p, where R € SO(3) and p € R®. An element of
SE(3) is written as (R,p) € SE(3). SE(3) can be identified with the space of 4 x 4

matrices of the form

g= )
0 1

where R € SO(3) and p € R®. SE(B) is a Lie group of dimension 6.
The Lie algebra of SO(3), denoted so(3), may be identified with the 3 x 3 skew-

symmetric matrices of the form:

i ]
0 —w3 Wy
w= w3 0 —w; (3.3)
L —wy W 0 |
with the bracket structure
(01, 002) = 010 — Wy, 1,3 € s0(3). (3.4)

The Lie algebra so(3) can be identified with R® using the mapping in equation 3.3,

which maps a vector w € R? to a matrix @ € so(3). It can be shown that
[01,03]) = (w1 X wy)”, wi,wy € R3. (3.5)

Hence w — & is a Lie algebra isomorphism between the Lie algebra (R3, x) and the

Lie algebra (so(3),[,])-
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The Lie algebra of SFE(3), denoted se(3), can be identified with 4 x 4 matrices of

the form:

with the bracket structure

If we let

. O v

&= w,v €R? (3.6)
0 0

U1 ~ Oy vy
and & = then,

0 0 0

(W X we)™ Wy X vg —wy X vy
(3.8)
0 0

The vector space se(3) is isomorphic to R® via the mapping £ €= (v,w) € RE.

3.3.2 Derivation of Subgroup Classes

Proposition 3.2 Translations T form an ideal in se(3).

proof: Let X; and Y, represent two displacements where X, = (z1;11) € se(3)

and X, =

(0;y2) € T (this is a screw representation for displacements [7] [24]).

(X1, Xs] = X1 x Xo = (z1;31) X (05y2) = (0521 X y3) € T. Therefore, T is an ideal

from the definition of ideal.
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IF given a Lie algebra V' and an ideal H of V', then V/H is also a Lie algebra [42].
Since se(3) is a Lie algebra and T is an ideal, then se(3)/T must also be a Lie
algebra. From [17] it is known that se(3)/T = so(3). Figure 3.5 shows the mapping
7 : se(3) — se(3)/T = so(3). The Lie algebra so(3) is of dimension three, therefore

it could have subalgebras of dimension three, two, one, or zero(trivial).

Proposition 3.3 The Lie algebra so(3) doesn’t have a subalgebra of dimension two.
proof: Let V be a subalgebra of so(3) of dimension 2. Then there exists vectors
u,v € V, where u,v are independent. But u xv € V, and u,v,u X v are independent,
hence V must be of dimension three. Therefore, we have a contradiction, and V

cannot be a subalgebra of dimension two.

If we let V; be a subalgebra of se(3), and we let #(V}) be one dimensional, then all
screws of V) are of the form (Az,y), where z is fixed. Let X, X5, -+, X, be a basis
of Vi. For simplicity, let X; = (z1;0), X2 = (0;11), X5 = (0;y2), and X4 = (0;y3).
The dimension of Vj can, at most, be four because n(V}) is of dimension one out of
a possibility of three .

It is now known that V] is of dimension four or less. The next step is to look at
all the possible dimensions for V;. We will begin with dimension one and proceed to
dimension four.

If the dimension of V; is one then the basis must be of dimension one. We know
X1 = (21;0), X2 = (0;31), Xz = (0;32), and X4 = (0;y3), however, three of these

basis vectors must be dependent on the remaining one for V; to be of dimension one.
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Subalgebra of
se(3) of dimension
four or less.

Subalgebra of
s0(3) of dimension
one.

T

se(3)

& s0(3) = se(3)/T

Figure 3.5: The mapping : se(3) — so(3) = se(3)/T.

X4

#

Y1

X1xyq1=0

Y 1=AX,

XyxYq=0

Figure 3.6: The basis of V} if dim(V1) =1 and dim(n(V})) = 1.

Moreover, we know that X; cannot be zero because 7(V}) = 1, therefore X3. X3, and

X4 must be dependent on X;. For simplicity lets assume that X3 = X4, = 0 and only

deal with X, and X,. If X, is dependent on X, then X; = (0; Az,) where A is a

constant. X; and X, can be written together in the form X; = (z,; Az;). Figure 3.6

is a vector diagram that illustrates this point. For this case, if A is not zero then

we have a helicoidal motion along a vector, or if A is equal to zero then we have a

revolute motion. These two cases correspond to two of the lower mechanical joints.

Copyright 2011, AHMCT Research Center, UC Davis



27

If the dimension of V] is two then the the basis must be of dimension two. There-
fore, X1, -+, X4 cannot be all independent. For simplicity, let X3 and X, be zero. If
X1 and X, are our basis vectors then the cross product between them must be zero

for the basis to be of dimension two. Therefore,

X1 x Xy = (21;01) ¥ (0;2) = (0521 X yo) =0 (3.9)

=z Xy =0 >y, = Azy. (3.10)

Hence, the basis is: X; = (z;;0) and X, = (0; Az;). This case is very similar to
the case of dimension one (see Figure 3.6) except that the value of A is not fixed.
Therefore, the rotation in the z; direction and the translation in the z; direction are
independent. This type of motion .is called cylindrical motion which is also a lower
mechanical joint.

If the dimension of V; is three then the basis must also be of dimension three.
Therefore, one of the basis vectors X;,--- , X4 is dependent on the other three. More-
over, the cross products between the basis vectors must also be dependent. Let X4 be
the dependent basis vector. Now we know that Xy = (0;y3), X1 x Xy = (0; 21 X y2),
and X; X X3 = (0;2; X y2) must be dependent on X;, X, and X5. This will be the
case if X3 = a(X; x X;) where a is a constant, X4 = (0; Az;) where A is a constant,
and Xy = ¢(X; x X3) where ¢ is a constant (see Fligure 3.7). We can write this basis
for this case as X; = (z1;Az1), X2 = (0;41), and X3 = (0;y2). This represents two

subgroup classes. If ) is zero then we have planar motion, a lower mechanical pair. If
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Y3=AXi=aly,xYy)

Y1
X1xYq1=Yo

Figure 3.7: The basis of V| if dim(V}) = 3 and dim(7(V})) = 1.

XyxYq1=Y>

Figure 3.8: The basis of V} if dim(V}) = 4 and dim(7 (V1)) = 1.

A is not zero then we have planar translation with a helicoidal motion perpendicular
to the planar translation, we will call this a ”Y-movement.”

If the dimension of V; is four then the basis must also be of dimension four. Hence
the basis vectors X,,--- , X4 must be all independent, however, the cross product be-
tween them should be dependent. This result leads to another subgroup classification
that we will call ”X-movement.” This subgroup class corresponds to general transla-
tion and one axis rotation (see Figure 3.8). Note that the vectors X; and X, do not

need to line up for this class of group, but the basis is easier to visualize if they are.
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This takes care of the subgroup class associated with 7(V}) being of dimension
one. Now let m(V}) be of dimension three. In other words let 7(V}) = s0(3). Then the
basis can be written in the canonical form X; = (2,;0), Xy = (z4;0), X5 = (23;0),

Xy = (0§y1), X5 = (05342), and Xg = (0;y3)~

Proposition 3.4 There is only one case of dimension four or greater for V; given
the basis X, = (21;0), Xy = (22;0), X3 = (23;0), X4 = (0;11), X5 = (0;y2), and
Xe = (0;y3) and m(Vy) = so(3). It is the Euclidean group of dimension siz.

proof: Let the dimension of V| be four, then the basis can be written as X; = (z,;0),
Xy = (29;0), X5 = (23;0), X4 = (0;y1). The first three basis vectors make se(3)
and the last basis vector is for the fourth dimension and corresponds to a translation.
For V) to be of dimension.four the cross product between the basis vectors must be
dependent. X1 x X4 = (0;z1 X y1), and Xy x X4 = (0;22 X y1). The result of the two
cross products must be independent of the basis vectors and each other, therefore, V] is

of dimension siz, which is se(3). The same result occurs if a basis of five independent

basis vectors is used. Hence, the proposition s true.

From Proposition 3.4 we know that there is only one case of dimension four or
greater for V] given the basis Xi,- -+, Xg and 7(V}) = so(3); it is the Euclidean group
of dimension six. If the dimension of three is considered then the canonical basis would
be X; = (21;0), X2 = (22;0), and X3 = (23;0). This is the basis for the subalgebra

so(3), therefore V) for n(Vi) = 0 where V] is of dimension three corresponds to the
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subgroup class SO(3). This is the class of spherical rotations, a lower mechanical
joint.

If 7(V}) is of dimension zero, then we have a eliminated rotations from the Eu-
clidean group. This only leaves translations. The basis of ¥} in canonical form for
this case 1s X; = (0;41), X2 = (0;y2), and X5 = (0;y3). This basis corresponds to
general translation if the three basis vectors are independent. If only two of the basis
vectors are independent, then V; is of dimension two, and we héve planar translation.
We do not have»to worry about the cross product between X; and X, being indepen-
dent for this case because the cross product between two translations is zero. If only
one basis vector is independent then Vj is of dimension one, and we have rectilinear
translation. This case corresponds to rectilinear motion, a lower mechanical joint —
prismatic joint.

This only leaves the trivial case of dimension zero which corresponds to no motion

at all.

3.3.3 Classification of Subgroups

Table 3.1 lists all of the continuous subgroup classes for the special Euclidean
group. The table also gives the dimension, the notation, and the associated lower
pair (assuming one exists) for each subgroup class. These subgroups will be used
extensively throughout the rest of this dissertation. It should be noted that the 10we£

case variables used in the notion represent the location of the action of the subgroups.
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[ Classes of Subgroups of the Displacement Group ‘

Constraint Notation | Degree of associated
Description Freedom lower pair
identity element {I} 0 none
rectilinear translation {T.} 1 (P) prismatic
rotation about an axis | {R,} 1 (R) revolute
helicoidal motion {Hup} 1 screw
planar translation {Tp} 2 none
cylindrical motion {C.} 2 (C) cylindrical
spatial translation {T'} 3 none
planar motion {Gp} 3 plane
spherical motion {S,} 3 (S) spherical
Y movement {Yup} 3 none
X movement {X.} 4 none
general motion {D} 6 none

Table 3.1: Subgroups of the Euclidean group — displacement group.

The lower case u in {7}, {R.}, {Hup}, {Cu}, {Y.r}, and {X,} represents the
translation, rotation, or helicoidal motion along the axis u. The lower case p used
in {H,,} and {Y,,} is the pitch for a helicoidal motion along the axis u. The lower
case o used in {S,} is the center of rotation for spherical motion. The upper case
P used in {Tp} and {Gp} is the plane of action for general planar motion and for

planar translation.

3.4 Analysis Tools for Fixture Design

In this section, we develop a formal theory for design evaluation of touch sensitive
fixtures. The idea being that if we know the location of a set of surfaces in SFE(3), we

may be able to uniquely determine the location of a frame attached to these surfaces
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using the geometry of each surface as a guide. The location of each surface would
be determined by a set of touches to the surface. For example, it is known that four
points to a sphere of unknown radius will uniquely determine the location of that
sphere [10]. In Chapter 4, the actual touch contacts to the surfaces are analyzed,
however, for this chapter, only surfaces and combinations of surfaces are considered
in the design of referencing fixtures. To analyze a set of surfaces, three propositions
are provided and proven to be true. These propositions provide the basis for the

design procedure developed in Section 3.5.

Definition 3.9 A primitive surface of a solid is defined as an algebraic surface
that locally coincides with a bounded face of the solid. The primitive features of a

cube, for example, are the siz infinite planes that bound the solid volume.

The reason for treating a surface as a primitive surface is understandable when
you consider that a set of touches is being made to the surface in order to find its
location in space. It would be very difficult for a robot to touch the edge of a surface
using a touch sensing probe because the edge has no thickness. Therefore by treating

the surface as infinite, the edges do not become involved.

Proposition 3.5 Let S be a set of primitive surfaces and let G be the symmetry
group for the set S. If G contains all of possible rotation elements about an azis, L-L’,
then the set S cannot be used to uniquely determine the relative location of the frame
associated with S to the frame of i;he touch sensor in three dimensional Fuclidean

space.
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Proof: Assume that S can uniquely determine the relative location of the frame as-
sociated with S to the robot ’sbframe in three dimensional Euclidean space. Rotate S
about the azis L-L’ more than zero degrees but less one complete revolution. Since all
rotations about L-L’ are in the group G, then the set S after the rotation will "look”
the same as it did prior to the rotation. However, the frame associated with the set
S will no longer be the same frame as it was prior to the rotation. Therefore, the set
S cannot be used to uniquely determine the relative location of the frame associated

with S to the frame of the sensor in three dimensional Euclidean space.

Proposition 3.6 Let S be a set of primitive surfaces and let G be the symmetry
group of the set S. If G contains any translations then the set S cannot be used to
uniquely determine the relative location of the frame associated with S to the frame
of the sensor in three dimensional Fuclidean space.

Proof: Assume that S can uniquely determine the relative location of the frame asso-
ciated with S to the frame of the sensor in three dimensional Buclidean space. Trans-
late S using any element translation element in G. Since the translation element is in
the group G, then the set S after the translation will "look” the same as it did prior
to the translation However, the frame associated with the set S will no longer be the
same frame as it was prior to the translation. Therefore, the set S cannot be used to
uniquely determine the relative location of the frame associated with S to the frame

of the sensor in three dimenstonal Euclidean space.

Copyright 2011, AHMCT Research Center, UC Davis



34

Proposition 3.7 Let S and S, be two sets of primitive surfaces, and let G and G,
be the symmetry groups for S; and S,. Let S represent the combination of S, and
Sy, and let G3 represent the symmetry group associated with Ss. All finite symmetries
in G3 were also finite symmetries in ez’ther_ G4 or Gy. No new finite symmetries can
be created from the combination of surfaces.

Proof: It has known that the combination of two symmetry groups results in a group
that is either equal in size to the intersection of the two original groups or smaller.
Therefore, the new group has no new elements in it that were not in the original
groups. Therefore, the only way to get new finite symmetries is by the intersection of
continuous groups. The only way to get an intersection of two continuous groups that
is not the identity element.is by having the continuous groups be the same, resulting

in another continuous group. Therefore, no new finite symmetries are created.

Propositions 3.5, 3.6,and 3.7 are powerful tools for the analysis of any geometric
referencing fixture. In most cases a referencing ﬁxture’é primitive surfaces can be
represented using the simple group notation introduced in the previous section. If it is
possible to represent the primitive surfaces using the group notation then the complete
fixture can be analyzed by taking the intersections of the group representations of
the primitive surfaces. Let Gy,--- ,G, represent the group notation for n primitive

surfaces that form a referencing fixture. The fixture is a "useful” fixture if:

GiNGyNGsN-- NGy ={I} (3.11)
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where "useful” means that it can uniquely determine the relative position between
the reference frame and the robot end effector. Equation 3.11 is an extension of one
of Hervé’s equations that he used for the analysis of mechanisms [15].

Equation 3.11 is a very powerful tool, however, the mathematical intersection of
two or more groups usually requires some geometric insight that equation 3.11 cannot
provide. In addition, equation 3.11 will not always give perfect results for an actual
fixture when it comes to finite symmetries. This is due to the fact that the actual
fixture may not have finite symmetries that the primitive surface model does have.
This may cause a "useful” fixture not to pass equation 3.11 because of the remainder
of finite symmetries after the intersection of all group representations. It is, in general,
a good idea to use both the propositions and equation 3.11 when analyzing a fixture
to be sure that the fixture will work. The use of both methods is discussed in the

next section.

3.5 Application of Analysis Tools

3.5.1 Introduction

Once a fixture is broken down into a primitive surface or group of primitive sur-
faces, then it should not contain any continuous rotation or translation groups. Propo-
sitions 3.5 and 3.6 are used to check for these continuous groups. If the fixture does

have continuous groups then it cannot be used to uniquely determine the relative
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Group Notation for Primitive Surfaces
Primitive Surface

Notation

Sphere {S,} where o is the center of the sphere.
Right Cylinder {Cu,}Hrot(v,nm)} where u is the axis
of the cylinder, n € N, and v_Lu.
Plane {Gp}{rot(v,nm)} where v is in
the plane P and n € N.

Table 3.2: Group notation for a sphere, plane, and right cylinder.

location of the fixture to the tool. Finally, finite symmetries must be checked for
their effect on the design of the fixture.

Using Proposition 3.7, it is known that all finite symmetries in the final fixture
originate from each individual surface. Therefore, a possible and useful way to check
for finite symmetries is to look at the finite symmetries of each surfaces of a fixture on
a one-by-one basis. Among the sphere, cylinder, and the plane! only the sphere has
no finite symmetries which makes it easy to work with (Figure 3.9a). The cylinder,
when treated as a primitive surface, has an infinite number of finite symmetries.
Every axis perpendicular to the center line and intersecting the center line of the
cylinder has a finite symmetry about it (Figure 3.9b). The plane, when treated as a
primitive surface, also has an infinite number of finite symmetries. Any axis through
the plane has a finite rotational symmetry about it (Figure 3.9c). Table 3.2 shows
the continuous and finite group notation for the sphere, plane, and right cylinder.

