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ABSTRACT

A mobile manipulator is a robotic manipulator mounted upon a wheeled mobile

platform. In recent years, interest in the area of mobile manipulators has increased

significantly because of the mobility combined with the manipulation. Although sig

nificant amounts of research and development have been performed in the area of

nonholonomic control of mobile robots and in the area of motion control of robotic

manipulators, there is only limited literature available on control of mobile manipu

lators which combine those two functions.

There are several issues that contribute to the uniqueness of the mobile manip

ulator modeling and control problem. First, a wheeled mobile platform is subject

to nonholonomic constraints. Therefore, the mobile manipulator which consists of a

wheeled mobile platform and a robotic manipulator is also subject to nonholonomic

constraints. Second, kinematic redundancy is created when a mobile platform and a

multi-link manipulator are combined. Third, the mobile platform and the manipula

tor dynamically interact with each other.

This report is concerned with the modeling and control of mobile manipula

tors. The Lagrange-d’Alembert formulation is used to obtain a concise description

of the dynamics of the system. Then, the solvability of tracking problems for a

non-redundant mobile manipulators is investigated by using static input-output lin
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earization. Then, the complexity of the model is increased by introducing kinematic

redundaucy which is created when a multi-linked manipulator is used. The kinematic

redundancy is resolved by decomposing the mobile manipulator into two subsys

tems; the mobile platform and the manipulator. Based on the redundancy resolution

scheme, the nonlinear interaction control algorithm, in which the suitable controllers

are designed for the two subsystems, is developed and applied to the redundant mobile

manipulator.

When ideal kinematic constraints are violated due to wheel slip, modeling of

wheeled mobile robots using a Lagrange-d’Alembert formulation is not valid. The

wheel slip is modeled as a disturbance to the system and the tracking performance of

the interaction controller is investigated in the presence of this disturbance.

iv
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EXECUTIVE SUMMARY

A mobile manipulator is a robotic manipulator mounted upon a wheeled mobile

platform. In recent years, interest in the area of mobile manipulators has increased

significantly because of the mobility combined with the manipulation. Although sig

nificant amounts of research and development have been performed in the area of

nonholonomic control of mobile robots and in the area of motion control of robotic

manipulators, there is only limited literature available on control of mobile manipu

lators which combine those two functions.

There are several issues that contribute to the uniqueness of the mobile manip

ulator modeling and control problem. First, a wheeled mobile platform is subject

to nonholonomic constraints. Therefore, the mobile manipulator which consists of a

wheeled mobile platform and a robotic manipulator is also subject to nonholonomic

constraints. Second, kinematic redundancy is created when a mobile platform and a

multi-link manipulator are combined. Third, the mobile platform and the manipula

tor dynamically interact with each other.

This report discusses the modeling and control of mobile manipulators which

consists of a robotic manipulator mounted upon a wheeled mobile platform. By ne

glecting slip of the wheeled platform’s tires, nonholonomic constraints are introduced

into the equations of motion which complicates the control problem. The dynamic

V
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equations of the mobile manipulator are derived using the Lagrange-d’Alembert for

mulation. In this formulation, the equations of motion are projected onto the subspace

of allowable motions. Then, the solvability of tracking problems for the mobile ma

nipulator is investigated by using input-output feedback linearization. The feasibility

of the control approach is demonstrated through computer simulation.

The complexity of the model is increased by introducing kinematic redundancy

which is created when a multi-linked manipulator is used. The kinematic redundancy

is resolved by decomposing the mobile manipulator into two subsystems; the mobile

platform and the manipulator. According to the redundancy resolution scheme, the

manipulator is commanded to follow the desired trajectory given in task space arid

the platform is responsible for positioning the manipulator at a specified point in the

workspace to avoid singular configurations of the manipulator. This motivates the

development of the interaction control algorithm in which two nonlinear controllers

are designed for the subsystems based on the redundancy resolution scheme. The

interaction controller consists of robust adaptive controller for the manipulator and

nonlinear PD controller for the mobile platform. The simulation results demonstrate

excellent tracking performance of the interaction controller.

While the interaction control algorithm represents the significant contributions to

the area of the control of mobile manipulators subject to nonholonomic constraints

and kinematic redundancy, consideration of wheel slip might be crucial for high load

applications because wheel slip is expected to act as a disturbance to the system. Tire
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dynamic equations of the wheeled mobile platform subject to wheel slip are derived

and the interaction control is applied. The simulation results show degradation of

tracking performance of the interaction controller in terms of convergence speed to

the desired error bound. Our intention is to open up some potential problems of

the interaction controller for high load and high speed applications of the mobile

manipulators and suggest a robust control desigh for the platform as a part of future

work.
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1

Chapter 1

Introduction

Conventional robotic manipulators are mounted on a fixed base so that they can

withstand the forces and torques applied to the base when they are subject to pay

loads. Tasks involving such a fixed-base manipulator must be carefully planned within

the limited volume of the workspace so that they can be carried out in an efficient

manner. Furthermore, the situation can become even more restrictive if a dexterous

manipulation is required because the actual workspace, in general, is only a small

portion of the total workspace.

In recent years, interest in the area of mobile manipulators has increased signifi

cantly in the industrial, space, and public service applications because the mobility

combined with the dexterous manipulation provides increased efficiency and capa

bilities in various tasks (e.g., repair, material transfer and delivery, maintenance, or

chemical handling etc). Although significant amounts of research and development
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have been performed in the area of motion planning for mobile robots and in the

area of control of robotic manipulators, very little has been reported on the topic of

coupling these two functions for the purpose of developing an autonomous robot with

combined large-scale-mobility and dexterous manipulation.

Mobile manipulators bring about a number of challenging problems in addition to

simply increasing the structural complexity. First, a wheeled mobile robot introduces

nonholonomic constraints to the equations of motion. Second, kinematic redundancy

is created when a multi-link manipulator is mounted on a mobile robot. Third,

the mobile platform and manipulator dynamically interact with each other. The

objective of this research is to address the complexities of modeling and control of

mobile manipulators.

1.1 Literature Search

The study of the modeling and control of mobile manipulators spans several dif

ferent research domains. Major issues related to the topic of this research include the

kinematic and dynamic modeling of a wheeled mobile platform subject to nonholo

nomic constraints, the coordination strategy of the mobile manipulator as a means

of redundancy resolution, the dynamic interaction of the mobile platform and the

manipulator, and the issues of the control of the mobile manipulator.

In the following sections, the previous work related to these issues is reviewed.

The control and path planning problems of wheeled mobile robots have recently

Copyright 2011, AHMCT Research Center, UC Davis
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drawn significant attention in the nonlinear control community because of their unique

properties due to the presence of nonholonomic constraints. Therefore, a review on

nonholonomic systems with emphasis on the control characteristics of wheeled mobile

platforms is given in some detail. However, only limited literature is available on the

control of a mobile manipulator although the advantages of a mobile manipulator

over a fixed-base manipulator have been widely acknowledged.

A typical example of a nonholonomic system is a rigid disk rolling on a horizontal

plane without slippage (Murray et al., 1994). Other examples of nonholonomic sys

tems can be found in underwater vehicles (Nakamura and Mukherjee, 1993; Sordalen

et al., 1993), robotic fingers (Kerr and Roth, 1986; Li and Canny, 1990), space manip

ulators (Vafa and Dubowsky, 1987; Nakamura and Mukherjee, 1989; Papadopoulos,

1993), falling cat and astronaut maneuvering (Kane and Scher, 1969; Kane, 1972;

Fernandes et al., 1993). Also surveys of the recent developments in nonholonomic

motion research and the nonholonomic behavior of robotic systems are given by Li

and Canny (1993) and Murray et al. (1994).

1.2 Stabilization of Mobile Robot as a Nonholo

nomic System

Mechanical systems with nonholonomic constraints have the property that the

number of independent position coordinates exceeds the number of independent ye-
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4

locities. Typical examples are wheeled mobile robots in which the contacts between

the wheels and the ground can be modeled as nonholonomic constraints, if wheel slip

is neglected.

Most common objectives of the control of the mobile robots are motion planning

and stabilization to an equilibrium state, the latter of which is pursued in this report.

Brockett (1983) proved that the full state vector cannot be made asymptotically stable

by using smooth time-invariant state-feedback control laws. Therefore, the control

objectives cannot be solved using the well-established nonlinear control methods such

as feedback linearization. Based on Brockett’s theorem, new approaches have been

developed to avoid violating his claim.

Samson and Ait-Abderrahin (1991) showed that there is no pure static state feed

back law that stabilizes the system around a given terminal configuration which

includes both position and orientation. Campion et al. (1991) and Samson and

Ait-Abderrahin (1991) showed that feedback stabilization of the position of any mo

bile robot’s point remains possible by using input-output linearization. Walsh et al.

(1994) developed a new technique that gives an explicit control law which locally

exponentially stabilizes the system to the desired trajectory. Pomet (1992a) used a

time-varying state feedback control to stabilize a mobile robot to a point. Also, Pomet

et al. (1992b) proposed a hybrid strategy to improve the convergence speed, in which

a time-invariant feedback is used in the neighborhood of the desired point. Sarkar et

al. (1994) investigated the trajectory tracking and path following problems of mobile

Copyright 2011, AHMCT Research Center, UC Davis
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robots in the context of mechanical systems subject to rolling contacts. Jagannathan

and Lewis (1994) showed that input-output feedback linearization with a suitable

choice of a gradient-based control law can be used to solve the motion planning

problem. Sordalen and Egeland (1995) demonstrated that global and asymptotical

stability with exponential convergence is achieved about any desired configuration by

using a nonsmooth, time-varying feedback control law which depends on a constant

function except at predefined instants of time where the function is recomputed as a

nonsmooth function of the state. D’Andrea-Novel et al. (1995) studied the tracking

problem with stability of a reference trajectory, by means of linearizing static and

dynamic state feedback laws. Also, they gave conditions to avoid possible singulari

ties of the feedback law. Canudas de Wit and Sordalen (1992) proposed a piecewise

smooth controller to render the origin exponentially stable for any initial condition.

Using a two-wheeled model, they showed that the convergent speed is faster than

those using time-varying feedback. Although the feedback law was not differentiable

at some points, it was proven that the motion of the vehicle is smooth even when it

passes the non-differentiable points.

1.3 Mobile Manipulators

Our use of the term “mobile manipulator” relates to terrestrial mobile manipu

lators which are typically an articulated manipulator mounted on a wheeled mobile

vehicle. However, comparison to nonterrestrial mobile manipulators, namely under-
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water vehicle and space manipulators, brings a useful insight with regard to certain

issues such as the analysis of dynamic interactions or different bandwidths. However,

this work does not consider the effects of gravity found in terrestrial applications.

First, the previous work on mobile manipulators which treats the dynamic in

teraction between a platform and a manipulator is discussed. Then, various control

and coordination algorithms specifically developed for mobile manipulators using op

timization methods are discussed. Lastly, control methods for space manipulators

are reviewed with emphasis on how to compensate motion disturbances between the

platform and the manipulator.

Wiens (1989) considered a single-linked manipulator on a planar mobile platform,

and presented a technique for determining the dynamic coupling effect between the

mobile platform and robotic arm manipulation. Jang and Wiens (1994) studied a

similar model in Wiens (1989) and developed passive control systems (various spring-

damper combinations) to reduce the dynamic coupling between the two subsystems.