After breaking the fixture down into individual primitive surfaces and knowing

1For simplicity, spheres, planes, right cylinders, and their combinations will be used as examples
to demonstrate the application of the propositions and equation 3.11, however in Section 3.6 other
surfaces will be discussed.
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the finite symmetries of these primitive surfaces, it is time to see if the finite symme-
tries are still present after the addition of the other primitive surfaces to the ﬁxture.
Each primitive surface should be judged relative to the other surfaces to see if the
finite symmetries go away. If there are no finite symmetries left, then the fixture is
"useful.” If the fixture still has some finite symmetries left, then the real shape of the
fixture(not the combination of the primitive surfaces) may or may not eliminate the
finite symmetry. For example, a fixture may have a planar surface that can only be
reached on one side, this eliminates the finite rotation of the primitive planar surface
associated with the real planar surface (Note: the group representation would simply
be {Gp} for this case). If there are finite symmetries left after completely analyzing
the fixture then the fixture will not uniquely detérminé the location of the fixture to
the sensor — it will not be "useful.” This is similar to getting the result {/} using
equation 3.11. Several examﬁles are given to better illustrate this step.

Of the three surfaces being used for the example, the sphere, cylinder, and plane,
none can be used by themselves to uniquely determine the relative position of the
fixture frame to the frame of the sensor in SE(3). Therefore, a combination of these
surfaces must be used to make a proper fixture. However, it is useful to show the

problems with each of these surfaces when used alone.
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(a) (b) (©

Figure 3.9: (a) A single sphere fixture, (b) A single cylinder fixture, (c) A single plane
fixture.

3.5.2 Examples: Basic Surfaces

A sphere (Figure 3.9a) has no finite rotational symmetries and no continuous
translational symmetries, however, it does have an infinite number of continuous
rotational symmetries. Any axis through the center of the sphere can be used to
create a continuous rotational symmetry. Obviously, one sphere can not be used for
a complete fixture. This can all be seen in the group notation for the sphere {5,}.

A cylinder (Figure 3.9b) has finite rotational symmetries, a continuous rotational
symmetry, and a continuous translational symmetry. The continuous translational
symmetry comes from the fact that the cylinder, treated as a primitive surface, can
be translated in the direction of the center line of the cylinder and the cylinder will
look the same. The continuous rotational symmetry comes from the fact that any
rotation about the center line of the cylinder returns the cylinder to itself. The finite

rotational symmetries come from flipping the cylinder on an axis perpendicular to

Copyright 2011, AHMCT Research Center, UC Davis



39

the center line of the cylinder. Because the cylinder is treated as a primitive surface,
the cylinder when rotated 180 degrees returns to itself. This can all be seen in the
group notation for the cylinder {C,}{rot(v,nm)} where u is the axis of the cylinder,
n & N, and vlu.

A plane (Figure 3.9¢) has finite rotational symmetries, continuous rotational sym-
metries, and continuous translational symmetries. The translational symmetries are
due to the fact that any movement of the plane in a direction contained in the plane,
returns the plane to itself. The finite rotational symmetries, like the cylinder, are 180
degree flipping symmetries. The continuous rotational symmetries come from any
rotation about an axis perpendicular to the plane. When the plane is rotated by any
of these axis’s, the plane returns to itself. This can all be seen in the group notation

for the plane {Gp}{rot(v,nm)} where v is in the plane P and n € N.

3.5.3 Examples: Combinations of Surfaces

Now that the basic surfaces have been covered, combinations of these surfaces
should be judged for the usefulness in a fixture design. The simplest combinations to
start with are combinations of spheres because spheres do not have finite rotational
symmetries. A fixture containing two spheres, Figure 3.10a, still will not be a complete
fixture because a continuous rotational symmetry exists. The axis for this symmetry is
through the center of both spheres. If three spheres are used, Figure 3.10b, a complete

fixture will exist as long as the centers of the three spheres are non-collinear. If the
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(a) (b)

Figure 3.10: (a) A two sphere fixture (b) A three sphere fixture

spheres are collinear, a continuous rotational symmetry through the center of the

three spheres exists. From equation 3.11 the combination of two spheres results in
{S,} N{So} ={R.} (3.12)
where u is the axis through centers o and o’. The combination of three spheres results
in
(8.} 1 {80} 0 {Su} = {1}, (3.13)
If the centers of the spheres are collinear then the result will again be {R,} where u
is now the axis through all three sphere centers.
Fixtures containing just planes are a little more difficult to judge than spheres

because they may contain finite rotation groups. A fixture containing just two planes

will not be a “useful” fixture because there will be continuous groups for any con-
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figuration of two planes in addition to finite symmetries (Figure 3.11a). If the two
planes intersect then a continuous translational group exists in the direction of the
line formed by the intersection of the two planes. If the planes are parallel then there
are rotational and translational continuous groups in the same directions as the one
plane case. If the two planes are perpendicular (see Figure 3.11) notice that there
are two finite symmetries that are created in addition to the finite symmetry along
the line of intersection. These two finite symmetries can be eliminated by making
the two planes intersect at an angle other than 90 degrees. From equation 3.11 the

combination of two planes results in

{Gp}{rot(v,nm)} N{Gp }{rot(w,nr)} = {Tu}{ro.t(u,mr)} (3.14)

where u is the line created by thevintersection of the two planes. Equation 3.14 is
valid when the angle between the planes is not zero nor 90 degrees. If the angle of
intersection is 90 degrees then the result contains two more finite symmetries. If the
planes are parailel then the result is general planar motion without the finite symme-
tries. If the two planes are coincident then nothing is obtained from the combination
of the two planes.

If three planes are used and none of the planes or lines formed by the intersection
of the planes are parallel to each other then no continuous groups exist for that fix-
ture (Figure 3.11b). However, finite groups can exist. They will exist when any of
the planes are perpendicular to any of the other planes. When all three planes are

mutually perpendicula‘r, the fixture has many finite symmetries. These finite symme-
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Figure 3.11: (a) A two plane fixture (b) A three plane fixture

tries can be eliminated by the design of the real fixture. If the fixture’s sides do not
extend past the edges of the other sides then there will be no finite symmetries. This
is the cubical fixture design used by McCallion and Pham [23]. From equation 3.11

the combination of three planes results in

{GpHrot(v,nm)} 0 {Gp Hrot(w,nm)} 0 {Gpu}{rot(z,nm)} = {I}.

(3.15)

Equation 3.15 is valid when none of the planes are perpendicular nor parallel to each
other.

Spheres and planes can be used together to form fixtures. If one plane is used
with one sphere to from a fixture, that fixture will have a continuous rotational
group about the axis through the center of the sphere and perpendicular to the plane

(Figure 3.12a). If the .sphere has its center located in the plane a finite symmetry
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(a) (b)
Figure 3.12: (a) A one sphere - one plane fixture (b) A one plane - one sphere fixture
with an extra finite symmetry

will exist in addition to the continuous rotation symmetry (see Figure 3.12b). From
equation 3.11 the combination of a sphere and plane where the center of the sphere

is located outside of the plane results in

{Gp}{rot(v,nm)} N{S,} = {R.} (3.16)

where u goes through o and ig perpendicular to P. It is obvious that a one plane, one
sphere fixture doesn’t satisfy the requirements.

If two planes are used with one sphere, the fixture will not have any continuous
groups as long as the two planes are not parallel (Figure 3.13a). If the center of the
sphere is located outside of these two planes then the fixture will not have any finite
symmetries also. If the sphere is located with its center on one or both planes then
finite symmetries may exist. If two spheres are used with one plane to form a fixture,
the fixture will not have any symmetry problems as long as at least one sphere is
located outside of the plane and the axis through the center of the two spheres is not

perpendicular to the plane (Figure 3.13b).
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(a) (b)

Figure 3.13: (a) A two plane - one sphere fixture (h) A two sphere - one plane fixture

Two cylinders can also be used to form a fixture. If the cyliﬁders are parallel then
a continuous trapslational group will exist in the direction of the center line of both
cylinders. However, placing the cylinders at an angle to each other will solve this
problem (Figure 3.14). If this is done, finite symmetries may still exist. The relative
placement of the two cylinders and the finite length of the cylinders can be used to
eliminate this problem in the design of a fixture consisting of two cylinders. From
equation 3.11 a two cylinder fixture where the center lines of the cylinders are not

parallel result in
{C H{rot(v,nm)} N {Cy H{rot(v,nn)} = {rot(v,nm)} (3.17)

Wh‘ére vLluand vLlu'. Asstated earlier, the finite symmetry created in the intersection
of the..two groups can be eliminated by properly designing the actual fixture.
Fixtures can also be made using cylinders and other objects. For example, a
sphere-cylinder fixture can be made that will not have any continuous groups as long
as the sphere’s center is not located on the center line of the cylinder (Figure 3.15).

This fixture will, however, always have a finite group associated with it when using
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Figure 3.14: A two cylinder fixture

the primitive feature representations for the cylinder and the sphere. The finite
symmetry is due to the rotation about an axis through the center of the sphere and

perpendicular to the center line of the cylinder. From equation 3.11,

{S.} N{CuH{rot(v,nm)} = {rot(w,nr)} (3.18)

where wlu and w goes through o. The actual fixture can be designed to eliminate
this finite symmetry by placing the sphere outside of the actual range of the cylinder’s
center line.

A cylinder can also be combined with a plane to form a useful fixture (Fig-
ure 3.16b). If the plane is not parallel nor perpendicular to the center line of the
cylinder then there will be no continuous symmetries. Again, there will be a finite
symmetry problem, however, the actual fixture will not have this finite symmetry
because of mechanical constraints in the design of such a fixture. If the plane is
perpendicular to the center line of the cylinder, then there is a continuous rotation

symmetry about the center line of the cylinder (Figure 3.16a). However, this rotation
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Figure 3.15: A one cylinder - one sphere fixture

symmetry can be eliminated by the addition of another primitive surface.

The actual design of a cylinder-plane fixture where the plane intersects the center
line of the cylinder at 45 degrees is discussed in detail in Chapter 5.

Table 3.3 gives an overview of all of the fixtures described in this section including
the problems associated with each fixture if there are any. In Section 3.6 other

primitive surfaces are analyzed for their use in the design-of fixtures.

3.6 Other Surfaces for Use in Fixtures

Although up until now we have only concentrated on fixtures comprising of spheres,
planes, cylinders, and combinations, the theory works equally well on all geometric
surfaces. Quadratic surfaces, for example, make up a powerful set of geometric sur-

faces. In fact spheres and right cylinders are specific quadratic surfaces, and planes
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line

Fixture elements | Pass | Pass Condition needed to pass Can
Prop. | Prop rotation and translation work
3.57 | 3.67 propositions ?
one sphere No Yes No
two spheres No Yes No
three spheres Cond | Yes | center of spheres tannot be collinear | Yes
one plane No No No
two planes Cond | No planes cannot be parallel No
planes and the lines formed by
three planes Cond | Cond | intersection of the planes cannot be | Yes
parallel
one cylinder No No No
two cylinders Cond | Cond | center line of cylinders cannot be
' parallel Yes
1 plane, 1 sphere | No Yes No
a line through the center of both
2 planes, 1 sphere | Cond | Yes | spheres cannot be perpendicular to | Yes
the plane
1 sphere, 2 planes | Cond | Yes planes cannot be parallel Yes
the plane cannot be parallel nor
1 cyl, 1 plane Cond | Cond | perpendicular to the center line of | Yes
the cylinder
the sphere’s center cannot be
1 cyl, 1 sphere | Cond | Yes located on the cylinder’s center Yes

Table 3.3: Results of analysis using propositions on spheres, cylinders, planes, and
combinations of these elements.
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Figure 3.16: A one cylinder - one plane fixture

can be written in a quadratic form. The standard form for a quadratic surface [1] is

X4 aY? + b2+ XY +dXZ4+eYZ+ fX 4+gY +hZ +5=0.
(3.19)

There are several quadratic surfaces that do not have any continuous symmetries
describing them. These surfaces have the advantage that they could be used alone.
Three examples that meet this criteria are an elliptic éone, an ellipsoid, and the
hyperboloid of one sheet.

An elliptic cone (Figure 3.17a) has only finite symmetries and can be described
using the following group notation: {rot(z,!(n)}{rot(y,mm)}{rot(z,nn)} where z is
coincident with the center line of the cone, y goes through the cone singularity and
in the direction of the major axis of the cone, z goes through the cone singularity
and in the direction of the minor axis of the cone, and [,m,n € N. A special case

of the elliptic cone occurs when the cone is circular. For this case the cone does
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have a continuous rotation symmetry about its center. The group notation for this
case is {R; }{rot(y,mm)} where = is coincident with the center of the cone and y is
perpendicular to z and runs through the singular point of the cone. The equation for

a general cone [39] is
R A —) (3.20)
For a circular cone, a = b in equation 3.20.

An ellipsoid (Figure 3.17b) also has only finite symrﬁetries and can be described
using the same group notation: {rot(z,{mr)}{rot(y, mm)}{rot(z,nr)} where z, y, and
z are the axes of the ellipsoid and /,m,n € N. The equation for a general ellipsoid [39]
1s

GRS (3.21)

Several special cases exist for the ellipsoid. If, using equation 3.21, a = b and a > ¢
then the ellipsoid is called a oblate spheroid (the ellipsoid looks like a door knob),
and it has a continuous rotation symmetry about axis z. If a = b and a < ¢, then the
ellipsoid is called a prolate spheroid (the ellipsoid looks like an egg), and it also has
a continuous rotation symmetry about axis z. Finally, if @ = b = ¢, then the ellipsoid
is a sphere of radius a.

A hyperboloid of one sheet (Figure 3.17c) has the same properties as an elliptic

cone. It has the equation [39]
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Figure 3.17: Some other quadratic surfaces.
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Chapter 4

Contact Analysis

In the previous chapter, reference fixtures were analyzed based on the geometric
surfaces that composed them. A reference fixture was considered "useful” if a fixture
could be located in space using the properties of its surfaces. For example, a three
sphere fixture was considered "useful” because the center of each sphere could be used
to locate the fixture in space. The location of a fixture’s surfaces was assumed to be
determinable, however, no methods for finding the surface locations was described.

In this chapter, the determination of the location of a fixture’s surfaces is consid-
ered in the design of the fixture. The determination of the location is based upon
coincidence relations between geometric elements caused by contact. For example, a
robotic touch sensor that touches a plane would be considered a plane-point contact.
Given a set of geometric contacts between a fixture and a probe, a fixture can be an-

alyzed to see if the fixture can be located in space. Figure 4.1 illustrates the contact
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Contact 1 ~a
a4— Contactn

Contact 2 //-—,

Body 2

Figure 4.1: Contacts between two bodies.

between the fixture, body 2, and the probe, body 1. The end result of this analysis
is the enumeration of all possible fixtures involving a set contacts.

The enumeration of fixture designs using contact analysis requires that all pos-
sible contacts are known. Only contacts between points, lines, spheres, planes, and
cylinders are being considered. In Section 4.1, all possible contacts between these
elements are listed. In Section 4.2, using group theory, the group representation for
each contact is found. In Section 4.3, combinations of the contacts are analyzed to
determine if a fixture making these contacts is "useful.” The analysis of the com-
bination of contacts uses group theory and techniques developed by Hervé [15] for
mobility analysis of mechanisms. Much of the background can be found in [15], [30],
and [31].

Section 4.3 concludes with the listing of all possible ” ﬁseful” contact combinations
for the design of mechanical fixtures. Section 4.4 describes more practical aspects

of the enumeration. Finally, Section 4.5 describes and gives algebraic methods and
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examples for calculation of surface locations needed for implementation of this fixture
analysis technique. It should be noted that although the scope of this disSertafion 18
limited to contacts involving five specific geometric contacts, the techniques developed
are general and can be applied to other geometric features and non tactile sensing

elements used in robotic referencing and calibration.

4.1 List of Geometric Element Contacts

In order to analyze combinations of geometric elements, it is essential to know all
of the possible contacts existing between the geometric elements being considered.
Therefore, every possible contact between a line, point, sphere, plane, and cylinder
must be considered. Moreover, there are two types of contacts to to be considered
for every geometric element, fixed and mobile.

If the position of the contact is known in the local coordinate system of the
geometric element, we shall refer to the contact as a fixed contact (F). Otherwise,
the contact is called a mobile contact (M). For example, if a point comes into contact
with a planar surface, the contact is considered fixed if the location of the contact is
known in the surface’s frame and mobile otherwise. Note, a point is always a fixed
contact because the location of a touch to its body must be the point itself. Using
points, spherical surfaces, and planar surfaces, cylindrical surfaces, and lines with
both mobile and fixed contacts, a list of all possible contacts is shown in Table 4.1.