Using the technique which is an extension of the energy stability level concept, Gham

sepoor and Sepehri (1995) developed a means to quantify stability measures applicable

to mobile manipulators. Joshi and Desrochers (1986) represented the motion due to

the vehicle by an angular displacement (disturbance) to a two-linked arm. Their work

took into account the effects of platform motion on the control of the robot arm rela

tive to the platform. However, the control of the mobile platform was excluded. Liu

and Lewis (1992) described a robust controller for a mobile robot by considering the
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platform and the manipulator as two separate systems. Their model, used for simula

tion, consists of a two-link manipulator attached on a planar base in which the angular

motion of the base is excluded, at least in their simulation, although it is included

in the equations of motion. Dubowsky and Tanner (1987) studied the compensation

of a dynamic disturbance caused by vehicle motion to a manipulator by deriving a

set of linearized equations of motion for a 3-DOF planar manipulator atop a moving

platform, and verified the efficacy of a dynamic compensation through simulation and

experiments. Hootsmanns and Dubowsky (1991) derived the Mobile Manipulator Ja

cobian Transpose Algorithm with which a manipulator achieves a desired trajectory

in the presence of dynamic disturbances from a softly-suspended platform. It was

shown that, even with the limited sensing capability, the system is able to perform

reasonably well with the proposed algorithm. However, only holonomic constraints

are taken into account. Yamamoto and Yun (1994) studied a two-linked planar mo

bile manipulator subject to nonholonomic constraints and developed a coordination

algorithm based on the concept of preferred operating region. However, if the ma

nipulator reaches up to perform tasks in vertical coordinates, any motion from the

mobile platform will not be able to bring the manipulator into the preferred operating

region.

For the coordination and control of mobile manipulators, Seraji (1993) treated the

base degrees-of-mobility equally with the arm degrees-of-manipulation, and solved the

redundancy by introducing a user-defined additional task variable. Pin and Culioli

Copyright 2011, AHMCT Research Center, UC Davis
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(1992) defined a weighted multi-criteria cost function which is then optimized using

Newton’s algorithm. Pin et al. (1994) formulated the coordination of mobility and

manipulation as a nonlinear optimization problem. A general cost function for point-

to-point motion in Cartesian space is defined and is minimized using the simulated

annealing method. Miksch and Schroeder (1992) proposed a controller design for

mobile manipulators. The controller consists of a feedforward part which executes an

off-line optimization along the desired trajectory and a feedback part which realizes

decoupling and compensation of the tracking errors. As a performance criteria to be

minimized for the static optimization, they used the manipulability measure, joint

ranges, kinetic energy of the system, and actuator torques. This approach is compu

tationally expensive and is suitable for global motion planning in which the desired

trajectory to be followed is precisely known a priori. Wang and Kumar (1993) solved

the kinematic redundancy of a wheeled mobile manipulator with a local coordination

technique which allocates the end-effector motion between the manipulator and the

platform by specifying compliance functions for each joint.

There has been ample literature on space manipulators. There exist two ba

sic approaches. The first controls the manipulator by assuming that the reaction

wheels or jets can be used to maintain the position and the orientation of the plat

form (Longman et al., 1990). The other controls both end-effector motion and satellite

attitude using only manipulator torques (Vafa and Dubowsky, 1987; Nakamura and

Mukherjee, 1989; Umetani and Yoshida, 1989; Papadopoulos and Dubowsky, 1991;

Copyright 2011, AHMCT Research Center, UC Davis
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Nenchev et al., 1992; Yamada, 1993). The work of Egeland and Sagli (1993) is an

exception which is more efficient in terms of energy consumption than the first ap

proach (Longman et al., 1990) and more flexible than the second approach (Vafa and

Dubowsky, 1987; Nakamura and Mukherjee, 1989). In their algorithm, the manip

ulator with high bandwidth is commanded to keep track of a desired end-effector

trajectory while the satellite with low bandwidth is controlled so that the manipu

lator is maintained near the center of the workspace. Therefore the concept used

for the coordination of a manipulator and a platform is similar to Yamamoto and

Yun (1994) in that both have used lowpass filtered inputs to a platform and have

utilized similar redundancy resolution techniques although they differ on the design

of the controllers. Spofford and Akin (1990) proposed a hybrid coordination algo

rithm which combines the reaction compensation method which does not deplete the

fuel of the spacecraft and the pseudo-inverse method which assumes full actuation of

the entire spacecraft/manipulator system. The transition between the two modes is

determined based on a task-dependent potential function.

1.4 Discussion

The motivation for much of the previous work stems from identifying the stability

criteria so that the vehicle does not overturn. The work addressing mobile manip

ulators, e.g., off-line optimization methods (Pin and Culioli. 1992; Pin et al., 1994;

Miksch and Schroeder, 1992; Wang and Kumar, 1993), tends to focus on the method
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to solve the redundancy created by the systems, and ignores the nonholonomic char

acteristic of the vehicle. The previous work (Wiens, 1989; Jang and Wiens, 1994;

Ghamsepoor and Sepehri, 1995) on the dyiiamic interaction mostly focuses on identi

fying stability criteria of tip-over. The work reported in Joshi and Desrochers (1986),

Liu and Lewis (1990), Hootsmanns and Dubowsky (1991) and Yamamoto and Yun

(1994) analyzes the dynamic interaction in an explicit form. However, the models

described in the work have only planar motion, so that the effectiveness of the con

trol algorithms need to be validated using a spatial mobile manipulator model. In

this report, we attempt to develop the nonlinear control algorithm for a general con

figuration of a spatial mobile manipulator subject to nonholonomic constraints and

kinematic redundancy with model uncertainty such as parametric uncertainty and

unmodeled dynamics. Also, the control of a realistic model of mobile manipulator

subject to wheel slip is investigated.

1.5 Preview of The report

In Chapter 2, some basic properties of robotic manipulators and nonholonomic

systems are reviewed.

The actual research work begins in Chapter 3 with the modeling and control of a

spatial mobile manipulator subject to nonholonomic constraints. First, the Lagrange

d’A1emb~rt formulation is employed in modeling the nonholonomic system. Then, a

nonlinear control law is derived based on the feedback linearization method.
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In Chapter 4 the interaction control algorithm is developed for a general configu

ration of spatial mobile manipulator subject to nonholonomic constraints, kinematic

redundancy and motion disturbance. First, coordination strategies are discussed as a

means of resolving the kinematic redundancy created by combining a mobile platform

with a multi-link manipulator. Second, based on the redundancy resolution schemes,

the interaction control law is proposed, in which the controller is designed for each of

two primary subsystems; the mobile platform and the multi-link manipulator.