In all of the cases studied here, it is assumed that the geometric elements are
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List of Possible Contacts

[ Objects in Contact | Type of Contact |

Abbreviated Notation for Contact

Point - Point (F/M) - (F/M) P/F-P/F
Point - Sphere (F/M) -F P/F - S/F
Point - Sphere (F/M)-M P/F - 5/M
Point - Plane (F/M) - F P/F - PL/F
Point - Plane (F/M)-M P/F - PL/M
Point - Line (F/M) - F P/F-L/F
Point - Line (F/M) - M P/F - L/M
" Point - Cylinder (F/M) _F P/F - C/F
Point - Cylinder (F/M)-M P/F - C/M
Sphere - Sphere F-F S/F - S/F
Sphere - Sphere F-M S/F - S/M
Sphere - Sphere M-M S/M -S/M
Sphere - Plane F-F S/F - PL/F
Sphere - Plane F-M S/F - PL/M
Sphere - Plane M-F S/M - PL/F
Sphere - Plane M-M S/M - PL/M
Sphere - Line F-F S/F-L/F
Sphere - Line F-M S/F - L/M
Sphere - Line M-F S/M-L/F
Sphere - Line M-M S/M - L/M
Sphere - Cylinder F-F S/F-C/F
Sphere - Cylinder F-M S/F-C/M
Sphere - Cylinder M-F S/M - C/F
Sphere - Cylinder M-M S/M - C/M
Plane - Plane (F/M) - (F/M) PL/F - PL/F
Plane - Line F-F PL/F - L/F
Plane - Line M-F PL/M-L/F
Plane - Cylinder F-F PL/F - C/F
Plane - Cylinder F-M PL/F - C/M
Plane - Cylinder M-F PL/M - C/F
Plane - Cylinder M-M PL/M - C/M
Line - Line F-F L/F - L/F
Line - Line F-M L/F - L/M
Line - Line M- M L/M-L/M
Line - Cylinder F-F L/F-C/F
Line - Cylinder F-M L/F - C/M
Tine - Cylinder M-F L/M-C/F
Line - Cylinder M-M L/M - C/M
Cylinder - Cylinder F-F C/F - C/F
Cylinder - Cylinder F-M C/F-C/M
Cylinder - Cylinder M-M C/M - C/M

KEY: F = fixed, M = mobile, P

Il

point, L. = line, S = sphere, PLL = plane, C = cylinder

54

Table 4.1: Possible contacts between lines, spheres, planes, points, and cylinders.
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infinite (in other words, primitive elements). For example, a line would not have end
points and a plane would not have edges. This means that if a line is in contact with
a plane, it is lying in the plane, not intersecting it. This will be the case throughout

this dissertation.

4.2 Group Representation of Geometric Contacts

In this section, we develop a method for evaluation of the contacts listed in Ta-
ble 4.1. The method used involves the use of the FEuclidean group and its subgroups
(see Chapter 3 for information on the Euclidean group). Each of the geometric ele-
ment contacts is transformed into an equivalent group representation. In Section 4.3,
these group representations will be used to analyze combinations of contacts for their
usefulness in measuring the relative position between two bodies.

The process of finding the group representation for a contact between two geo-
metric elements is a simple one. First the contact should be described using standard
joints (e.g., revolute joints, prismatic joints, and spherical joints). Then, each of
these joints can be described by their respective subgroups of the Euclidean group
(see Chapter 3) . The resulting group representation for a contact is the composition
of each of these subgroups.

In many instances, simplifications can be made to the group representation to
make it more compact and more understandable. Given a compositions of two sub-

groups, it may be possible to join the two together and form a larger subgroup. For
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example, two linear translational groups {7,} and {7/} can sometimes be joined to
form one planar translational group, {T,}{Tw} = {Tr}. Moreover, some composi-
tions of groups can be rewritten, resulting in a group of the same dimension. For
example, two linear translational groups that are about the same line (line ) or par-
allel to line [ can be composed into one linear translational group about the same line
[. The group representation for a point - plane contact and a sphere'— sphere contact
are given below to further explain the derivation of the group representations.
Given a point - r;lobile plane contact (P/F-PL/M), the relative motion between
the point and the plane can be broken down into two prismatic joints (their lines
of action are perpendicular), a revolute joint (the axis is perpendicular to the plane
formed by the translational lines), and a spheriéal joint (the location of the joint is
at a point on the plane formed by the two translational lines). The spherical joint
represents the point contact with the planar surface and the other components are due
to the planar surface being mobile. Figure 4.2 shows a picture of the contact and a
schematic of the joint motion associated with that contact. The equation showing the
composition of the groups and the resulting group representation for this particular

contact is

{TeHTe ) ({Bu}{So}) = {TP}{So} (4.1)

where d is perpendicular to d', u is perpendicular to both d and d’, and o lies on the
plane formed by d and d’. As can be seen, there are two simplifications performed

on the composition in order to make it ”cleaner.” The dimension of this group repre-
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TACTILE
SENSOR

—

Figure 4.2: A point-mobile planar surface contact.

sentation is five, two from {Tp} and three from {S,}. Note, if the planar surface was
fixed that the resulting motion would be equivalent to just a spherical joint, {S,}.
Given a sphere - sphere contact, the relative motion between two spherical surfaces
can be broken down into two spherical joints, a single spherical joint, or a revolute
joint depending on if the surfaces are mobile, fixed, or one is mobile and one is fixed.
A two spherical joint motion will occur if both spherical surfaces are mobile because
neither surface will know exactly where the contact occurred. A spherical joint motion
will occur if one of the spherical surfaces is mobile and one is fixed because one of
the surfaces will know where the contact occurred relative to its coordinate system
and the other surface will not. Therefore, the mobile surface can be rotated about
any axis through the center of its spherical surface, and no change will be detected
by either spherical surface. If both spherical surfaces are fixed then the two surfaces
can only rotate about an axis through the center of both spherical surfaces without
a change being detected. This results in the equivalent motion of a revolute joint

with its axis through the centers of both spherical surfaces. Figure 4.3 illustrated the
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39O

S/M - S/M Contact

- ok

S/F - S/M Contact

N,

S/F - S/F Contact

Figure 4.3: A spherical-spherical surface contact.

three possible contacts between a sphere - sphere contact. Noté, the case when both
surfaces are mobile results in a spherical joint - spherical joint combination. This
combination has only a dimension of five, not six. This is caused by a redundant
motion in the combination. Both spherical joints can rotate about an axis through
the center of both spherical surfaces. Therefore, only one of them is included in the
group representation resulting in a decrease in the dimension for the combination.
Table 4.2 lists all of the group representation and dimension for all of the possible
contacts. It should be.noted that many of the group representations are the same for

different contacts.

4.3 Analysis of Contact Combinations

With all of the contacts described by their respective group representation and
dimension, it is possible to apply the methods Hervé [15] described to combinations

of these contacts to find if they can be used to make a complete measurement of the
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Type of Group Dim Description
Contact Representation
P/F - P/F {S5) 3 o is the contact pt.
P/F - S/F {S,] 3 o is the contact pt.
P/F - S/M {So}{S,} 343-1=5 o is the contact pt., o’ is the center of S/M
P/F - PL/F {So} 3 o is the contact pt.
P/F - PL/M {SoH{Tp} 3+42=5 P is coincident with PL/M, o is the contact pt.
P/F-L/F {So} 3 o is the contact pt.
P/F-L/M {SoH{Tu} 3+1=4 o is the contact pt., axis u goes through o
P/F - C/F {So} 3 o is the contact pt.
P/F - C/M {So}{Cu} 34+2=5 o is the contact pt., axis u is a dist. r away from o
S/F -S/F {R.} 1 axis u goes through both sphere centers
S/F-S/M {So} 3 o is the center of the mobile sphere S/M
S/M - S/M {So}{So} 34+3-1=5 o and o’ are the centers of the spheres
S/F - PL/F {Ry} 1 ulPL/F and goes through the center of S/F
S/F - PL/M {Gp} 3 P is coincident with PL/M
S/M - PL/F {So} 3 o is the center of the mobile sphere S/M
S/M - PL/M {SoH{Tp} 2+3=5 o is the center of S/M, P is coincident with PL/M
S/F - L/F {Ru MR} 1+1=2 axis u goes through the center of S/F and the contact pt.,
axis u’ is coincident with L/F
S/F-L/M {Ru}{Cu} 1+2=3 axis u goes through the center of S/F and the contact pt.,
: axis u’ is coincident with L/F
S/M - L/F {So}H{Ru.} 3+1=4 o is the center of S/M, axis u is coincident with L/F
S/M - L/M {SoHC.} 34-2=5 o is the center of S/M, axis u is coincident with L/M
S/F - C/F {R.} 1 axis u goes through the center of S/F and the contact pt.
S/F-C/M {Ru}{Cu} 1+2=3 axis u goes through the center of S/F and the contact pt.,
and axis u’ is coincident with the center line of C/M
S/M-C/F {S,} 3 o is the center of S/M
S/M-C/M {SoHCu} 3+42=5 o is the center of S/M, and axis u’ is coincident with
the center line of C/M
PL/F - PL/F {Gp} 3 P is coincident with both planes
PL/F - L/F {R.} 1 axis u is coincident with L/F and on the plane
PL/M - L/F {Gp}{Ru} 3+1=4 P is coincident with PL/M, and axis u is coincident with
L/F and on P
PL/F - C/F {Tw} 1 axis u is coincident with the center line of C/F
PL/F - C/M {Cu} 2 axis u is coincident with the center line of C/M
PL/M - C/F {Gp} 3 P is coincident with PL/M
PL/M - C/M {Gp}{Ru} 3+1=4 axis u is coincident with the center line of C/M and,
P is coincident with PL/M
L/F-L/F {So} 3 o is the contact pt.
L/F-L/M {So}{Tu} 3+1=4 o is the contact pt., and u is coincident with L/M
L/M-L/M | {Cu}{Ru}{Cur} | 24+142=5 u is coincident with L/F #1, u'’ is coincident with
L/M #2, and v’ L the contact plane.
L/F - C/F {Ru}{Ry'} 1+1=2 u is coincident with L/F, and «' is perpendicular to the
contact plane.
L/F-C/M {Ru}{Ru}{Cyun} | 1+142=4 | u is coincident with L/F, v’ is coincident with the center
line of C/M, and v’ L the contact plane.
L/M - C/F {R.}{Cy} 14+2=3 u’ is coincident with L/M, and u’ L the contact plane.
L/M-C/M {Cu}{Ru}{Cyun} | 241+42=5 | u is coincident with L/M, u” is coincident with the center
line of C/M, and u' L the contact plane.
C/F - C/F {Ru} 1 u is perpendicular to the contact plane
C/F-C/M {RuHCuw} 142=3 u’ is coincident with the center line of C/M, and
ul the contact plane.
C/M - C/M {Cul{RuH{Cur} | 24+142=5 | u and u' are coincident with the center lines of C/M #1

and C/M #2, and u’/ L the contact plane.

Table 4.2: The group representations
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relative position between two bodies. Hervé stated that if two bodies had multiple
constraints between them that the resulting constraint is the intersection of the mul-
tiple constraints. Moreover, if the dimension of the resulting intersection is zero, the
resulting constraint is fixed and this is what we want to find. Let {L,} through {L,.}

be the constraints imposed by the geometric element contacts. Then
dim({Li} N {L}n---n{L,})=0. (4.2)

In our case, the constraints are given by the group representations. Hence, if
two bodies are separated by two point-point contacts then the overall constraint
associated with the bodies is the intersection of the two constraints caused by the
point-point contacts. It should be noted that there is a difficulty with using the group
representations. They are coordinate dependent.

When finding the intersection between two bodies a coordinate system for each
of the bodies must be chosen. Most of the group representations assume that the
coordinate frames are located in a specific location. For example, any contact with a
group representation {S,} assumes that both bodies have their respective coordinate
systems located at the center of the spherical joint. Hence, when motion occurs,
all displacements are part of the spherical joint group. If two contacts are used with
spherical group representations, then only one can have the coordinate systems placed
at its center; the other contact will no longer be represented by a spherical joint but
a strange set of displacements (see Figure 4.4). Note, changing the coordinate system

does not change the dimension of the motion caused by a geometric element contact.
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MOTION

|

a (b)
Figure 4.4: Group representation dependence on the location of the coordinate sys-
tem.

Using equation 4.2, it is now possible to study geometric element combinations
and determine if they can be used for measuring the relative position between two
bodies. In other words, they can be used to determine if a fixture is "useful.” It
should be noted that certain geometric element contact configurations have motions
in common with other geometric element contact configurations regardless of the
locations at which they are placed. For example, When two point-point contacts are
used {S,} and {S,/}, the intersection of their group representations does not result
in the identity element as expected, but in a revolute group, {R,}, with its axis, u,
through the center of both point contacts. Therefore, two point - point contacts does
not give a complete solution, and, hence, another piece of information is necessary. A
combination of a sphere/fixed - plane/mobile contact with a point - point contact also
results in a revolute joint, the ~a,xis is through the center of the point and perpendicular
to the plane. These cases must be considered when finding complete combinations.

A shortcoming associated with equation 4.2 is that if a combination is found with

dimension zero, it still may have a finite number of possible solutions. For example,
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the theory suggests that it fakes three points to find the position of a sphere of known
radius. However, if three points are used, two spheres can fit to that one set of points
(see Figure 4.10). In order to remedy this situation another piece of information is
necessary. This will be the case with many of the combinations found.

Looking at Table 4.2 it is apparent that many of the geometric element contacts
share the same group representations. This is due to the fact that a point is a special
case of a mobile sphere of radius zero and a line is a cylinder of radius zero. Therefore,
all of the possible contacts listed can be reduced from 41 cases to 15. Table 4.3 shows
all possible simplifications to the contacts.

Using the notation from Table 4.3, Table 4.4 is a listing of all possible contacts
that will result in a set of dimension zero. As stated earlier, a finite number of possible
positions may come out of the combination. These cases will require an additional

piece of information for a unique solution.

4.4 Point - Surface Contacts

Of the contacts discussed, point-surface contacts are the most common and are
currently the most practical for fixture design. The point-surface contacts can be
grouped into two classifications, ones involving mobile surfaces and ones involving

fixed surfaces.
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Classes of Contacts
The Class The Group Contacts in No. Contacts Contact
Representation Representation the Class in Class Dimension
S/F - S/F, S/F - PL/F,
{R} {Ry} S/F-C/F, PL/F - L/F, 5 1
: C/F-C/F
{T1} {T.} PL/F - C/F 1 1
{R - R} {Ru}{Ru} S/F-L/F,L/F-C/F 2 2
{C} {Cy} PL/F - C/M 1 2
{R-C7J {RuHCu} S/F-L/M,S/F-C/M, 4 3
L/M - C/F, C/F-C/M
P/F -P/F, P/F - S/F,
P/F - PL/F, P/F - L/F,
{S} 15,} - P/F-C/F,S/F-S/M, 9 3
S/M - PL/F,S/M - C/F,
L/F-L/F
{Gs} {Gp} S/F - PL/M, PL/F - PL/F, 3 3
PL/M - C/M
{S—R} {56 HRu} S/M- L/F 1 4
{§-T1} {S: HTu} P/F-L/M,L/F-L/M 2 4
{Gs — R} {GpHR.} PL/M - L/F, PL/M - C/M 2 4
{R_R_C} {Ru}{Ru’}{Cu”} L/F‘ C/M 1 4
{§-5} {So}{s0} P/F-S/M, S/M - S/M 2 5
{S-C} {So HCu} P/F - C/M, S/M - L/M, 3 5
S/M-C/M
{S— T3} 1S HTr} P/F - PL/M, S/M - PL/M 2 5
{C—-R—-C} | {Cu}{Ru}HCur} L/M-L/M,L/M - C/M, 3 5
C/M-C/M

Table 4.3: Classes of contacts.
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Enumeration of Possible Contact Combinations

[ Combination class | NoZ | Combination Class' [ No® | Combination class’ | No*
{R}{R} 15 {C}{s} 9 {R-C}{S-S}HS-C}{S-T»} 48
{RHT} 5 {CHGs} 3 {R-C}{S-S}{5-C}{C-E-C} 72
{RY{R-R} 10 {CYH{5-R} 1 {R-C}{S-S}{S8-Tu}{5-T2} 24
{RY{C} 5 (CHST} 2 [R-C}{S-S1{S-T2}{C-R-C} 18
TRI{RC) 20 {CHG-R} 2 {R-CI{S-8}{C-R-C}{C-R-C] | 48
RY{S} 15 {CY{R-RC} 1 {R-C1{5-C}{5-C}{5-C} 40
{R}HGaY 15 {CHS-SH{S-S} 3 {R-C}{S-CH{S-CHS-T5} 48
{R}{5-R) 5 {(CH5-SHSCY 6 {R-CI{S-C}{S-CI{C-R-C] 72
{RY{S-T1} 10 {CHS-SH5-T>} 1  {R-CHS-CHS-T2}{5-T2} 36
1RH{G+-R} 1o [CI{S-31{C-R-C} 3 {RCHS-CH{S-TL}{C-R-C} 72
{R}{R-R-CY 5 {CH{5-CI{5-C} 6 {R-C}{S-CY{C-R-C}{C-R-C} 72
{R}{S-S} 10 {CHS-CHS-Tn} 6 {R-CHS-TLHS- T2 }{S-T2} 16
(R}{5-C} 15 TCH{S-CI{C-R-C] 5 RCHS T ST 1 {C-R-CY 36
{R{5-T5} 10 {CHS T2 {5 T2} 3 {R-C}{S-T.}{C-R-C}{C-R-C} | 48
{RY{C-R-C} 15 {CYH{S-T2}{C-R-C} 6 | {R-C}{C-R-C}{C-R-C}{C-R-C} | 40
{iH{T1} 1 {CHC-R-CHC-R-C} 6 {SHSHS} 165

T H{R-R) 2 {R-C}J{R-CY 10 1S5} {Ga} 135

{T H{C} 1 {R-CY{S7 36 {S}{S}{S5-R} 45
{T1}{R-C} 1 {R-C}{Ga} 12 {SHSHS-T1} 90
{T}{5} 9 {R-C}{S-R}{S-R} 4 {SHSHGs-R} ~ 90
{T1}{Gs} 3 {R-CH{S-R}{S-T1} 8 {SHSHR-R-C} 45

(T 1{5-R} 1 {R-C}{S-R}{Gs-R] 8 T51{5}1{5-3) 90

1T 51T ) TR-C){S-R}{R-RC] 1 15}{5H5-C) 135
{T:}{Gs-R} 2 {R-C}{S-R}{5-5} 8 {SHSHS-To} 90
(T OH{R-EC) 1 {R-CH{S-RI15-C) 12 TSHSI{C-R-C) 135
{T1 }{S-S} 2 {R-C}{S-R}{S-T} 8 {SHGaH{Gs} 54

(T H{S-C} 3 TR-C}{S-RI{C-R-C] 12 15HG: 1 {5-R} 27
T HS T2} 2 {R-CH{S-T\ }{5-T1 } 12 (SHG:HS-T1} 54
{T1 }{C-R-C} 3 {R-CHS-T1 {Gs-R} i6 {SHG:H{Gs-R} 54
{R-RI{R-E} 3 {R-C}{S-T1}{R-R-C} 8 {SH{G:}{R-R-CY} 27
{R-R}{C} 2 {R-C}H{S-T1}{5-5} 16 {5}H{Gs}{5-5} 54
{R-RHR-C} 8 {R-CHS-T1}{S-C} 24 {SHGs}H{sS-C} 81
{R-R}{S} 18 {R-CHS- T\ }{5-T>} 16 {SHG: {5 T2} 54
[R-RH{Gs] 6 {RCHSTJ{C-RC) | 21 [SHG: H{O-R-C] 81
TR-R}{5-R} 2 {R-C}{Gs-R}{Ga-R} 12 T51{S-RI{5-R} 3
{R-R}S-T:} 1 {R-C}{Gs-R}{R-R-C} 8 {SHS-RH{5-T1 ] 18
{R-R}Ga>-RJ 3 (RC1{Ga-R}{5-5) 16 (SHS-R}Gs-R) 18~
{R-R}{R-R-C} 2 {R-CH{Gs-R}{5-C} 24 {SHS-RH{R-R-C} 9
{R-R}{5-5}{3-5} 6 {R-CH{Gs-RHS-To} 16 {SHS-R}{3-5} 18
(R-R}{5-51{5-C} 12 TR-CT{Gs-R}{C-R-C} 24 (SHS-RI{5-C} 27
{R-R}{S-5}{5-T2} 8 {R-C}{R-R-CH{R-R-C} 4 {SHS-R}{S-T2} 18
{R-R}{S-5}{C-R-C} 12 {R-CY{{R-R-C}{5-5} g {ST{S-R}{C-R-C} 27
{R-R}{S-C}{5-C} 12 {R-CY{R-R-C}{S-C} 12 {SHS-T1}H{S-T1} 27
{R-R}{S5-CH5 T2} 12 {R-CY{R-R-CHS3T2} 8 {SHS-T, HG=-R} 36
{R-R}{S-C}{C-R-C} 18 {R-CY{R-R-C}{C-R-C} 12 {SHS-TiH{R-R-C} 18
RR}{S-T5){5T2) 6 (RC}{5-51{5-51{5-5} | 16 1S1{5-T1}{5-5} 36
{R-RH{S-T{C-R-CT | 12 | {R-C}{S5-5}1{5-5}{5-C} | 36 {SH5-T, }{5-C} 54
{R-R}{C-R-CH{C-R-C} | 12 | {RCH{S-SHS-SH{5- T2} | 24 (SHS-TLHS-T2) 36
CHCY T [ {R-CH{S-S1{S-S}{C-R-C} | 36 [SY{ST{C-R-C} 54
{CY{R-C} ) {R-CY{S-SH{S-C}{S-C} | 48 {SH{G>-R}{Gs-R} 27

Table Continues on Next Page

Table 4.4: Enumeration of all possible contact combinations between points, spheres,
lines, cylinders, and planes resulting in a dimension of zero.
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Enumeration of Possible Contact Combinations (continued)

Combination class! | Number? | Combination class’ | Number? |
[51{Co-RHRR-CY 18 {Gs Ho-T11{5-3) 2
{SHGs-R}{S-S} 36 {Gs H{S-Th }{5-C} 18
{S}{Gs-R}{5-C} 54 {GsH{S- T }{S-T>} 12
{SHG3-R}H{S-T>} 36 {G3}{S5-T1}{C-R-C} 18
{S}H{Gs-R}{C-R-C} 54 {Gs 1{Gs-R}{Gs-R} 12
{SYH{ERCJ{RRCY 9 {Gs}1{Gs-R}{R-R-C} 6
{S}H{R-R-C}{5-5} 18 {G3}{Gs-R}{S-S} 12
(SHR-RCH{S-C} 27 {Ga HGs-R}HS-C} 18
{SHR-R-C}{S-T»} 18 {Ga}{G3-R}{S-T>} 12
{S}{R-R-C}{C-R-C] 27 {G:}{Gs-R}{C-R-C} 18
{SH{5-51{5-51{5-S 36 {G: J{R-R-C}{R-R-CY 3
{SHS-SH{3-5}1{5-C} 81 {G3}{R-R-C}{5-5} 6
{SHS-SHS-5}{S-To} 54 {Gs H{R-R-C}{S-C} 9
{S}{S-SY{S-8}{C-R-C} 81 {G:}{R-R-C}{5-T2} . 6
{5}{5-S}{S-C1{5-C} 108 {GsH{R-R-C}{C-R-C} 9
15}{5-5}{5-C}{(5-T2] 108 (G 1{5-5}{5-51{5-5} 12
TS}{S-5}{5-C}{C-R-.C] 162 1G: 1{5-5}1{5-5}{5-C] 27
{SHS-S}H{S-T»}{5-T>} 54 {G3}{S5-S}{S-SH{S-T>} 18
SH{SSI{S-T5}{C-R-C} 108 {Gs 1H{S-51{S5-SJ{C-R-C} 27
TST{S-S}{C-R-C}{C-R-C} 108 {G3}{5-5}{5-C}{3-C} 36
[SH3-C1{5-C1{5-C} 90 (G2 H{S-SHS-CHI- T} 36
{5H{5-CH3-CH{5-13] 108 1G5 1{S-S1{S-CI{C-R-C} 54
{SHS-CHS-CI{C-R-CY 162 1G5 1{S-SH ST 11515} 18
{SHS-CHS-T2}{S-T3} 81 {GsH{S-SHS-T>}{C-R-C} 36
[SHS-CHS T, {C-E-CY} 162 1Gs H{S-SHC-R-C}{C-R-C} 36
{ST{S-CI{C-R-C}{C-R-C} 162 {Gs 1{5-CH{8-C1{5-C} 30
{SHS-To}{S-To}{S- T2 } 36 {G3}{5-CH{S-C}{S-T»} 36
[SHS T2} {STo}{C-R-C} 81 (G 1{S-C}{S-CI{C-R-C} 54
ISHS-To H{C-R-C}{C-E-C} 108 {Gs HS-CHS- T {515} 77
{SH{C-R-C}{C-R-C}{C-R-C} 90 {G31{S-C1{S-T2}{C-R-C} 54
{Gs1H{Gs}{Gs} 10 {Gs}{S-CH{C-R-C}{C-R-C} 54
{Ga}{Gs H{S-R} 6 {Gs H{S-To}{S- T }{5-T2} 12
{G3 HGs 15T ) 12 G H{S- TS T H{C-R-CY 27
1Gs HGs HGs-RY 12 {Gs HS- T2 H{C-R-CY{C-R-C} 36
1G:1{G: {R-R-C} 6 {Gs HO-R-CHC-R-C}{C-R-C} 30
{Gs HGs }H{S-S} 12 {S-R}HS-R}{S-R} 1
{GsHGsH5-C) s {S-RH5-R}5-T,) 2
{Gs H{Gs }{S-T»} 12 {S-R}{S-R}{Gs-R} 2
{G3s 1{Gs H{C-R-C] 18 {S-R}{S-R}{R-RCJ} 1
(G2 }{5-RI{S-R} 3 [5-R1{5-R}{5-S{5-5] 3
{Gs}{S-R}{S-T\} 6 {S-R}S-R}HS-S}HS-C} 6
{Gs}{S-R}{Gs-R} 6 {5-R}{S-R}S-SH{S-To} 4
{Gs HS-R}{R-RC] 3 (S RI{S-R}{S-SH{C-R-C] 3
{Gs }{S-R}{S-5} 6 {S-R}{S-R}{S-CH{S-C} 6
{Gs H{S-RH{S-C} ) 1S RH{S-R}{S5-CH{S5-Ta} 6
{Gs HS-RHSTa} 3 TS RI{S-R{S-CI{C-R-C} 9
(G }{S-R}{C-R-C} 9 [S-RHS-RIS-TH(5-Ts) 3
{Gs HET {511} 9 (S RI{S-RI{S-T5}{C-R-C} 6
{G3}1{5-T1 14Ca-R) 12 TS-R1{S-R1{C-R-C}{C-R-C} 6
{GsH{S-Ti H{R-R-C} 6 {S-R}S-T1 }H{5-T1 } 3

Table Continues on Next Page
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Table 4.4: Enumeration of all possible contact combinations between points, spheres,

lines, cylinders, and planes resulting in a dimension of zero (continued).
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Enumeration of Possible Contact Combinations (continued)

Combination class? [ Number® | Combination class! | Number® |
{S-R}{5-Th }{Ga-R} 4 {S-R}{5-S}{5-CH{C-R-C}{C-R-C} 36
{S-R}{S-T1 }{R-R-C} 2 {SCRH{S-S{S-,{5-T2 1{5-T2} 8
{S-RH{S-T1 }1{S-SH{S-S} 6 {S-RI{S-S}{S-T2J{S- T }{C-R-C} 18
{S-RY{5-T1 }{5-5}{3-C} 12 {S-R}{S-5}{S"T,}{C-R-C}{C-R-C} 24
{S-R}{S-T1 }{S-SH{5-T>} 8 {S-R}{S-S}{C-R-CH{C-R-CY{{C-R-CY}. 20
{S-R}{S-T1 }{S-S}{C-R-C} 12 {S-R}{S-CH{5-CY{5-CI{S-C} 15
{S-R}{5-T\}{3-C}{5-C} 12 {S-RH{S-C}H{S-CY{5-CH{5-T5} 20
{5-R}{5-T{ }{5-C}{5-T2} 12 {S-R}{S-C}{S-C}{S-C}{C-R-C} 30
{S-R}{S-T{ }{S-C}{C-R-C} 18 {S-RIHS-CHS-CHE T {5 T} 18
{S-RH{S-T1 }{S-To}{S5-T»} 6 {S-RH{S-CHS-CH{S-Tr}{C-R-C} 36
{S-R}{S-T1}{S-T; }{C-R-C} 12 {S-RY{S-C}{S5-C}{C-R-C}{C-R-C} 36
{S-R}{5-T1 }{C-R-C}{C-R-C} 12 {S-RIH{S-CHS {5 T1 [{5-T2} 12
{S-R}{G5-R}H{Gs-R} 3 {5-RH{S-CHS- T2 }{5- T2 }{C-R-C} 27
{S-R}{G5-RI{R-R-C} 2 {S-RI{S-CH{S"TL}{C-R-C}{C-R-C} 36
{5-RY{G3-R}{5-51{5-5} 6 {S-R}{5-C}{C-R-C}{{C-R-C{{C-R-C} 30
{5-R}{G3-R}{S5-S}{5-C} 12 {S-RHS-To {S-To H{5-T5 -{5- T2} 5
T {5-R}{Gs-R}{S-5}{S- T3} 8 {S-RH{ ST} {S- T2 }{S- T }{C-R-C} 12
{S-R}{G:-R}{5-5}{C-R-C} 12 {S-R}{S-T2J{S-T5}{C-R-C}{C-R-C} 18
{S-RH{G»-R}{S-C}{5-C} 12 {S-R}{S-T.}{C-R-CY{C-R-C}{C-R-C} 20
{S-R}{G5-R}{S-CH{S5- T2} 12 {S-R}{C-R-C}{C-R-C}{C-R-C}{C-R-C} 15
{S-R}{G5-R}{S-C}{C-R-C} 18 {S-“T H{S-TL H{5-T1} 4
{S-RI{G5-RH{ S T2 }{5-T2} 6 {ST H{S5-T1 }{Ga-R} 8
{S-RY{G5-R}{S-T2}{C-R-C} 12 {S-TWH{S-T\{R-R-C} 3
{S"R}{G5-R}{C-R-C}{C-R-C} 12 {STT{5-T1 }1{5-5}{3-SY ]
{S-R{{R-R-CY{R-R-C} - 1 {S-T H{5-Th H{5-5}{5-C} 18
\ {S-RI{R-R-C}{S5-S}{5-5} 3 {ST Y {S-T1 H{3-5 {5 T2} 12
{S5-R}{R-R-C}{5-5}{5-C} 6 {S-T H{S-T1 }{5-S}{C-R-C} 18
{S-RH{R-R-C}{5-5}{8-T>} q {S-T\}H{5-T1 ) {5-C}{5-C} 18
{S-R}{R-R-C}{S-S}{C-R-C} 6 {STHS-TIHS-CHS-To} 18
{S-R}{B-R-C}{5-CY{5-C} 6 . {S“T H{S-T1 }{S-C}{C-R-C} 27
{S-R}{R-R-C}{S-C}{S-T>} 6 {S-TW H{S-TW HS-To }H{S- T2} 9
{S-R}{R-R-C}{S-C}{C-R-C} 9 {ST ST }H{S T2} {C-R-C} 18
{S-RY{R-R-C}{5-T2}{5-T2} 3 {S-TVH{S-Th }{C-R-C}{C-R-C} 18
{S-R}{R-R-C}{S-T2}{C-R-CY 6 {S-T1 [{Gs-RH{G3-R} 6
{S-R}{R-R-C}{C-R-CY{C-R-C} 6 {ST1 }{G5-R}{R-R-CY 4
{S-R}{5-5}{5-3}{5-S}{5-5} 5 {5-T1 [{G3-R}{5-5}{5-5} 2
{S-R}{5-5){5-S}{5-5}{S-C} 12 {S-Ti{G5-R}{5-5}{5-C} 24
{S-R}{S5-5}{5-5}{5-5}{5-T>} 8 {S-T1 }{G3-R}{5-5}{S-T3} 16
{S-R}{S-5}{S-5}{5-S}{C-R-C} 12 {S-T\ }{G5-R}{S-S}{C-R-C} 24
{S-R}{S-5}{5-S}{S-C}{5-C} 18 {5-T1 H{G3-R}{S-CY{5-C} 24
{S-R}HS-S}S-SHS-C}{S-To} 18 {S-T1 H{G5-R}{SCTHST>} 24
{S-R}{S-S}{5-S}{5-C}{C-R-C} 27 {ST1 }{G3-R}{S5-C}{C-R-C} 36
{S-RI{5-51{5-S}{S- 1> {5 T3} 9 {51 H{G3-RI{8-T2 {512} 12
S RI{S-SJ{S-BI{S-T2}{C-R-C} 18 ST }{Gs-RI{S-T5}{C-R-C} 24
{S-R}{S-5}{S-ST{C-R-C}{C-R-C} 18 {S-T1}{Gs-R}{C-R-C}{C-R-C} 24
[5-RY{3-5Y{5-C}{3-C{5-C} 20 [S-TiH{R-R-CH{R-R-C} 2
{S-R}{S5-5H{S5-CH{5-C}{5-T»} 24 {ST\}{R-R-C}{5-5}{5-57 3
{S_R}{5-5}{S-C}{S-C}{C-R-C} 36 {5-T1}{R-R-C}{5-5}{S-C} 12
{S-RHS-SHS-CHS-To}{S-Tr} 18 {S-Ti H{R-R-C}{S-SH{S-T»} 8
{S-R}{S-S}{S-C}{S-T2}{C-R-C} 36 {S“T\}{R-R-C}{S-S}{C-R-C} 12