In Chapter ö, a dynamic vehicle model is derived and the interaction controller,

designed in Chapter 4, is tested for the redundant mobile manipulator.

Chapter 6 gives a brief summary of this report and conclusions. As in most

studies, this work has answered some questions and has raised a wealth of additional

questions. Accordingly, Chapter 6 also presents a number of issues that can be the

subject of future work.

Copyright 2011, AHMCT Research Center, UC Davis



13

Chapter 2

Preliminaries

Typically, a mobile manipulator consists of a mobile robot and a robotic manip

ulator. These mechanical systems differ substantially in their task assignments and

dynamic characteristics. Hence, the study of the modeling and control of mobile ma

nipulators spans different research domains. In this chapter, some areas of robotics

which are relevant to the current research are presented. First, Euler-Lagrange equa

tions of motion are reviewed (Haug, 1989; Greenwood, 1988). Then, several important

properties of robotic manipulators for control applications are stated. Also, a short

description of nonholonomic systems is given. The detailed derivation of the motion

equations of mobile manipulators is left to the following chapter.
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2.1 Euler-Lagrange Equations

A standard method for deriving the dynamic equations of mechanical systems is

via the so-called Euler-Lagrange equations which are expressed as

dãL 8L
(2.1)

where q = (q1, -.. , q,~)~” is a set of generalized coordinates for the system, L, the

Lagrangian, is the difference, K — V, between the kinetic energy K and the potential

energy V, and r = (r15... , ~ is the vector of generalized forces acting on the

system. An important special case arises when the potential energy V V(q) is

independent of ~j, and the kinetic energy is a quadratic function of the vector ç~’ of the

form

K =

= ~TM(q)~ (2.2)

where the n x n inertia matrix M(q) is symmetric and positive definite for each

q E R~. The generalized coordinates in this case are the joint positions.

The Euler-Lagrange equations for such a system can be derived as follows. Since

L =~ - V(q), (2.3)

we have

= ~m~j(q)q~ (2.4)
uqk ~
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and

d~k = ~mk~(q)qi+>~~mki(q)qi

ãmk..
= ~ mk~(q)q~ + ~ ~ ‘q~qi• (2.5)

~

Also

8cJk = ~ (2.6)

Thus, the Euler-Lagrange equations can be written as

>mkjqj + ~ — 18rnui~.) — = Tk, k = 1,... ,n. (2.7)

By interchanging the order of summation in the second term above and by taking

advantage of the symmetry of the inertia matrix, we can show that

1amk~ 1 8m~~ . . N 1 (thnk~ 8mk~ am~~N

ãq~ 2 ãq~ qiqj) ~ ôqj + — 8q~ ~ (2.8)

The coefficients

1 (‘ãrnk~ amk~ 0m~~ 9
C~jk = ~ 3qj + — ôqk

are known as Christoffel symbols of the first kind. If we set

= (2.10)
aqk

then we can write the Euler-Lagrange equations, Eq. (2.7), as

~mk~(q)q~~ + ~(q) = Tk, k = 1,... ,n. (2.11)
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In the above equation, there are three types of terms. The first type involve

the second derivative of the generalized coordinates. The second type are quadratic

terms in the first derivatives of q, where the coefficients may depend on q. These

are further classified into two types. Terms involving a product of the type ~ are

called centrifugal, while those involving a product of the type ijj~j~, where i ~ j, are

called Coriolis terms. The third type of terms are those involving only q but not its

derivatives. Clearly the latter arise from differentiating the potential energy. It is

common to write Eq. (2.11) in matrix form as

M(q)~ + C(q, ~ + G(q) = r (2.12)

where the kjth element of the matrix C(q, ~) is defined as

Ckj = cijk(q)q~ = ~ (8m~i + a - a~ ) ~ (2.13)

2.2 Structural Properties

Although the equations of motion Eq. (2.12) are complex, nonlinear equations for

all but the simplest robots, they have several fundamental properties which can be

exploited to facilitate control system design. These properties are stated as follows:

Property 1. The inertia matrix M(q) is symmetric, positive definite, and both

PvI(q) and M(q)~ are uniformly bounded as a function of q E R’~. Strictly speaking,

houndedness of the inertia matrix requires, in general, that all joints be revolute.

Property 2. There is an independent control input for each degree of freedom.
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Property 3. All of the constant parameters of interest such as link masses,

moments of inertias, etc., appear as coefficients of known functions of the generalized

coordinates. By defining each coefficient as a separate parameter, a linear relationship

results so that we may write the dynamic equations, Eq. (2.12), as

M(q)~ + C(q, 4~c~ + G(q) = Y(q, ~, ~j)a = r (2.14)

where Y(q, ~, ~) is an n x r matrix of known functions, known as the regressor, and

a is an r-dimensional vector of parameters.

Property 4. Define the matrix

N(q,~) = M(q) - 2C(q,~). (2.15)

Then iV(q,~) is skew symmetric, i.e. the components ~jk of IV satisfy ri~ = —~kj.

Property .5. The dynamic equations (2.12) of a rigid robot define a passive map

ping r —4 ~‘, i.e.

<~ I T >T j ~Trdt> —~ . (2.16)

for some ~3> 0, for all T.

2.3 Nonholonomic Constraints

A holonomic system is a dynamic system that is subjected to holonomic con

straints. Holonomic constraints in a mechanical system are characterized by alge

braic equations in terms of position variables (or can be integrated to position-level
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equations if initially described by velocity-level equations). Mechanical systems with

holonomic constraints are typically treated by eliminating certain variables (gener

alized coordinates) from the equations of motion. The elimination process requires

solving certain components of variables in terms Qf the other variables. Assuming the

holonomic constraints are independent and continuously differentiable, the elimina

tion is analytically possible.

Alternatively, holonomic constraints may be differentiated once with respect to

time and can be represented at the velocity level, in the same form as nonholonomic

constraints are represented.

Since we are working with mechanical systems, we will assume the existence of

a Lagrangian function L(q, ~). In the absence of constraints, the robot’s dynamic

equations can be derived from the Euler-Lagrange equations (see Eq. (2.1)). Given

k such constraints, we can write them as a vector-valued set of k equations:

C~(q)~ = 0, i = 1,...,k (2.17)

where C(q) E R~c>~ represents a set of k velocity constraints. A constraint of this

form is called a Pfaffian constraint. We assume that the constraints are pointwise

linearly independent and hence that C(q) has full row rank. This class of constraints

includes nonholonomic constraints. Nonholonomic systems most commonly arise in

finite dimensional mechanical systems where constraints are imposed on the motion

that are not integrable, i.e. the constraints cannot be written as time derivatives

of some function of the generalized coordinates. Such constraints can usually be
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Figure 2.1: A disk rolling on a horizontal plane

expressed in terms of a nonintegrable linear velocity relationship. In other words, a

Pfaffian constraint which is not integrable is an example of a nonholonomic constraint.

As an example of a nonholonomic constraint, consider a rolling disk without slip

ping on the horizontal plane as shown in Figure 2.1. Let us define th~ configuration

vector as

x

y

a

where .r and y give the location of the point of contact, th is the angle of rotation with

respect to the perpendicular axis through its center, and a is the angle between the

z

x

(2.18)
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yz plane and the plane of the disk. The requirement of rolling without slipping can

be written as a set of nonintegrable velocity constraints as follows:

th — rq.~sina = 0 and (2.19)

~—rcbcosa=0. (2.20)

Alternatively, the velocity constraints can be rewritten in the form of Eq. (2.17) as

1 0 0 —rsinu
= 4’ = 0. (2.21)

0 1 0 —rcoso~

Eqs. (2.19) and (2.20), the equations of constraint, are independent. Thus, since

there are four coordinates and two equations of constraint, the system has only two

degrees of freedom. Particularly, note that at a given configuration q, only those

motions which satisfy the instantaneous nonholonomic constraints are feasible, which

is given by the null space of the constraint matrix, C(q).

The constraints can be incorporated into the dynamics through the use of La

grange multipliers. That is, Eq. (2.1) is modified by adding a force of constraint with

an unknown multiplier,~\ defined as

(2.22)

where ~‘h is the I vector of constraint force associated with the holonomic constraints,

and X~ is the i-n vector of constraint force associated with the nonholonomic con

straints.
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Then, Eq. (2.1) can be rewritten as

(2.23)

where

Ch(q)
C(q) = . (2.24)

C~(q)

In Eq. (2.24), Ch represents 1 holonomic constraints and C~ is a m x n nonholonomic

constraint matrix. Note, as mentioned earlier in this section, that in the presence of

1 holonomic constraints, we, in principle, may eliminate 1 Lagrange coordinates from

the equations of motion, and at the same time eliminate the constraint force vector

~\h. The elimination process requires solving 1 Lagrange coordinates in terms of the

others from the holonomic constraint equations.

We can derive an explicit formula for the Lagrange multipliers. The equations of

motion can be written as

M(q)~ + N(q, ~) + CT(q)~ = r (2.25)

where 7~ corresponds to the vector of external forces and N(q, ~‘) includes nonconser

vative forces as well as gravitational forces. It can be shown that by differentiating

the constraint Eq. (2.17) and substituting the resulting equation into Eq. (2.25), the

Lagrange multiplier is written as

(CM~GT)_l(GM_l(r — N) ± C~) (2.26)
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where the configuration dependent matrix is full rank if the constraints are inde

pendent. The equations of motion are now given by Eq. (2.23) with the Lagrange

multiplier defined in Eq. (2.26).

2.4 Control of Nonholonomic Systems

The models of the nonholonomic systems can be classified into kinematic models

and dynamic models. These two models possess similar state-space structure as

follows:~

Kinematic Models

±=g1(x)u1+~+gm(x)um, (2.27)

where x is the state vector, u~, i — l,.. , in, are the controls, and g~ are smooth,

linearly independent vector fields on Ri’.

Dynamic Models

± = g1(x)vi + ... + gm(x)vm, (2.28)

= zzj, i = 1,... , in, (2.29)

where x is the state vector, v~ is a in x 1 vector and r~ denote the order of time

differentiation.

The controls of kinematic models are velocity variables while those of dynamic

models are generalized force variables. Note that Eq. (2.27) is actually the kinematic

constraints on the motion.
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The most common control objectives of nonholonomic systems can be catego

rized into two areas: path planning and stabilization to an equilibrium state. Path

planning problems are concerned with finding a path that connects an initial config

uration to the final configuration and satisfies all the holonomic and nonholonomic

conditions for the system. Stabilization problems are concerned with constructing a

feedback controller that drives the system to the desired target while maintaining the

boundeness of all the states.
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Chapter 3

Non-redundant Mobile

Manipulators

The objective of this chapter is to discuss modeling and control of a non-redundant

spatial mobile manipulator. A wheeled mobile robot introduces nonholonomic con

straints to the equations of motion when wheel slip is neglected. Therefore, the mobile

manipulator which consists of a wheeled mobile platform and a robotic manipulator

is also subject to nonholonomic constraints. We begin by deriving the dynamic equa

tions of the mobile manipulator using the Lagrange-d’Alembert formulation which

represents the motion of the system by projecting the equations of motion onto the

subspace of allowable motions. Then, the solvability of tracking problems for non

redundant mobile manipulators is investigated by using static feedback linearization.
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3.1 Lagrange-d’Alembert Formulation

The Lagrange—d’Alembert formulation of the dynamics represents the motion of

the system by projecting the equations of motion onto the subspace of allowable

motions. In doing so, it is possible to get a concise description which is in a form well

suited for closed-loop control.