Table Continues on Next Page

Table 4.4: Enumeration of all possible contact combinations between points, spheres,
' lines, cylinders, and planes resulting in a dimension of zero (continued).
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Enumeration of Possible Contact Combinations (continued)
Combination class® [ No? | Combination class’ [ No? ]
{S-T1 }{R-R-CHS-CH{S-C} 12 {Gs-R}{Gs-RH{S-T5}{5-Tr} 9
{S-T1 }{R-R-C}{S-C}{5-T>} 12 {G3-R}{Gs-R}{S5-T,}{C-R-C} 18
{S-T1 [{R-R-C}{S-CH{C-R-C} is {Ga-RY{G3-RI{C-R-C}{C-R-C} 18
(5T {RR-C}{5-T5}1{5-T5) 5 [G>-RJ{R-R-CI(R-R-C} Z
(ST H{R-B-CH{S-T}{C-R-C} 12 - {Gs-R{R-R-C}{5-51{5-5} 6
{S-T [ {R-R-C}{C-R-C}{C-R-C} 12 {G3-R{R-R-C}{5-8J{5-C} 12
T5-T; 1{5-51{5-5}1{5-5 1 {3-5} 10 {Gs-R} R R-CH3-5H5T5) 8
(5T, 1{5-5H{5-5}{5-51{5-C} 74 {Ga-RI{R-R-C}{5-5}{C-R-C} 12
(5-T1}15-5HS-5}{5-SHS-T>] 16 {Gs-R}I{R-R-C}{5-CH{5-C} 12
TS-T11{S-S}{S-S1{S-S}{C-R-C} 24 (G- R}{R-R-C}{5-C}{S- T} 12
15-T1{5-51{5-5}{3-C}{5-C} 36 {Gs-BH{R-R-CH{S-CJ{C-R-C} 18
(ST }{5-5}{5-51{5-CH5-T] 36 {(Gs- RHR-R-C} {315} (5-T) 5
(5T, }{S-51{S-S}{S-C}{C-R-C} 54 {G3-RY{R-R-C}{5-To}{C-R-C} 12
15T, 15513351 1 {5-T5) 18 {Gs-RI{R-R-C}{C-R-C}{C-R.C} 12
(ST {5515 3}{S- T} {O-R-C] 36 {Gs-R){5-51{5-31{5-51{5-5} 1o
TS5 1H{S-51{S-S}{C-R-CH{C-R-C} 36 {Gs-RH{S-SHS-SHSBHS-CY 24
T5-TiIHS-SHS-CHS-CHS-C] 10 {Gs-RHS-SHS-SHS-SHSTo) 16
{5-T; 1H{S-5H{S-CHE-C}H{STa} 48 {Gs-RY{S-531{5-5}{S-S}{C-R-C} 24
TS-T1 }1{5-5}{S-CH{S-C}{C-R-C} 72 {Gs-RI{S-51{5-51{5-C1{5-0} 36
{&-T1 H{S-SHS-CHS-T2}{5-T>} 36 {G3-RHS-S}HS-SHS-CH{S-To} 36
{5-T\ }{5-5}{S-C{S-T2}{C-R-C} 72 {G3-R}{S-S}{5-5}{S-CY{C-R-C} 54
{S-T1 }{S-S}{S-C}{C-R-C}{C-R-C} 72 {Gs-R}{S-5}{S-SH{S- T2 H{5- T2} 18
(511 HS-S {3 T 1 {S-To [{5-T2) 16 1G5-RI{5-51{5-5} {S-To ] {C-K-C} 36
TS T {55} {5 T {S- T, {C-R-C} 36 {Gs-R}{S-S}{5-5}{C-R-CHC-R-C} 36
{5 T H{S-SHS- T2} {C-R-C}HC-R-C} i3 {G3-R}{5-S}{5-CH{S-C{5-C} 40
{S-T1}{5-S}{C-R-C}{C-R-C}{C-R-CY 10 {Ga-R}{S-S}{S-CHS-CHSTa} 48
1S-TiH5-CHS-CI{5-CH5-C] 30 {Ga-RI{S-S}{S-CI{S-CH{C-R-C} 72
{S-TW }{S-CH{S-CHS-CHS-Tz} 40 {Gs-RHS-SHS-CH{S-To H{S-Ta} 36
TS T 1H{S-C1{S-CH{S-CIH{C-R-C} 60 {G3-RI{S-8}{S-CH{S T {C-R-C} 72
T5-T1 H{S-CHS-CIB-T 1{5-T5} 36 {Ga-RI{5-5}{S-C}{C-R-C}{C-R-C} 72
{5-T1 H{S-CH{S-CHS-T2H{C-R-C} 72 {Ga-RH{S-SHS-D}H{S-T2}{5- Tz} 16
15T HS-O{S-CHC-R-CHC-E-C} 72 {G-RI{S-81{S-T3 155 HC-R-C} 36
5T HS-CHS- T H{5-To [{5-T5] 74 {Ga-R}{S-SH{S-T5}{C-R-C}{C-R-C} 48
(ST H{S-CH{ST51{5- T }{C-R-C} 54 {G3-R}{5-5}{C-R-C}{C-R-C}{C-R-CY 40
(ST H{S-CY{5-T5} {C-R-C}{C-R-C} 72 {Gs-RJ{5-C1{5-C}{5-CY(5-C} 30
{S-T; 1{5-CY{C-R-C}H{C-R-C}{C-R-CY 60 {Gs-RH{3-CHS-CHSTHS-To} 10
5-T 18- T H{S- T 8- T {515} 10 {G>-R}{S-C}1{S-C}{S-CH{C-R-C} 60
{S-T1 }H{S- T }{S-To}{S-T> }{C-R-C} 24 {Gs-RH{S-CHS-CHS-T2}{S-T>} 36
(ST H{S- T2} {S-T; HC-R-C}{C-R-C} 36 1G5-RH{S-C}{S-CH{S-T5}{C-R-C} 72
{5-T, H{S-To }{CO-R-C}{C-R-C}{C-R-C] | 40 {Ga-R}{S-C}{S-C}{C-R-C}{C-R-C} 72
{S-T1 }{C-R-CY{{C-R-C}{C-R-C}{C-R-C} | 30 {Ga-RH{S-CHS-T,HS- T2 {5 T2} 24
{G>-RI{G+-R}{Ga-R} 7} 1Gs-RIS-CHST1{5- T2 H{C-R-C} 54
{G:-R{Gs-RI{RERCY 3 1G3-RH{S-C}{S- T2 {C-R-C}H{C-R-.C} 72
{Go-RJ{Ga>-RI{5-51{5-5} 9 {Gs-RH{S-CJ{C-R-C}{C-R-C}{C-R-C} 60
{Gs-RHG3-R}{S-5}{5-C} 18 {G3-RHS- T }H{S- T2 }H{S-T2 }H{5- T2} 10
{Cs-RH G- RI{5-51{5T3) 12 1Go-RHS-TH{S- T, HS-Tz HO-R-CY 24
{G5-RY{G3-RH{S-SH{C-R-C} 18 {Ga-RI{S-To{S-To H{C-R-CHC-R-C} 36
{G5-R}{G3-RHS-CHS-C} 18 | {Ga-RI{S-T2}1{C-R-C}{C-R-C}{C-R-C} | 40
[G3-B}G3-RHS-CHS-Tp} 18 | {G5-RH{C-R-C}{C-R-C}{C-R-C}Y{C-R-C} | 30
{Gs-R{Gs-RI{S-C}{C-R-C] 27 {R-R-C}{R-R-C}{R-R-C} 1
Table Continues on Next Page
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Table 4.4: Enumeration of all possible contact combinations between points, spheres,

lines, cylinders, and planes resulting in a dimension of zero (continued).
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Enumeration of Possible Contact Combinations (continued)

[ Combination class* | No? | Combination class’ [ No® |
{R-R-C}{R-R-C}{S-S}{S-S} 3 {5-S}{S-S}{S-5}{S-S}{S-C}{S-T>} 30
(R-R-C}RR-C){5-5}15-C) 6 [S-81{5-51{5-51{S-51{5-CT{C-R-C} 5
{RRCHRRCISSHST) 1 {55115 515 515 SHE T E-T) i5

[RE-R-CI{R-R-CJ[5-51[C-R-C] 8 [S-5){S-5}{S-3}{[5-S1{S-T5 1 {C-R-CT 30
(ER-CHERCI{5-C}{5-C] 5 (553 {S-51{5-5) S-S} {C-R.CH{C-R-CY 30
{R-R-C}{R-R-C}{S-C}{S-T>} 6 {S-5}{S-S}{S-S}{S-C}{5-C}{5-C} 40
{R-R-C}{R-R-C}{S-C}{C-R-C} 9 {S-S}{5-53{S5-SHS-CH{S-CH{S-T>} 48
{R-R-C}{R-R-C}{S-To}{S-T>} 3 {5-5}{5-5}{S5-S}{5-C}{5-C}{C-R-C} 72
{R-R-C}{R-R-C}{5-T2}{C-R-C} 6 {5-S}H{S-5}{S-S}{S-CHS-T2}{S-T>} 36
{R-R-C}{R-R-C}{C-R-C}{C-R-C} 6 {S-5}{S-S}{S-S}{S-C}{S-T1}{C-R-C} 72
{R-R-C){5-S1{5-5}{5-S1{5-3) 5 (551 {S-SHS-SHS-CHC-R-CHC-F-C) 72
(R R-C{5-51{5-3}15-5}{5-C} 17 (5-5H{5-5 1{5-8 1 {5- T (5-To {55} 16
{R-R-C}{S-5}{5-5}{S-5}{S-T2} 8 {5-S}H{5-S}H{S-S}{S-To}{S- T2 }{C-R-C} 36
TRR-C) (S-S} {5-5}{5-5}1{C-R-.C} 1z (5-5)1{5-5}{5-3}{5-T5} [C-R-CY{C-R-CT 18
(RR.C){5-5}{5-5}{5-C}{5-C} 18 | {58}{S5]{5-51{C-R-CY{C-RO}{C-RC] | 40
TR-R-C}{5-5}{5-5}{15-CH{5-To} 18 15-51{5-5}{3-C1{5-C}{5-C}{S-CT 5
{R-R-C}{S-S}{S-5}{S5-C}{C-R-C} 27 {S-SH5-53{5-C}{S-CH{S5-C}{S-T>} 60
{R-R-C}{S5-§}{S-S}{S-To}{S-T>} 9 {S-S}H{S-S}{S-C}{S-C}{S-C}{C-R-C} 90
{RE-CI{S-SHS-SHS-To}{O-R-C} 18 (53} {(5-SH5-C}{5-CHS T IH{5-To] 54
{R-R-C}{S-S}{S-S}{C-R-C}{C-R-C} 18 {5-SH{S-SH{S-C}{S-C}{S-To}{C-R-C} 108
TR-R-C){5-5}{5-C}{5-C}{5-C} 20 15-51{S-3}1{5-C}{S-C}{C-R.C}{C-R-C] 108
{R-R-C}{S-S}{S-C}{S-CH{S5-T>} 24 {5-SH{5-SHS-CHS- T {5- T2 }{5- T2} 36
{R-R-C}{S-S}{S-C}{S-C}{C-R-C} 36 {5-SHS-SHS-CH{S- T, }1{S-T,}{C-R-C} 81
[RR-C)(5-5}[5-CIH{5TH{5T2) 18 [5-31{5-5){5-C}{5-T5} {C-R-C}{C-R-C} 108
{R-R-C}{S-S}{S-C}{5-T>}{C-R-C} 36 {5-51{5-5}{S-C}{C-R-C}{C-R-C}{C-R-C} 90
{RR-CY{5-5}{5-C}{C-R-C}{C-R-C} 36 [5-51{3-51{5- T2 1 {5-To 18- T5 {5157 15
{R-R-CHS-SHS-ToH{S-T2}{S5-T>} 8 {S-SHS-5}{S-To H{S- T2 }{S-T2 }{C-R-C} 36
{R-R-C}{S-SHS-T2}{S-T2}{C-R-C} 18 _ {S-8}{S-S}{S-T2}{S-T2}{C-R-C}{C-R-C} 54
{R-R-C}{S-S}{S-1>}{C-R-C}{C-R-C} 24 {S-S}{S-S}H{S-T2}{C-R-CHC-R-C}{C-R-C} 60
TR-R-C}HS-S}{C-R.CH{O-R-CHC-RC} | 20 | {5-5}{5-5}{C-R-C}{C-R-C}{C-R-C}H{C-R-C} | 45
{R-R-C}{S-C}{5-C}{S-C}{5-C} 15 {S-S}{S-C}{S-C}{S-C}{5-C}{5-C} 42
(RR-C}5-C}{5-0}{5-C}{5-T5) 20 15-5}{5-C}{5-C}{5-C}{5-C}{5-To] %0
TR-R-O){S-CI{5-C} {S-C}{C-R-0J 30 [S-S1{S-CI{S-CI{S-C}{S-C}{C-R-C} 30
(RR-CH3S-CH5-CY{S-To1{5-T2) 18 [551{3-C {5-C1 {5-CI5-To}{5-T5) &0
TR-R-C){S-C}{5-C}{5-T3} {C-R-C] 36 [S-51{5-C} {S-C {S-CH{S- T2 1 {O-B-C) 170
[R-R-C}{5-C}{5-C}{C-R-C}{C-R-C} 36 {S-S}{5-C}{S-C}{S-C}{C-R-C}{C-R-C} 120
RR-O}[5-CI{5-T1{5-T> ] {5-T5) 12 [5-S{S-CH{S-CI{S-T (8- T2} {5-T2} e
{R-R-C}{S-C}{S-T2}{S-T> }{C-R-C} 27 {8-SHS-C}{S-C}H{S-T>}{S-T>}{C-R-C} 108
{R-R-C}{S-C}{S-T2}{C-R-C}{C-R-C} 36 {S-S}{S-C}{S-C}{S-T>}{C-R-C}{C-R-C} 144
(R-R-CI{S-CI{C-RCY{O-RCIO-RC) | 30 | {S-5}{S-0}{S-C}{C-R-CH{C-R-C}{C-R-C} | 120
{R-B-CHS-T}{S- T2 }{S-T2}{S5-T>} 5 {S-SHS-CHS-ToH{S- T }{S-To{S-T>} 30
(R ECHS T ST} {S- T [ {C-R-C} 1z (S S1{S-CHS-T5) {S-To H{S-To 1 {C-R-C] 72
TRRCIST ST H{C-RCHO-RO] | 18 SS1S- O} (ST {5 {O-RCY{C-RCy | 108
[RRCHST{C-RCHO-RCHC-ROY | 20 | {S-S1{SCI{5-T}{C-R-C}{C-R-C}{C-R-C] | 120
TRR-C}{C-R.CY{C-RC}{O-RC}{C-RO] | 15 | (5-81{5-CI{C-R-CHC-RCHC-R-C}{C-R-C] | 90
15-51{5-51{5-51{5-5}{5-8}45-5] 7 18-831(S-To 1 {5-T2} (S-To {3-T5 31 5-T5 12
{5-5115-5}15-5}15-5}15-51{5-C} 18 (SSHS TS T (ST {S-Ta [ {IC-R-C} 30
{S-S}{S-SHS-SH{S-SHS-S}{5-T>} 12 {S-5}HS-TL H{S- T2 }{S-T>}{C-R-C}{C-R-C} 48
[S-51{S5-51{5-5) (S-S} {S-51{C-R-C} 18 | {S-SHST{S-T5 1 {C-R-CY{C-RCHCO-R-CT | 60
15-51{5-5{5-5)}{5-S}{5-C}{5-C} 30| {5-S}{S-T2}{C-R-C}{C-R-C}{C-R-C}{C-R-C} | 60
‘Table Continues on Next Page

Table 4.4: Enumeration of all possible contact combinations between points, spheres,
lines, cylinders, and planes resulting in a dimension of zero (continued).
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Enumeration of Possible Contact Combinations (continued)
\ Combination class’ | No.?
{S-S}{C-R-C}{C-R-C}{C-R-C}{C-R-C}{C-R-C} 42
{S-C}{5-C}{S-C}{S5-C}{S-CH{5-C} 28
{S-C}H{S-C}HS-C}H{S-C}H{S-CH{S-T»} 42
{S-CH{S-C}H{S-C}{S-C}{S-C}{C-R-C} 63
{S-CHS-CHS-CHS-CHS-Tr}{S-Ta} 45
{S-CH{S-C}HS-C}{S-C}{S-To}{C-R-C} 90
{S-C}{S-CHS-CH{S-CH{C-R-CH{C-R-C} 90
[S-CH{S-CH{S-CI{S-T,{S-T, {5-T7} 1
{S-C}{S-C}H{S-CHS-T2}{S-T> }{C-R-C} 90
{5-C}{S-C}H{S-CH{S-To}{C-R-C}{C-R-C} 120
{S-C}{S-C}H{S-C}{C-R-C}{C-R-C}{C-R-C} 100
{S-CHS-CHS-DLHSTLHSTHS- T2} 30
{5-CHS-CHS-TLH{S-T2 }{S-T}{C-R-C} 72
{S-CH{S-CHS-To}{5-T>}{C-R-C}{C-R-C} 108
{S-C}{S-C}{S-T2}{C-R-C}{C-R-C}{C-R-C} 120
{5-CH{S-CH{C-R-C}{C-R-C}{C-R-C}{C-R-C} 90
{S-CHS-T2 }{S-To }{S- T2 }H{S-T2}{S5-T>} 18
{S-CHS-ToH{S- T }{S-T2}{S- T2 }{C-R-C} 45
{S-CHS-T2 H{S-T2}{S-T2 }{C-R-C}{C-R-C} 72
{S-CH{S-T2}{S-T>}{C-R-C}{C-R-C}{C-R-C} 90
{S-CH{S-T,}{C-R-C}{C-R-C}{C-R-C}{C-R-C} 90
{S-CH{C-R-C}{C-R-C}{C-R-C}{C-R-C}{C-R-C} 63
(S-S LS HS T {5 T2 HS-15 | 7
{S-To H{S-T2 }H{S-T2 H{S-T2 }H{S-T> }{C-R-C?} 18
(ST HS- oS- T {S-T3 {C-R-CH{O-R-C} 30
{8-T5 }H{S-T2}{S-T>}{C-R-C}{C-R-C}{C-R-C} 40
{S-T}{S-T2}{C-R-C}{C-R-C}{C-R-C}{C-R-C} 45
{S-T,}{C-R-C}{C-R-C}{C-R-C}{C-R-C}{C-R-C} 42
{C-R-C}{C-R-C}{C-R-C}{C-R-C}{C-R-C}{C-R-C} 28
Number of combination classes = 579
Number of combinations = 17,465
" T The combination class represents a set of contact combinations that have
the same group representations.
% This number refers to the number of elements in the set of contact
combinations that have the same group representation.

Table 4.4: Enumeration of all possible contact combinations between points, spheres,
lines, cylinders, and planes resulting in a dimension of zero (continued).
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Figure 4.5: Point - fixed surface contact

4.4.1 Point-Fixed Surface Contacts

There are only three point-fixed surface contacts discussed in this dissertation.
They are P/F - PL/F, P/F - S/F, and P/F - C/F. All three contacts have the group
representation {S,}. From the table, it is known that three of these contacts are

necessary for the fixture to be ”useful.” This can be expressed mathematically as:
{So} N {8} N {5} = {E}. (4.3)

The points o, o', and o must not be collinear, if they are then the intersection in
equation 4.3 will equal {R,} where u is the axis through o, o', and o”.