Let the virtual displacement Sq be a vector which satisfies C(q)Sq 0. D’Alembert’s

principle states that the forces of constraint do no virtual work. Hence, (CT(q))~).6q

0 for C(q)Sq = 0. Since (CT(q).\) Sq 0, Eq. (2.23) becomes

/dãL ÔL ‘\
l—-~--—-~-—-—rJ •Sq=0 (3.1)~dtuq oq j

where

C(q)Sq = 0. (3.2)

Eqs. (3.1) and (3.2) are called the Lagrange-d’Alembert equations. In the case

where the constraint is integrable, these equations agree with those obtained by sub

stituting the constraint into the Lagrangian and then using the unconstrained version

of Lagrange’s equations. If q (q1, q~) e Rn_k x R~c and the constraints have the form

A(q)4’2, then the equations of motion can be written as

IdaL 8L N T1~’-~ 8L N
l—-—-.—————TiJ+A 1T210. (3.3)
‘\dt 8q1 8q1 \ dt aq2 aq2 j

This reduction process of the motion equations is illustrated in modeling the

mobile manipulator.
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3.2 Modeling of a Mobile Manipulator

The mobile manipulator to be considered is supported by two independently driven

wheels with a common platform-fixed axis and two passive, self-aligning wheels. The

wheeled platform is modeled as a nonholonomic system in which slip is neglected due

to slow motions. Therefore, the wheeled platform consists of three degrees-of-freedom

which are reduced to two degrees-of-freedom due to the no-slip condition. The fol

lowing notation is used in deriving the equations of motion:

q1: the angular displacement of the right driving wheel,

q2: the angular displacement of the left driving wheel,

q3: the joint angle of the manipulator,

8: the heading angle of the platform,

m~: the mass of the platform,

mm: the mass of the manipulator,

m~: the mass of the each driving wheel,

I~: the moment of inertia of the platform,

Im: the moment of inertia of the manipulator,

I~: the moment of inertia of the each driving about the center of the mass,

Id: the moment of inertia of the wheel about the wheel diameter,

P~: the mid-point of the wheel base line,
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Figure 3.1: Non-redundant mobile manipulator

d1: the half length of the base line, and

d2: the distance between the center of mass and Fe,.

The mobile platform is subject to one holonomic constraint and two nonholonomic

constraints written as

8 = h(q1 — q~),

cos 0 — i~ sin 8 = 0, and

1

(3.4)

(3.5)

z

Y

/
/

/

x

±~cos8+~~sin0 ~ +~2) (3.6)
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where x~ and Yw denote the position coordinates of Pw.

We may write Eqs. (3.5) and (3.6) in the form of Eq. (2.17) with a vector q

defined as

q1

q2

q = q3 (3.7)

xw

Yw

and 0(q) is given by

o o 0 —sine cosO
0(q) = . (3.8)

~-rw ~ 0 —cos8 —sin 0

Eq. (3.5) is rewritten as

±wsin0=~wcos0 (3.9)

and substituting Eq. (3.9) into Eq. (3.6) and rearranging the resulting equations

gives a set of velocity constraints

±~=dih(~i+~2)cos0 and (3.10)

= d1h(~ +~2)sin0. (3.11)

Now 0(q) is rearranged as

0(q) = [01(q) 02(q)] (3.12)

Copyright 2011, AHMCT Research Center, UC Davis



30

where

0 00
C1(q) = , (3.13)

~ ~-r~ 0

—sinO cosO
C2(q) = (3.14)

—cos6 —sinS

and C2(q) e R~<~ which is invertible.

The kinetic energies of the platform, and of the manipulator, are as follows (see

Figure 3.1):

1 2 ~2
T1 = )rnP(XW + y~) +

1 ~2 ~2
+ y~) +

1 ~2 ~2
+ q2) +

mp (~) d2(~1 — ~2)(~~cos8 — ±~ sin 8) +

(~Y ~ +

~(2m~d~) (~) (~‘ - q~) and (3.15)

T2 =

+ Iyw~ + ~ — 2I~zw~~ — 2IxzwrL~y — 2I~zw~w~J +

mm[vox(wy~ — w~~) + voy(~.~3~ — w~) + voz(w~~ — w~~)] (3.16)

where
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= 0,

=

= 0,

= q3,

LI~)y = 8sinq3,

= 8cosq3,

= — d~8 sin 8,

= ~ + d39cos8,

= ~ + ~,

vor = ±~, sin 8 — cos 8 — d3~,

voy = (±~ cos 8 + ~, sin 8) cos q3, and

VOz = —(±~ cos 8 + ~ sin 8) sin q3.

The potential energy is written as

V=m1g(r~+e+Lo+~sinq1). (3.17)

The Lagrangian for the mobile manipulator is simply L(q, ~) = Tj(q, ~) +T2(q, ~) —

V(q).

Now, we derive the equations of motion using the Lagrange-d’Alembert formula

tion. Let 5q = (6q1 cSq~ 6q3 6x~ 6yw) represent a virtual displacement of the system.
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We obtain Eq. (3.1) with the set of velocity constraints as

ü 0 0 —sine cos8
Sq=0. (3.18)

~ ~ 0 —cos0 —sin 8

Solving Eq. (3.18) for 6x~ and 5Yw gives

Sx~ = ~r~(Sqi + Sq~) cos 8 and (3.19)

6Yw = ~Tw(Sqi + ~q~) sin 8. (3.20)

We redefine Sq as Sq~ = (Sq’ Sq~ 6q3) and ~ = (Sx~ 6yw) where ~ is uncon

strained and 6q~ is constrained. Using Eq. (3.12) and Sq = (Sq,. Sq~), we obtain

Sq~ = _C~T(q)C~(q)5q~. (321)

It can be shown that the equations of motion become

(~-~ — ~- — —~ (-~-~ — — T~) = 0. (3.22)dt 8q~ ôq~ dt aq~ ~9q~

Substituting the Lagrangian L(q,c~) into Eq. (3.22), the equations of motion of

the mobile manipulator can be written as

M~+N+G=r~ (3.23)

where

1v~ + ‘m~ ‘V2 + 1m2 ‘m3

‘V2 + ‘m2 ‘vi + Imi 1m3

m3 m3 m4
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711 —m~did2h2O~1 + m~d1d~h~9~2 — mmdid3h2&~i + rnmdid3h28~ —

rnmdih2Lc38~i cos q3 + mmdih2Lc,&~2 cos q3 — mmdihLc3~ COS q2 +

2mmh2d3Lc3~i4~ S~fl q3

33

N=

[fl3

0

~mmgL~3 cos q3j

0

ET~1 1
= Tqj~

[Tq3j

= (I~ + 21d)h2 + 1~ + (mi, + 4m~)d~h2,

‘V2 = (I~ + 21d)h2 + m~d2h21

I — ‘h~(1 +cos (2q3))+m~h2 (d~ +4 +2d3L~3cosq3),m~ —

I — —1h2(1 + cos (2q3)) + mmh2td2 — d2 — 2d3L~3 cosq3),ki 3m2 2

= —mmdihLc3 sinq3,

‘rn4 ‘rn~

—mpdid2h26~1 + mpd1d2h26~ — mrndid3h26~ + mmdid3h2~ +
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mmdih2Lc38c~i cos q3 — mmdih2Lc38~2 cos q3 + mmdihLc3~ cos q~ —