If the surfaces are fixed, then it does not make a difference what surfaces are being
touched. Hence, one P/F - PL/F contact, one P/F - S/F contact, and one P/F - P/C
contact can be used as a "useful” reference fixture(see Figure 4.5).

A reference frame can be made from three non-collinear points. Given three points
p1, p2, and p3, we only need one point and three mutually perpendicular vectors to

-make a convenient reference frame. Let p; be the frame point, and let ¥, = (p2 — p1)
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Point - Mobile Surface Contacts
L Contact Sets | Contact Sets |
6x P/F-C/M 2x P/F-C/M, 4x P/F-PL/M
5% P/F-C/M, P/F-S/M P/F-C/M, 5x P/F-5/M
5x P/F-C/M, P/F-PL/M P/F-C/M, 4x P/F-S/M, P/F-PL/M
4x P/F-C/M, 2x P/F-S/M P/F-C/M, 3x P/F-S/M, 2x P/F-PL/M
ix P/F-C/M, P/F-S/M,P/F-PL/M P/F-C/M, 2x P/F-S/M, 3x P/F-PL/M
4x P/F-C/M, 2x P/F-PL/M P/F-C/M, P/F-S/M, 4x P/F-PL/M
3x P/F-C/M, 3x P/F-S/M P/F-C/M, 5x P/F-PL/M
3x P/F-C/M, 2x P/F-S/M, P/F-PL/M 6x P/F-S/M
3x P/F-C/M, P/F-S/M, 2x P/F-PL/M 5x P/F-S/M, B/F-PL/M
3% P/F-C/M, 3x P/F-PL/M ix P/F-S/M, 2x B/F-PL/M
9% P/F-C/M, 4x P/F-S/M 3x P/F-S/M, 3x D/F-PL/M
9x P/F-C/M, 3x P/F-S/M, P/F-PL/M 2x P/F-S/M, 4x P/F-PL/M
9% P/F-C/M, 2x PJF-S/M, 2x P/F-PL/M P/F-S/M, 5x P/F-PL/M
9x B/F-C/M, P/F-S/M, 3x P/F-PL/M 6x P/F-PL/M

Table 4.5: The 28 point - mobile surface contact sets.

and v5 = (p3—pi1). Then, our three mutually perpendicular vectors can be gg = U; XUq,

by, = Uy, and El = gz X 53 (see Figure 4.5).

4.4.2 Point - Mobile Surface Contacts

Point - Mobile Surface Contacts are commonly used in the literature on reference
fixture design. For exdmple, Duffie et al. [10] used point contacts to a mobile spheres
and McCallion et al. [23] used point contacts to mobile planes (in the form of a cube).
However, there are many more combinations that have not been discussed. In fact
there are 28 combinations using just mobile plane, spheres, and cylinders. They are
listed in Table 4.5.

Of the 28 sets listed in the table, not all of them are practical because they require
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~an extra surface than needed. For example, a fixture containing two point touches to a

cylinder, a sphere, and a plane is impracticél because four touches to the cylinder can
replace the two touches to the cylinder and the two touches to the plane. Therefore,
a fixture could be made with less surfaces, making it more practical to build. If the
"impractical” fixtures are eliminated then we end up with 12 "practical” fixtures.
These fixtures are illustrated in Figures 4.6 and 4.7.

All of these contact combinations have one correct solution but most have a finite
number of solutions and the incorrect ones must be eliminated by using one or several
extra contact points. For example, the fixture containing three spheres and six P /F-
S/M contacts (see Figure 4.6) can have 8 mathematical solutions. It may be necessary
to touch each sphere one additional time to reduce the solution set to one answer.
Figure 4.8 shows a geometric illustration of the three sphere problem.

Each one of the examples in Figures 4.6 and 4.7 require a significant amount of
algebraic computation to find the solution. Therefore, each case will not be solved
algebraically. However, algebraic solutions for finding a sphere, cylinder, and plane

using point contacts is given in the next section.

4.5 Locating Surfaces in Space

In order to use any of the point - mobile surface fixtures, it is necessary to find
geometric information using only touches to the surfaces of the fixture. In this section,

methods for determining the location of a plane, sphere, and cylinder using a finite

Copyright 2011, AHMCT Research Center, UC Davis



6x P/F - S/M

6x {S-S} FIXTURE

5x P/F - S/IM
P/F - PL/M

MOBILE
PLANE

5x {S-S}, {T-S} FIXTURE

4x P/F - S/M
2x P/F - PL/M

4x {S-S}, 2x {T-S} FIXTURE

3x P/F - S/M
3x P/F - PL/M

3x {S-S}, 3x {T-S} FIXTURE

3x P/F - S/M
3x P/F - PL/M

3x {S-S}, 3x {T-S} FIXTURE

2x P/F - S/IM
4x P/F - PL/M

2x {S-S}, 4x {T-S} FIXTURE

P/F - SIM
5x P/F - PL/M

(S-S}, 5x {T-S} FIXTURE

6x P/F - PL/M

6x {T-S} FIXTURE

Figure 4.6: Point - surface contacts without cylinders
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CASE 1

6x P/F - C/M

6x {S-C} FIXTURE

CASE 2

6x P/F - C/M

6x {S-C} FIXTURE

2x P/F - S/M
4x P/F - C/M

2x {S-S}, 4x {S-C} FIXTURE

3x P/F - S/IM
3x P/F - C/M

3x {S-S}, 3x {S-C} FIXTURE

2x P/F - PL/M
4x P/F - C/M

2x {S-Tq}, 4x {S-C} FIXTURE

3x P/F - PL/M
3x P/F - C/M

3x {S-T1}, 3x {S-C} FIXTURE

Figure 4.7: Point - surface contacts with cylinders
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3 touch points

2 touch points

1 touch point

Figure 4.8: Three sphere fixture geometric solution

number of points on the surface are developed and examples of each case are given.

4.5.1 Determination of a Plane’s Location Using 3 Points

The location of a plane, in general, can be found in three dimensional Euclidean
space if the location of three points on the plane’s surface are known (see Figure 4.9).
If the points are collinear or if any of the points are coincident with each other, then
a unique solution does not exist. An algebraic method is given in the next section
that will uniquely determine the location of a plane given three point locations. An

example is also given that uses the algebraic method found.
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Figure 4.9: Three points on a plane

4.5.1.1 Algebraic Method

Let points p;, ps, and ps be in a plane where p; = (z;,v;,2:). We now define
two vectors as U7 = p; — p1 and Us = p3 — p;. Let 7 = U; X Uy =< a,b,¢c >. Since
Uy and v, are parallel to the plane, 7 must be normal to the plane. From algebraic

geometry [39], the equation of the plane is:
a(z—z)+by—y1) +clz—2)=0 (4.4)
or, in general form
ar +by+cz+d=0 (4.5)

where d = —az; — by, — czi.

4.5.1.2 An Example

If given the following points:
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P = (17273)7 p2 = (_1707_1)7 and p3 = (37271)

then we will find that
U =< —2,-2,—4 >,‘ U =< 2,0,—2 >, and
n=<-2,-2,—-4>x<2,0,-2>=<4,-12,4 > .
The equation for the plane is:
(4)(e — (1) + (~12)(y - (2)) + (4)(= - (3)) = 0.

The plane in general form is:

Az — 12y + 4z +8 =0, (4.6)

4.5.2 Determination of a Sphere’s Location Using 3 Points

The location of a sphere of known radius can be found in three dimensional Eu-
clidean space if the location of three points on the sphere’s surface are known (see
Figure 4.10). When three points are used, there will be two possible sphere locations
that will contain all three points. If a touch probe is being used, then possibly one of
those solutions can be eliminated leaving only the real solution. An algebraic method
is given in the next section that will determine the location of a sphere. An example

is also given that uses the algebraic method found.
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TWO POSSIBLE THREE
SPHERES THAT POINT-SPHERE
FIT THE POINTS CONTACTS

Figure 4.10: Three points on a sphere gives two possible solutions

4.5.2.1 Algebraic Method
The general equation for a sphere in space is

(z—a)l+(y—0°+(z—c)—rt=0, (4.7)

where (a,b, ¢) is the center of the sphere and r is the radius of the sphere.
Given the points pl, p2, and p3 on the surface of a sphere of radius r, the following

three equations must be satisfied:

(21 — a)®* + (y1 — b)* + (21 — ¢)* = 7, (4.8)
(23 —a)® + (y2 — b)* + (22 — ¢)* = 7%, (4.9)
(x3 —a)* + (y3 = b)* + (23 — ¢)* = r*. (4.10)

If we subtract equation 4.9 from equation 4.8 we obtain

(22 — z1)a+ (ya —y1)b+ (22 — 21)c + 0.5(z12 — 222 + 1i® — y22 + 21° — 2,%) = 0.

(4.11)
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_If we subtract equation 4.10 from equation 4.8 we obtain

(23 —z1)a+ (y3 —y1)b+ (23 — z1)c + 0-5(3712 —z3% + yiZ —yst + 2% — 232) = 0.

(4.12)

Using equation 4.11 and equation 4.12, we can solve for @ and b in terms of c¢. If we

do so, we obtain

2 2 2
b= [2(—z221 + T32) + T120 — T3zg — T123 + Taz3)C+ T1°T9 — T1Ty° — T1°T3
2 2 2 2 2 2 2. 2 2
+22°T3 + 123" — 273" + Toy1T — Tay1” — T1Y2" + T3y2” + 21ys” — T2y3
2 2 2 2 2 2
+.’I)221 — 321" — T129° + Tr3z9” + I123 — X223 ]M (413)

and

a = [2(y221 — y3z1 — Y122 + Yaz2 + Y123 — Yaz3)c + 22y — 32y — 712y
2322 — Y1’z + yive’ + 717ys — 2273 + y17Ys — %2 Y3 — Yiys” + Yoy’

—y2z1” + ysz1® F Y122 — ysz® — Y123’ +yezs’ M (4.14)

where M = 1/[2(z2y1 — 23y1 — T1y2 + Tayz + T1ys — T2y3)).

Equation 4.13 and equation 4.14 can be substituted into equation 4.8 to leave
a .qua,dra,tic equation in terms of the variable ¢. This equation can be solved to
give two values for c. These values can be substituted back into equation 4.13 and
equation 4.14 to obtain to center points for the sphere. Let the center points be
Centery = (a1,b1,¢1) and Centery = (ag, b, c3).

If a touch sensor is being used to make contact with the sphere then the knowledge

of the orientation of the sensor relative to the two possible spheres may possibly
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Centero

Centery

(b)
Figure 4.11: Elimination of One of Two Sphere Centers.

eliminate one of the two mathematical solutions, hence, leaving the correct solution.
Let ¢ be the vector pointing in the direction of the touch sensor. Let p be the location
of the touch to the surface of the sphere. From Figure 4.11a, it can be seen that the
center of the sphere must be located "lower” than point p. From Figure 4.11b, one
of the two spheres cannot be possible because the touch sensor must intersect that
sphere to reach point p. Therefore, we can eliminate the sphere that does not satisfy

the following equation:
(p — Center;) - ¢ < 0. (4.15)

If both sphere centers pass this test for all three points then another point will be

necessary to eliminate one of the sphere centers. We now will do an example.
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4.5.2.2 An Example

If welet r =2, p, =(1,0,0), p = (0,1,0), ps = (—1,0,0), and § =< —4,1,1 >,

then equations 4.8, 4.9, and 4.10 become

(1—a)*+ (6)2 + (¢)* = 4, (4.16)
(@) + (1 =0+ (e)* = 4, (4.17)
(—1—a) + (b + (o) =4 (4.18)

From equations 4.11 and 4.12 we find that « = b = 0. Plugging these results into
equation 4.16, we find ¢ = ++/3. Therefore our possible center points are Center; =

(0,0, 4++/3) or Centery = (0,0, —+/3). Using ¢, Center; cannot be possible because

[P, — Center)]- ¢ = [(1,0,0) —(0,0,v3)]- < —4,1,1 >

<1,0,-v3>-<1,1,-4> = 14+4/3>0. (4.19)

Hence, the sphere center must be Center, = (0,0, —v/3).

4.5.3 Determination of a Cylinder’s Location Using 5 Points

The Location of a cylinder of known radius, in general, can be found in three
dimensional Euclidean space if five points on the surface of the cylinder are known.
There are many different ways of determining the location of the cylinder, however,
a method used by Schaal [37] develops algebraic equations using the least amount of

variables. This method has been extended for application here. In the next section
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the algebraic equations for finding a cylinder are derived. An example using this

derived method is also given.

4.5.3.1 Equation Formulation

In order to find the location of a cylinder in space using a finite number of points
on its surface, a general equation for a cylinder needs to be formulated. The standard

equation for a cylinder is
(z—a)’+ (y—b):=r2 (4.20)

This equation is for a right cylinder with its center line in the 2 axis direction and
through the point (a,b). This is not a general equation for a cylinder with an arbitrary
orientation. Equation 4.20 can be transformed inté a general equation by applicatioﬁ
of a coordinate transformation. However, after the application of the coordinate
transformation the equation is no longer easy to use. Schaal’s [37] description of a
cylinder is for arbitrary orientation, and it is relatively simple. Therefore, it is the
basis of the method we use.

In Figure 4.12, a cylinder is given with the following properties: r is the radius
of the cylinder, z and o are points oﬁ the surface of the cylinder, @ and a’ are points
on the axis of the cylinder, 5 is a vector in the direction of the axis of the cylinder,
o is the angle between § and (—z——as, T is a vector from point o to point z, and ]Fis

a vector from point o to the axis of the cylinder where ]FLS"'. From Figure 4.12 and
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Figure 4.12: Analytical model of a cylinder

vector analysis it is obvious that

r = |(z — a)|sin c. (4.21)

Also from vector analysis we know that the cross product between two vectors is
equal in magnitude to the multiplication of the magnitudes of each vector times the
sine of the angle between the two vectors. Using this property and equation 4.21 we

get the following,

I(z — a) x 3] = |(z — a)||5]sina = (|(z — a)| sin @)|3] = r|3]. (4.22)

Letting [0]> = ¥ - U, equation 4.22 can be written as,

[(z—a) x5 =r?3)? or [(z—a)x8&?—r2E?=0." (4.23)

Equation 4.23 is a general equation for a cylinder. We will now proceed to change

the equation to only leave the variable 3.
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The left side of equation 4.23, substituting (z — a)=7F— f, can be written as

\/l

[m—a) x & = [(F— ) x 3 - [( - f) x 3.

Using the vector equation

(@+b)xT=(axd)+(bxd),

-

[(Z— f) x 8] can be written as

-

(F— ) x 8 = [(&

!

) — (f x 3]

Substituting §= fxs into the right side of equation 4.26, we obtain

— -

(8% 8) = (Fx ) =[(&x f)- 3.
Substituting equation 4.27 into equation 4.24, we obtain
e—a)x &2 =[(Ex /)-8 1Ex )-8

Using the vector equation

-

G+0)-G+d)=a-c+a-d+b-2+5b-d,

equation 4.28 can be written as

(o —a) x &7 = [& x &> + [3 — 2[(% x §) - 5.

We already know that
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from our definition of . Using the vector equation

— —

(@xDb)-(Exd)=(d-&)(b-d)—(a d)(b-2),

equation 4.31 can be written as

-

(& x8)- (fx 8] = )E-8)—(F-HE )

-

If we let 5L f then (5- f) = 0. This changes equation 4.33 to

—

Wy

(Zx3)-(Fx )= (& NE-3) =& NHE*~

Substituting equation 4.34 into equation 4.30, we obtain

(2 —a) x 2 = [ x 2 + [32 — 22 - 5P

Substituting equation 4.35 into equation 4.23, we obtain

[ % 5 + [0 —2(F - )P —r[3* = 0.

85

(4.32)

(4.33)

(4.34)

(435)

(4.36)

Since we let fJ_é', then the magnitude of fmust be equal to the radius of the cylinder.

Therefore, |3] = |(]F><§')| = |f]|5]. Hence,

5 - v = o.

Using equation 4.37, equation 4.36 becomes

& x 52— 2(3- f)l5* =0,
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Let x1, 22, 23, T4, and x5 be the points on the surface of the cylinder. Let z5 be

the point o, and let p; = z; — z5 for = 1 to 4. With these changes, equation 4.38

can be written as

(7 f) -

Expanding equation 4.39 into a matrix formula using p;, p2, and ps, we obtain

b1 P,
D2; P2,
i P3. P3,
If we let
then
1
M

= det[M] (P2 X Pa)y  (Ps X Pr)y

1
2[5)?

[p: x 5] =0 fori=1 to 4.

1T - _ ) N W
plz f-’E (plx 'S)
L ~ »2
P2, fy |~ 2[5]? (P2 x §) | =0
PS,,_ L_fz“ L(53X§)2
i ]
P P, D1,
M= p, P2, P2 |
L p3:r psy p32 ]
(P2 x P3)e (P3 X P1)e (P1 X P2)s

(P x 13‘2)y

(ﬁl X ﬁ?)z

L (P2 X P3):  (Ps X P1)=

Multiplying both sides of equation 4.40 by M ™! gives
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. 1
fo | = 2037 det[M]
Iz

(P1 X P2)z W

(P2 X P3)z (Ps X P1)=

(P2 X p3)y (P3 X P1)y (PL X P2)y

(P2 x ﬁs)z (53 X P1)z (]71 X ﬁz)z

L

o ]

(ﬁlXS

(]72 X§)2‘

(173 X 5)2

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)
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Let ﬁl = ﬁg X 53, T_ig = ﬁ3 X ﬁl, and T_i3 = ﬁl X ﬁg. Substltutmg T_il, T_ig, and T_i3 mnto

equation 4.43 and multiplying both sides of the equation by s we get

fz ny, Ng, N3, (171 ><§')2

(5]

S f | = S5 derar] | ™ M2 7y || (B2 x 3 (4.44)

fZ nlz. n2z nSZ (ﬁs X §)2

-

We know that (5 f) = 0, therefore the both sides of equation 4.44 must be equal to

zero. The right side of the equation now becomes

ny, TNz, Nz, (p1 x 3)?
[ Sz Sy S» ] ny, Mg, N3, (pa x )2 | =0. (4.45)
n, M2, Ma || (ps x 3)?

Equation 4.45 descrik;es a cylinder in three dimensional Euclidean space using
only four points on the surface and the vector . The vector § describes the direction
of the center line of the cylinder. It can be denoted as < s;,sy,sz >. The actual
magnitude of the vector is not important for our case, therefore we can set one of
the vector corﬁponents equal to one. Let s, = 1. For this case, vector § must not be
parallel to the z — y plane, if it is then s; or s, will go to infinity during a calculation
of s. If this happens then either s; or s, should be set to one instead of s,. Note, it
is unlikely that a vector will have any directional components equal to zero using an
actual robot end-effector frame, hence, any real calculations should work with s, = 1.

Using § =< 8,8y, 1 > means that there are two unknowns s, and s,, yet we only

have one equation, equation 4.45. Therefore, another equation is necessary for the
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calculation of §. If we add another point on the surface, py, to equation 4.40, then

we end up with

Pi;. Py, Pi: | T 1 (pr x 5)2
fz
P2. P2, D2. 1 (p2 x 8)?
|l - IEE = 0. (4.46)
P3. P3, DPa3. (ps x 5)2
fz
| P4 P4y Pa | (Pg X 5)?

From linear algebra [35], Equation 4.46 is only valid if

P, Pi, Pi. (ﬁ1><§)2

D2, D2, D2, (P2><5)2
det =0. (4.47)

P3. D3, Ps. (153 X 5)2

2

P4, D4, P4; (Pa X §)

Equation 4.47 is a second order equation. Using equation 4.45 and equation 4.47
the vector §'is, in general, solvable using s, = 1. The two equations can be written

in the general form

as,” + bsy3 + cszzsy + dszsf + esy? + fsy2 + 988y + hsz+1s,+7 =0
(4.48)

and

ksy? + lsy2 + msy8y +ns; +psy, +qg=0. (4.49)
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Plane perpendicular
to the cylinder and
containing point x4

Figure 4.13: Finding a point on the center line of a cylinder

Equations 4.48 and 4.49 can be combined to form one equation of degree six in only
one variable using Sylvester’s Method [6]. This equation can be solved numerically
to obtain six possible solutions for one of the variables, s, or s,. Using equation 4.49
the other variable can be found. Therefore, we will have six possible solutions for
the cylinder axis direction §. We still need to find a point on the center line of the
cylinder to define the location of the cylinder in space. We will do this by using three
of the points on the surface to create a éircle on a plane perpendicular to the cylinder
and find the center of this circle, as shown in Figure 4.13.

When we find the center of the circle, we can also calculate the radius of the circle
which is also the radius of the cylinder. Since we know the radius of the cylinder
already, we can eliminate the cases >Where the calculated radius does not match the
actual radius. This should leave only the correct cylinder result. In the next section,

an example is given to illustrate the cylinder finding process.
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List of Possible Cylinder Locations

5 | Radius of cyl. | Point on center line |
<-=1,-1,1> r=1.08012 (0.8333,0.8333,0.6667)
<0,0.1> 7= 1.00000 0,0,0)
<L11> r = 1.08012 (0.1667,0.1667,0.6667)

< 0.2928,0.7071,1 > r =1.10587 | (—0.038,-0.092,0.3694)
< 1.7071,—-0.7071,1> | »=10.95912 | (0.4668,-0.193,—0.773)

Table 4.6: List of possible cylinder locations.

4.5.3.2 An Example

Let z; = (1,0,0), z; = (0,1,0), z3 = (-1,0,1), z4 = (0,—1,1), and z5 = (1,0,2)
be five points on the surface of a cylinder of raaius r = 1. This corresponds to a
cylinder where $ =< 0,0,1 >. Since the answer is known, the results of the example
can be verified. Using equation g; = z; — x5 for i = 1 to 4, we find p; =< 0,0, =2 >,
pr =< —1,1,-2 >, p3 =< —=2,0,—1 >, and py =< —1,—1,—1 >.

Using the values for p;, equation 4.45 written in the form of equation 4.48 is
85y — 25,° + 8558, — 65578, — 85,7 — 25,5,% + 28,°. (4.50)

Using the values for p;, equation 4.47 written in the form of equation 4.49 is
85z — 855° — 88y + 85,7, (4.51)

Using a mathematics equation solver, equations 4.50 and 4.51 are solved for .
‘Five solutions exist for this case, and they are: § =< —1,-1,1 >, § =< 0,0,1 >,

§F=<1,1,1>,5§=<0.292893,0.707107,1 >, and § =< 1.70711,—-0.707107,1 >.
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Using the values of § we calculated the values for the radius of the cylinder and
a point on the cylinder’s center line. Table 4.6 shows the results. The value of the
radius for the five cases varies from 0.95912 to 1.10587. We know the radius for
this particular case is exactly one. Hence, the case that has a radius that is very
close to one should be the correct cylinder. The case with § =< 0,0,0 > has a
mathematically determined radius of 1.000000000000. Therefore, it is the correct
cylinder. This matches the expected result.

If the actual radius of the cylinder was not known ahead of time, then an additional
point on the cylinder would be neéded to eliminate the incorrect solutions. However,
this would not happen when working with reference fixtures because the user designs

the fixture.
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Chapter 5

Practical Fixtures

In Chapter four, fixture geometries consisting of point surface contacts were ana-
lyzed in detail because of their practicality and simplicity. Both mobile-surface and
fixed-surface contacts were studied. We found that three point fixed-surface contacts
are enough to uniquely define a coordinate frame on the fixture. We also found twelve
fixture geometries consisting of point mobile-surface contacts that have potential as
reference fixtures. |

~ In this chapter, two fixture geometries are studied further for application in ref-
erenc.ing environments. Both fixture geometries are developed to the point were a
prototype fixture can be constructed. One of the fixture geometries uses three point
fixed-surface contacts, and the other uses seven point mobile-surface contacts.

The three point fixed-surface contact fixture design consists of a planar fixed-

surface and a tripod shaped touch probe. To facilitate the design of this fixture,
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several different types of position sensing surfaces are discussed. Moreover, the design
of a robust touch probe is considered. Finally, a detailed example of the use of this
fixture design is given with an error analysis.

The seven point mobile-surface contact fixture consists of a planer surface and a
cylindrical surface. A mathematical approach for constructing a coordinatel frame on
the fixture using the geometries of the cylinder and plane is given. This approach
uses the five point method for finding the location of a cylinder in space that was
described in Chapter four. A numerical example is given to further illustrate the use
of this approach. Finally, the actual design of the fixture is considered, two possible

mechanical designs are discussed, and a touch sensing electrical circuit is described.

5.1 A Cylinder-Plane Fixture

Twelve fixture designs involving point-mobile surface contacts were discussed in
Chapter four. Almost all of these fixtures had two or more separate components. For
example, the three sphere fixture required three separated spheres to work. On the
other hand, The three planes in the three-plane fixture did not have to be separated. -
The three planes could be combined to form a cube. McCallion and Pham [23]
described this cubical fixture in their paper on reference fixture design. Only one
other of the twelve fixture designs can easily be made into one piece, the cylinder-
plane fixture design (see Figure 5.1). Because of its simplicity, it will be analyzed

further for practical application as a reference fixture.
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CYLINDER-PLANE FIXTURE

2x P/F - PL/M
5x P/F -C/M

2x {S§-Tq}, 5x {S-C} FIXTURE

Figure 5.1: Cylinder-plane fixture

The cylinder-plane fixture can be used to uniquely determine the location of the
fixture’s frame using point—rn‘obile' surface contacts. From Chapter four, it is known
that five points will uniquely find the location of a cylinder of known radius. Also,
from Chapter four, we should be able to find the plane, using the cylinder as a
guide, using two points on the plane’s surface. Therefore, we should be able to find
the fixture’s frame in seven points. The technique for finding the fixture’s frame is

discussed in the next section.

5.1.1 Mathematical Determination of the Frame Location

Given five points on the surface of a cylinder of known radius, the location of the
cylinder can be found using the technique described in Chapter four. The result will

be a vector along the center line of the cylinder, and a point on the center line of
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Figure 5.2: Analysis of the coordinate frame attached to the plane-cylinder fixture

the cylinder. Let § =< sg;84,8, > and ¢ = (¢x, ¢y, q.) be this normalized vector and
point, respectively.

"With the center line of the cylinder known, the location of the plane can be found
if two points on its surface are known. Let those two points be p; and p,. Let
U] = po — p1 =< Ta1,Y21,221 > and v, =< z,y,1 >. U, is the vector that points up
the incline of the plane (see Figure 5.2).

If the incline of the plane is set to a specific angle (other than zero and ninety
degrees) relative to the cylinder’s center line, then, using vector algebra [18], the
components of U, can be foﬁnd. For simplicity we will let the angle between the
cylinder’s center line and the plane be 45 degrees. Assuming that ¥, is already known,
the normal to the plane can be determined by taking the cross product between v,

and ¥,. Let 7 = U] x'U;. With the the angle between the plane and center line equal
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to 45 degrees, the angle between 77 and s and the angle between ¥, and § must both
be 45 degrees.

From vector algebra [18], the following equation is known:

— = cos(f) (5.1)

where 0 is the angle between kand [, Using equation 5.1, s, i, and the angle between

them, the following equation is obtained,

-5 1
2 = cos(45) = —=. (5.2)
7]

)

5

Taking the square of equation 5.2, we obtain
2(7 - 3 =7 - . (5.3)
The same procedure can be applied to v5 and §to get
2(7, - 5)° = Uy - T , (5.4)
Expanding equation 5.3 and equation 5.4 using the components of 7,5, and U, we get

2
2(—Sy$21 + 8y221T — S;Y21T + S:T21Y + SzY21 — 3z221y) =

(2217 — €21)® + (1Y — y212)* + (y21 — 2219)° (5.5)
and

2(s; + sz + 8,y) =1+ 2% + ¢ (5.6)
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Equations 5.5 and 5.6 can be solved to find ¥;. With v5 known, the normal to the
plane can be calculated, and, therefore, the equation of the plane can be found using
the normal and one of the points on the plane.

With the location of the plane and cylinder known, it is now possible to define a
frame on the fixture. ¥y, 7, and ¥, X 7 are three mutually perpendicular vectors. To
define a frame on the fixture we also need a point. The point where the center line
of the cylinder intersects the plane will work. We denote this point as 0. The center

line of the cylinder can be written as

(02,04,0:) = (4or @y, @z) + | < Sz, 8y, 82 > (5.7)

where [ € R. If equation 5.7 is substituted into the equation for the plane, then a
value for [ can be found that, when substituted back into equation 5.7, will determine
the location of the point of intersection. In the next section, an example is given to

demonstrate these calculations.

5.1.2 An Example

Given a cylinder-plane fixture, let § =< 0,0,1 > and ¢ = (0,0,—5) where §
and ¢ define the center line of the cylinder (these values could be found using five
points on the surface of the cylinder and the methods described in Chapter four). Let

p1 = (0,—1,-1) and p, = (1,1,1) be two points on the surface of the plane. Since
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U1 = py — p1, U1 =< 1,2,2 >. Using these values, equation 5.5 becomes
(y —22)" = (2~ 2y)" + (22 — 1)* (5.8)
and equation 5.6 becomes
z? + yé —1=0. (5.9)

Solving equations 5.8 and 5.9 with a numerical analysis package, we find v; =<
0,1,1 >. Using ¢; and ¥,, the normal to the plane is < 0,—1,1 >, and the equation
for the plane is y — z = 0. The point where the center line intersects the plane can

now be determined. The equation for the center line of the cylinder using ¢ and §'is
(0z,0y4,0,) =(0,0,=5) +1<0,0,1 > (5.10)

Substituting equation 5.10 into the equation of the plane, we get (0410)—(—5+1) = 0.
Therefore, [ = 5, and the point of intersection (0z,0y,0;) 15 (0,0,0). It is now possible

to define the frame on the fixture using ¢, 71, ¥, x 77, and the intersection point (0,0, 0).

5.1.3 Design of a Cylinder-Plane Fixture

We now have the mathematical means to find a coordinate frame using the ge-
ometric elements that compose the cylinder-plane fixture. However, this does not
describe how to design and build a working fixture. In this section, the design of a
fixture in terms of its electrical and mechanical components is described.

A point - mobile surface fixture must be touched several times for its location to

be determined. In the case of the cylinder-plane fixture, five touches to the cylinder
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‘and two touches to the plane are needed. In general, the robot will be holding a touch

sensing device and it will make contact with the fixture. At this instance, the location
of the contact will be stored in the robot’s computer for later use. This procedure
will continue until all seven points are recorded.

In order to use the mathematical procedure discussed in the previous section, it
is necessary to know which of the touch contacts are to the cylindrical surface and
which ones are to the planar surface. The idea behind building a reference fixture is
that the robot can determine the location of the fixture and, using this information,
know the location of everything that the fixture is attached to. Therefore, the robot
is not going to know if it is touching the cylindrical surface or the planar surface.
Actually it will not know if it is even touching the fixture at all. Therefore, this
information needs to be relayed to the computer during a touch contact. This could
be accomplished by a person controlling the robot. This person could inform the
robot’s controller of what it made contact with during every contact. This, however,
is a tedious task. Hence, it should be avoided.

If the fixture is designed with a little bit of intelligence, then it can indicate that a
contact has been made to the cylindrical surface or planar surface. One easy way to do
this is to do a conductivity test. If each surface is conductive, each surface is isolated
from conductive materials, and the tip of the robot’s touch probe is conductive, then
during a contact to the surface, the conductivity between the touch probe and each

surface can be checked to see if contact has been made. This idea is illustrated in

Copyright 2011, AHMCT Research Center, UC Davis



100

Figure 5.4.

For this design to work each surface must be conductive and isolated from other
conductive material. Two different possibilities for doing this are shown in Figure 5.3.
It is also important to eliminate any edges that could be touched that would give
incorrect results. For example, the conducting planar surface in Figure 573b has its
edges covered with an insulator so that the touch probe cannot touch at those points.
If the edge was not covered, then the probe could make a conducting contact at a
point that is not on the planar surface (an edge point), and, hence, sense a ”bad”

point.

5.2 A Three Point Fixed-Sﬁrface Contact Fixture

In Chapter four, it was found that three point-fixed surface contacts is enough to
determine the location of the fixture. In this section, the design of fixtures that use
these contacts are explored. Finally, we use this design knowledge in the design of a

simple, practical touch sensing reference fixture.

5.2.1 Mathematical Procedure

As stated in Chapter four, a reference frame can be made from three non-collinear
points. We only need one point and three mutually perpendicular vectors to make a

convenient reference frame. Given three points p;, ps, and p3, we can construct three

Copyright 2011, AHMCT Research Center, UC Davis



101

Conducting

Planar Surface .
Conducting

Planar Surface

Insulator

k Insulator
Conducting Conducting
Cylindrical Cylindrical
Surface Surface

Insulator

(a) (b)

Figure 5.3: Cylinder-plane fixture designs

Copyright 2011, AHMCT Research Center, UC Davis !



102

Touch sensor
(held by robot)

Touch sensing
planar surface

Touch sensing
cylindrical
surface

A\
@

Check for
electrical
connection

Figure 5.4: The touch sensing circuit for the cylinder-plane fixture
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mutually perpendicular vectors. Let p; be the frame point, and let ¥; = (p, —p;) and

%y = (p3 — p1). Then our three mutually perpendicular vectors can be by = 7y x ¥,

bg = 62, and bl = bg X bg.

5.2.2 Design of Point Fixed-Surface Contact Fixtures

The mathematics for creating a frame of reference are relatively simple. However,
no methods for actually building a fixed-surface fixture have been described. In this
section, several different methods for locating a touch to a surface in the surface’s

reference frame are described. Moreover, the design of a touch probe is also discussed.

5.2.2.1 Sensing of Contact Locations

There are several different ways of determining the location of a touch to a surface.
Bicchi, Salisbury, and Brock [5] used a force-moment sensor in the base of an object
to determine the location of a touch to the surface of that object. Moreover, touch
sensitive computer screens are currently being used to give the location of a touch to
the surface of a screen (Ormond [33]).

Force/Moment Sensor

Force/moment sensors are commonly used in robotic wrists to relay information
back to the robot controller about the size of the external forces and moments being
‘applied to the wrist of the robot. If both the force vector and moment vector are

given, from the force/moment sensor, and the location of the force/moment sensor is
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Figure 5.5: Calculation of the line of action using a force/moment sensor

known, then the direction, line of action, and magnitude of the force being applied
to the wrist can be found rélative to the robot.

If this same procedure is applied to a surfacé equipped with a force/moment
sensor, then the location of a touch to this surface can be determined. The location
of the touch is determined by finding the intersection between the surface and line of
action. Therefore, this method can be applied to any surface of known shape as long
as the line of action only intersects the surface once.