2mmh2d3Lc3~i~j2 S~fl q3

n3 — mmh2d3Lc3á~ sin q3 — 2rnmh2d3Lc3~ji4’2 sin q3 +

mmh2d3Lc3á~sinq3 + ~1mh2d34~sin(2q3) —

Imh2~ii/j2 sin(2q3) + ~Imh2d3~ sin(2q3)

G1=G2=O,

G3 mmgLc3 cos q3, and

h = r/(2d1).

3.3 Control of the Mobile Manipulator

In this section, we derive the control law for the spatial mobile manipulator based

on the model obtained using Eq. (3.22).

We first rewrite Eq. (3.23) as

(3.24)

where

H = —M’N — M’F. (3.25)

Now, the state variables are defined as
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q1

q2 x2

q3
(3.26)

X4

q2

q3

Eqs. (3.24) and (3.26) can be used to write

± = f(x) + g(x)r~, (3.27)

where

x5
f(x) = and (3.28)

H3 xl

03 x 3
g(x) = . (3.29)

A’f —1
13x3
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Now we select the output associated with Eq. (3.27), y = f(q), as

Pex x~, + L3cosq3cos&

Pey Yw + L3 cos q3 sin 8 (3.30)

Pe~ r~+e+Lo+L3sinqz

Then, differentiating each element of y twice allows terms involving elements of t

to appear. Thus, the first and second derivative of the output can be written as

= J(q)4’ and (3.31)

= J(q)~ + J(q)~ (3.32)

where

h(d1cos8—L3cosq3sin8) h(dicos8+L3cosqzsin0) —L3sinq3cos8

h(disin8+L3cosqzcosO) h(disin8— L3cosq3cos8) —L3sinq3cos8

0 0 L3cosq3

If the objective is to move the platform along prescribed trajectories, input-output

linearization can be applied, where the number of outputs equals the number of inde

pendent control inputs. The particular formulation of the control problem depends

on the available control inputs as well as the output variables to be controlled. In

this case input-output linearization is achieved by a static state-feedback. An outer

feedback ioop is provided for asymptotic stability.
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Now, substituting Eq. (3.24) into Eq. (3.32), we can rewrite Eq.(3.32) as

= J(H + M’r~) + i~. (3.33)

Then, the input-output description of the system Eq.(3.27) can be linearized to

cancel the nonlinearities in Eq. (3.33) using the following feedback:

= F(x) + G(x)u (3.34)

where

F(x) = —MJ~J~j — MH and (3.35)

G(x) = MJ’. (3.36)

Thus, the combined system Eqs. (3.33) - (3.36) reduces to

(3.37)

The term u represents a new input to the system which is yet to be chosen. Eq.

(3.37) is known as the double integrator system as it represents n uncoupled double

integrators. After applying the nonlinear feedback Eq. (3.37), we convert the system

into a linear system as

AC + Bu (3:38)

U = (3.39)
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where

010 0

A 0 0 1 0 and F (1 0 0), (3.40)

000 1

and ( are the new state variables.

Control system design of the mobile manipulator is then equivalent to a design

problem of decoupled linear subsystems described by Eqs. (3.38) and (3.39). The

system (3.38) and (3.39) can be represented by the block diagram of Figure 3.2.

Since these linear systems are controllable, their eigenvalues can be placed anywhere

by using a constant feedback

u=yd+A1(yd—y)+K2(yd—y) (3.41)

where K~ and K2 are the diagonal gain matrices. Then, the tracking error dynamics

can be described as follows:

Figure 3.2: Structure of the control algorithm
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ë(t) + Kié(t) + K2e(t) = 0. (3.42)

3.4 Simulations

In this section we use a single-link mobile manipulator as our simulation example

(see Figure 3.1). The following parameters are used in the simulation:

m~ = 100kg, mm = 10kg, m~ = 8kg, I,, = 8kg m2, Im = 0.2kg m~, and 1~ =

0.1kg

For each simulation, the mobile manipulator is initially at rest, and the desired

trajectory and its initial end-effector position are as follows:

Simulation I

•The desired trajectory:

Xd(t) = 0.6

yd(t) = t

Zd(t) = 0.41

•The initial position of the end-effector: (0.3, 0, 0.35)

Simulation II

•The desired trajectory:

xd(t) = 0.57 + t

yd(t) = 0.15
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Zd(t) = 0.3 + 0.1 sin (ft)

•The initial position of the end-effector: (0.2, 0, 0.35)

Simulation III

•The desired trajectory:

Xd(t) = 3 + sint

yd(t) 3 + cost

Zd(t) = 0.3 + 0.1 sin (it)

•The initial position of the end-effector: (2.7, 3.8, 0.35)

Simulation IV

•The desired trajectory:

Xd(t) = 3 + t

Yd(t) =3+0.lcost

Zd(t) = 0.3 + 0.1 sin (it)

•The initial position of the end-effector: (2.7, 3.8, 0.35)

Four different desired trajectories are applied in simulation to the mobile manip

ulator. We use a straight line trajectory in simulation I and sinusoidal trajectories

in simulation II, III and IV. The corresponding motion of the end-point, the heading

angle, the angular displacement of each wheel, the angular displacement of each joint,

and control inputs are plotted in Figure 3.3 - 3.30. In each simulation, the end point

of the mobile manipulator is commanded to follow the desired trajectory. Initially,
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the end point is not on the specified initial position in each simulation. Note that

for each simulation, the heading angle is set to be zero. The same feedback gains are

chosen to investigate the performance of the designed controller for the different tra

jectories. The natural choices for the feedback gains are = diag(2w1, 2w2, 2w3) and

A2 = diag(w~,w~,w~) respectively, which results in a decoupled closed ioop system

with each joint response equal to the response of a critically damped linear second

order system with natural frequency w~, i = 1, .. , 3. The feedback gains are ini

tialized to K~ = diag(1O, 10, 10) and K2 = diag(25, 25, 25). Note that in each case,

the steady state error goes to zero in 3 seconds and the control inputs are smooth.