The procedure for determing the line of action is relatively simple (see Figure 5.5).
Given a force vector F and a moment vector M relative to the location of the
force/moment sensor, point S, we need to find 7 where Fis the shortest position

vector from point S to the line of action. The line of action, using a point-vector

representation, is defined by the point, S + 7, and the vector, F'. To find T, we use
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the following relationship between M and F
M=7xF (5.11)

where 7, for this equation, is any vector from point S to the line of action. For 7 to
be the shortest one, it must be perpendicular to the line of action. Hence, 7, F', and
M must be mutually perpendicular. This result impliés that the direction of 7 is the

same as the direction of F' x M. It also implies that

=i

|M| = |7||F| or m:" ’. (5.12)

o

Using equation 5.12 and the fact that F x M is in the same direction as 7, we get

© B
Ry (5.13)
7l (M| F]

With some algebraic manipulation and a substitution for || using equation 5.12,
equation 5.13 becomes

FxM
e

—
T =

(5.14)

With equation 5.14 aﬁd point S found, the line of action is known.
Touch Sensing Screens

Several different methods for finding the location of a touch to a surface are
described in Ormond [33]. Ormond describes several different technologies for sensing
the location of a touch on the screen of a computer where the screen has a special

cover for sensing the location. Some of the sensing methods are, discrete resistance
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Figure 5.6: A digitizer sensing the magnetic field caused by a coil

pads, capacitancé measurement pads, and scanning IR pads.. Descriptions of these
methods can be found in [33].
Position Measurement Using a Digitizer

Although touch sensitive screens and force-moment sensors do have potential for
reference fixture design, they do have problems. The force/moment method cannot
handle more than one touch at a time. If more than one touch exists, then the
resulting Force and Moment measurements will be the combination of both touches,
making the calculatea location incorrect. The touch sensitive screens may be able to
handle more than one touch, but they are not accurate enough for robotic referencing.
Digitizers, however, do not have either one of these problems.

Digitizers sense an energized coil’s magnetic field to determine the location of the
digitizer’s pointer (see Figure 5.6). The pointer contains a coil at its tip, and the coil
obtains its power from the digitizer via a control/power cord. Digitizers are usually

used with computers as a tool for drawing or drafting. However, they can be modified
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for application as a touch sensing surface. If a touch probe is equipped with a coil of
the same size as contained in the pointer of the digitizer, then the digitizér would not
know the difference, and it would report back the location of the probe. Moreover, if
a several touch probes, each equipped with coils, touched the digitizer together and
each coil was activated in a sequence, then the location of each probe would( be found.

Most digitizers communicate via a RS232 port. The digitizer sends the location of
the ”touch” in X,Y coordinates where the range of each axis varies from 0 to 2™ where
n is an integer that is digitizer model dependent. Using the size of the digitizer, the
actual location in inches or millimeters can be found [40]. The accuracy of a digitizer
varies from model to model. Models exists with accuracies of 0.005 inches and sizes

up to 44 inches x 60 inches [32].

5.2.2.2 Touch Sensing Probe

Up until now, only the design of touch sensing surfaces have been considered,
however, the tquch probe is equally important. In general, the probe will be held by
the robot wrist, and it will make contact with a mobile or fixed surface. In either case,
the probe should be robust enough to take a small collision with the surface. One |
possible way to make the probe more robust in a collision is to make the tip of the
probe compliant during a collision. The problem with doing this is that the probe will
no longer have a very precise length. This problem can be overcome by using a spring

loaded linear displacement transducer at the end of the probe. Several different linear
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displacement transducers exist, for example, LVDTs and variable resistors. Another
possible transducer is a digital indicator.

Digital indicators are commonly used in manufacturing environments for checking
the accuracy of machined parts. They can be purchased with various accuracies and
strokes. They usually come equipped with an output cable that can be connected to
a computer to record the measurement results. A digital indicator is ideally suited
for use as a probe because it is accurate, it can be connected to a computer, it is

readily available, it is designed for a tough environment, and it is relatively cheap.

5.2.3 An Actual Design

In order to create a reference fixture that uses three point fixed-surface contacts
to define a frame location, we need to find a practical position sensing surface and a
practical touch probe. Ideally, we want to make all three contacts at the same time
to increase speed and lower complexity during use. From the earlier discussion, the
digitizer and digital indicator seemed suited for this task.

Using the idea of a three coil/digitizer combination, we have designed a touch
sensing tripod/digitizér fixture (see Figure 5.7). This fixture incorporates a three
finger touch sensor where each finger is composed of a digital indicator with a coil
at its tip. Figure 5.8 shows the tip assembly used to replace the existing tip of the
digital indicator. When this sensor, or tripod, comes in contact with the digitizer,

each digital indicator moves in until all of three digital indicator tips come into contact
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Figure 5.7: Illustration of the tripod/digitizer fixture
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Figure 5.8: Tripod/digitizer fixture tip assembly
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with the digitizer. Once in contact, each coil is energized and the location of each
indicator tip is found in the ‘fra,me of the digitizer. The location of the three tips is
also known in the frame of the touch sensing tripod because the displacement of each
digital indicator is known. Therefore, the location of the three points is known in
both frames and the relative location of the tripod to the digitizer can be found.
This touch sensing tripod/digitizer fixture is built in our laboratory and is presently
being tested. The digitizer and digital indicator outputs are being controlled by a
single-board digital controller. A schematic of the electrical connections is shown in
Figure 5.9. Figure 5.10 shows the unit being test on a milling machine. This fixture,
in addition to its simplicity, has the advantage of being able to make a complete
reference measurement with one touching motion and being able to make a complete

reference measurement, via the digitizer, at different angles and positions.

5.2.3.1 An Example

An example is given to further illustrate the use of the tripod/digitizer reference
ﬁxvture. Figure 5.11a gives the coordinate systems that we will use for the analysis of
this example. The X, Y, and Z coordinate axes are connected to the tripod aluminum
frame. They form a coordinate frame that we will refer to as frame F. The X", Y,
aﬁd Z" axes are connected to the corner of the digitizer. They form a coordinate
frame that we will refer to as frame F”. The X’, Y, and Z’ axes are the intermediate

axes created by the three contact points. They form a coordinate frame that we will
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Figure 5.9: Control schematic for tripod fixture

Figure 5.10: Test setup for tripod fixture
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refer to as frame F'.

The object of the analysis is to find the transformation matrix from frame F
to frame F' using the measurements made by the digital indicators, the digitizer,
and the hardware dimensions. The two critical hardware dimensions are shown in
Figure 5.11. Figure 5.11b shows the distance between the bottom of the aluminum
frame (frame F') and the tip of each digital indicator (frame F"). Figure 5.11c shows
the spacing between the three digital indicators.

For this example, let digital indicator number 1 read 0.500, digital indicator num-
ber 2 read 0.700, and digital indicator number 3 read 0.700. Also let p'oints A, B,
and C have the following coordinates in frame F”: point A = (3,4,0), point B =
(4.513,2.677,0), and point C = (4.338,5.5,6). Using the giveﬁ values (all in inches)
and the hardware dimensions, it is possible to find the transformation matrix from
frame F' to frame F” using the intermediate frame F’. The first step is to find the
transformation matrix from F' to F”.

The transformation matrix from F' to F’ can be found if one point and three
vectors are known in both frames. The points A, B, and C can be determined in
all the frames. In frame F' the point coordinates are, point A = [0,0,(—3 + 0.5)],
point B = [2,0,(=3 + 0.7)], and point C = [0,2,(—3 + 0.7)]. These same points
have the following coordinates in frame F”, point A = (0,0,0), point B = (2.01,0,0),
and point C = (0,2.01,0). Using these points, three mutually perpendicula,r.vectors

can be found. Let v, = point B - point A and v, = point C - point A. Let these
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three mutually perpendicular vectors be bs = (0) x Uq)/ |01 X U2, by = Uy /|U2|, and
by = by x bs. In frame F, &, = (2,0,—2.3) — (0,0,-2.5) =< 2,0,0.2 >, & =
(0,2,-2.3) — (0,0,-2.5) =< 0,2,0.2 >, by =< 0.995086, —0.009852, 0.098523 >,
b, =< 0.000000,0.995037,0.995038 >, and b3 =< —0.099015, —0.099015, 0.990148 >.
In frame F’ these vectors are, v, =< 2.010,0,0 >, v, =< 0,2.010,0 >, 51 =< 1,0,0 >,
by =< 0,1,0 >, and b3 =< 0,0,1 >.

Using the three mutually perpendicular vectors and point A, the transformation
matrix can be determined. Using homogeneous coordinates, a vector < z,y,z > in

frame F can be transformed into a vector < z’,y’, 2’ > in frame F" using the following

equation
10 17 1
z! a;; a1z aiz d z
y’ a1 Qg2 G2z ‘dp Yy
= } (5.15)
z! asy Gsz asz ds z
0 0 0 0 1 0

Moreover, a point (x,y,z) in frame F' can be transformed into a point (z’,%',2') in

frame F’ using the following equation

z’ a;; a2 a3z di T
y’ Gg1 a2 423 dz Yy
= . (5.16)
2! as; dasz ass ds z
1 0 0 0 1 L 1

Using equation 5.15 and the vectors 31, 52, 53 in frames F' and F’, the coefficients in

Copyright 2011, AHMCT Research Center, UC Davis



115

the transformation matrix that represent the rotational part of the transformation
(the coefficients that beginning with the letter a) can be found. Using equation 5.16
and point A in both frames, the coefficients that represent the translational part of
the transformation (the coefficients that beginning with the letter d) can be found.
The interested reader is referred to Hearn [14] for more information on coordinate
transformations.

Solving for the coefficients, the transformation matrix from frame F' to frame F",

denoted as 71, is

0.995086 —0.009852 0.098523 0.246308

0.000000  0.995037 0.099504 0.248759
T1= . (5.17)

—0.099015 —0.099015 0.990148 2.475369

0.000000  0.000000 0.000000 1.000000

Using the transformation matrix 73, it is now possible to transfer any point or
vector frame F' to frame F’. Now the transformatioﬁ matrix between frame F’ and
frame F"” needs to be found in the same way. The location of the points A, B, and
C is already known in both frames, and the necessary vectors are easy to calculate.

After calculating these values, the transformation matrix from frame F” to frame F"”,
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Iz

0.746255 0.665660 0.000000 3.000000
—0.665660 0.746255 0.000000 4.000000
0.000000  0.000000 1.000000 0.000000
0.000000  0.000000 0.000000 1.000000

116

(5.18)

With T and Ty known, the transformation matrix from frame F to F” can be

calculated by multiplication of the two matrices. Hence, the transformation matrix,

denoted as T, is

T = [To][T}]

‘ 0.742588  0.655004 0.139759
—0.662389  0.749110  0.008672
—0.099015 —0.099015 0.990148
| 0.000000  0.000000 0.000000

3.349398

4.021680

2.475369

1.000000

(5.19)

The transformation matrix from frame F” to frame F is simplify the inverse of matrix

T.

5.2.3.2 Error Analysis

Since the tripod/digitizer fixture will be used for referencing and calibration, it

is critical for the components used in the design to be as accurate as possible. The

accuracy of the tripod/digitizer fixture is limited by the accuracy of the digitizer and

the digital indicators used. The design developed here and shown in Figure 5.10 uses

relatively inexpensive components. The digital indicators used have a stroke of one
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Figure 5.12: Error analysis

inch (25.4 mm) with an accuracy of 0.001 inches (0.0254 mm) over that range [25].
The digitizer used for the prototype fixture is relatively old and was found to be the
limiting part for the accuracy of the prototype system developed.

We performed tests that indicated the system has an accuracy of 0.030 inches
(0.762 mm) over the 11.7 inch by 11.7 inch surface (300 mm x 300 mm). It should
be pointed out, however, that the accuracy of the system can be easily improved by
using a more accurate digitizer. Digitizers are available with accuracies of plus or
minus 0.005 inches (0.127 mm) and sizes up to 44 inches by 60 inches (1100 mm x
1500 mm) [32].

The position and orientation error in the system can be written in terms of the
error in the position of the origin of frame F’ and the error in the yaw, pitch, and roll
angles associated with frame F’. The relationships between the angles and frame F’

~are shown in Figure 5.12a.

Let the maximum error in the digitizer be Ep for both the z axis and the y
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axis of the digitizer. Let E; be the maximum error in the digital indicators. If we
assume that Fp >> FEj and that the angle between the X — Y plane and the X' —Y”
plane does not exceed 30 degrees, which we found to be true for our system, then
the maximum position and orientation error comes when the X — Y plane and the
X' =Y’ plane are parallel.

From the information given, we already know that the position and position error
for the origin of frame F' is (0,0,0) £ (Ep, Ep, E1). The orientation error is a little
more difficult. TheAmeth(?d used to create frame F” relied on the position of points
A and C to find the location of the Y’ axis. Therefore, the digitizer error in these
two points determines the error in the orientation of the Y’ axis in the X’ — Y” plane.
This is the yaw error which is shown in Figure 5.12b. Using Ep, the maximum yaw
error equals 2\/§ED/Z where [ 1s the distance between digital indicator number one
and number three. Using the same method, the maximum error in the roll and pitch
angles are 2F;/l, where [ is the distance between either digital indicator number one
and number three or digital indicator number one and number two. For our system
they are the same.

If the tripod/digitizer fixture incorporated the more accurate digitizer that was
described earlier (Ep = 0.005), then the yaw error and the error in the position of the
organ would be significantly reduced. As an example, let Ep = 0.005, £y = 0.001,
and { = 3 (all values are in inches). Using these values, the position error of the

origin is +(0.005,0.001,0.001), the yaw error is 0.004714 radians, and the roll and
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pitch errors are 0.0006667 radians. It should be noted that increasing the distance
between the digital indicators reduces the error in the yaw, roll, and pitch angles.
Hence, a more accurate design would use a very accurate digitizer in conjunction
with a tripod sensor that incorpora;ces large distances between each of the digital

indicators.
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Chapter 6

Conclusion

6.1 An Overview

In the introduction of this dissertation, the existing work on the design of tactile
fixtures for referencing was described as limited. This dissertation addfessed this
issue by creating a theoretical framework for the design of tactile fixtures. In doing
so, several new and interesting results were found.

In Chapter three, a new method for analysis of fixtures based on the geometric
surfaces that formed them was given. This method relied upon the Euclidean group
and its subgroups. To aid in the use of the Euclidean group, the complete set of .
continuous subgroups of the Euclidean group were found using a Lie algebra/Lie
group approach. Using the Euclidean group, several propositions were introduced

and proven. These propositions formed the basis of a new theory that can aid in the

Copyright 2011, AHMCT Research Center, UC Davis



121

design of touch sensing fixtures by analysis of the continuous and finite groups that
represent them. Using these bropositions, fixtures involving spheres, planes, cylinders,
and combinations of these geometric elements were analyzed for their ”usefulness.”

In Chapter four, the analysis of fixtures was taken one step furth.er by looking
at contacts needed to make a "useful” fixture. Contacts between spheres, planes,
cylinders, points, and lines were studied, and group representations were found for
every possible contact that could exist between these geometrié elements. Using these
group representations, different types of contacts were found to have equivalent group
representations. This made it possible to treat different contacts as if they were the
same. Using these new contact classes, all possible combinations of contacts were
studied. During this enumeration, 579 contact combination classes and 17,465 actual
contact combinations were found.

After completing this enumeration, a set of contact comb_inations, the point sur-
face contact combinations, were examined more closely because they formed a more
practical set of touch sensing fixture designs. Two types of point surface contacts
were studied, combinations involving point mobile surface contacts and combinations
involving fixed surface contacts. It was found that three point fixed surface contacts
were enough to determine the location of a fixture in space. As for the mobile surface
contacts, 28 point mobile surface combinations were found. Of these 28, 12 were ex-
plored further for referencing applications. In order to study these fixtures, analysis

methods were developed for finding the location of a sphere, a cylinder, and a plane
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in space using only a finite number of points on each surface. It was shown that a
plane needs three points to define its location, a sphere requires three or four points
depending on the circumstance, and a cylinder of known radius requires five points.
Of these three case, the method for determination of a cylinder’s location in space
using points on its surface is new. Examples were given for each of these surfaces.
Finally, in Chapter 5, using the information obtained from the analysis of the
point surface contacts, two simple yet novel touch sensing fixtures for referencing
were developed. One of those fixtures used a plane-cylinder geometry to uniquely
locate a frame. The other fixture used a tripod shaped probe and a planar fixed
surface (in the final design a digitizer was ﬁsed) to uniquely locate a reference frame.
In developing the later fixture, several different technologies for use as fixed surfaces
were explored. The final design of the tripod/digitizer fixture is currently patent

pending.

6.2 Future Research

Although, many goals were accomplished in this dissertation, several areas can be
developed much further, and several of the developed ideas can be applied to other

fields. Here is a list of possible areas for future research:

1. The analysis of the fixtures in this dissertation were limited to a set of specific

geometric elements; if this set is expanded to include new geometric elements,
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then many new and unique fixtures can be developed.

2. The mathematical approach for the enumeration of the combination classes was
not very formal; in the future, it would be ideal to improve the mathematical

foundation for the enumeration of these contacts.

3. The contact analysis performed in this dissertation was for the design of refer-
ence fixtures. However, many other areas, such as general fixture design and
robot assembly, deal with contacts between geometric elements. Therefore, the

application of this analysis to these fields would be of value for future work.

4. Finally, the continued development of simple, practical fixtures is the main

intention of this research.
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