Simulation results demonstrate the effectiveness of the proposed control scheme.
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Trajectory Tracking(... actual, — desired)
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Figure 3.3: Simulation I - xy trajectory tracking in task space
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Figure 3.4: Simulation I - z trajectory tracking in task space
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Position Error(... x, — y, — z)
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Figure 3.5: Simulation I - xyz position error
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Figure 3.6: Simulation I - actuator torques of each wheel and the joint
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Wheel Angle(... right wheel, — left wheel)
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Figure 3.7: Simulation I - angular displacement of each wheel

Joint Angle

Figure 3.8: Simulation I - angular displacement of the joint
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Figure 3.9: Simulation I - heading angle of the platform
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Figure 3J0: Simulation ii - xy trajectory tracking in task space
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Figure 3.11: Simulation II - z trajectory tracking in task space
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Position Error(... x, ——— y, — z)
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Figure 3.12: Simulation II - xyz position error
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Figure 3.13: Simulation II - actuator torques of each wheel and the joint
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Figure 3.14: Simulation II - angular displacement of each wheel
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Figure 3.15: Simulation II - angular displacement of the joint
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Figure 3.16: Simulation II - heading angle of the platform
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Figure 3.17: Simulation III - xy trajectory tracking in task space
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Figure 3.18: Simulation III - z trajectory tracking in task space
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Figure 3.19: Simulation III - xyz position error

Control lnput(... right wheel, ———left wheel, joint)
20C

150

100

j: so

°~-.-.-.

—50

-IOC~
0 I 2 3 4 5 6 7 8 9 10

Time(sec)

Figure 3.20: Simulation III - actuator torques of each wheel and the joint
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Figure 3.21: Simulation III - angular displacement of each wheel
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Figure 3.22: Simulation III - angular displacement of the joint
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Figure 3.23: Simulation III - heading angle of the platform
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Figure 3.24: Simulation IV - xy trajectory tracking in task space
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Figure 3.25: Simulation IV - z trajectory tracking in task space
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Figure 3.26: Simulation IV - xyz position error
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Figure 3.27: Simulation IV - actuator torques of each wheel and the joint
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Figure 3.29: Simulation IV - angular displacement of the joint

Copyright 2011, AHMCT Research Center, UC Davis



57

10
Time(sec)

Figure 3.30: Simulation IV - heading angle of the platform
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Chapter 4

Interaction Control of Redundant

Mobile Manipulators

In the previous chapter, an input-output linearizing controller was designed for

a single-link mobile manipulator. In order to increase the dexterity of the mobile

manipulator, a multi-link manipulator is employed as shown in Figure 4.1. There

fore, kinematic redundancy is introduced to the system in addition to nonholonomic

constraints. First, the coordination strategy of the mobile manipulator as a means of

redundancy resolution is discussed. Then, a novel nonlinear interaction controller is

developed for the mobile manipulator subject to kinematic redundancy and nonholo

nomic constraints.
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4.1 Redundancy Resolution

In order to perform a variety of tasks which require sophisticated mechanical mo

tion in an unstructured, dynamically varying envirOnment, a robot must have enough

degrees of freedom to accomplish those tasks. In order to increase the performance

capability of a mobile manipulator, it might be desirable to introduce some kinematic

redundancy. Any robotic mechanism is kinematically redundant with m <n, m de

noting the number of task variables and n the number of the degrees-of-freedom. The

difference n — m is termed the degree of redundancy.

A robotic mechanism has certain configurations in which it can no longer move

its end effector to change position or orientation in certain directions. These con

figurations are called singular configurations. Some joint velocities would become

excessively large trying to maintain the desired trajectory. In the robotics literature,

the manipulability measure is often used as a quantitative measure of the capability

of a manipulator to move its end effector freely in any direction. This measure can

also be regarded as an index of the distance from singular configurations. However,

this criterion cannot be applied directly to a spatial mobile manipulator without

additional considerations and modifications.

Egeland and Sagli (1993) studied coordination of motion in a space/manipulator

system. They proposed that the manipulator with high bandwidth be commanded to

keep track of a desired end-effector trajectory while the satellite with low bandwidth

be controlled so that the manipulator is maintained near the center of the workspace.
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Figure 4.1: The redundant mobile manipulator
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In other words, a constant nominal configuration is specified for the manipulator

so that there are no singularities or joint limits close to the nominal configuration.

The selection of the configuration can be based on engineering judgement or by, for

example, maximizing manipulability or available joint range. Yamamoto and Yun

(1994) adopted a similar redundancy resolution technique suggested by Egeland and

Sagli (1993) and applied it to a planar mobile manipulator subject to nonholonomic

constraints. The main drawback of their coordination schemes is that if the ma

nipulator reaches up to perform tasks in vertical coordinates, any motion from the

mobile platform will not be able to bring the manipulator into the constant nominal

configuration.

The approach demonstrated in Egeland and Sagli (1993) is still useful in resolving

the redundancy of the system created by combining a platform with a multi-linked

manipulator. A simple approach to the problem above is to bring the mobile platform

to the predetermined nominal configuration of the manipulator for the planar model.

That is, the mobile platform is moved to the position directly below the end-effector.

4.2 Decentralization of Mobile Manipulator

Mobile manipulators consist of two primary subsystems; the mobile platform and

the multi-link manipulator. The two subsystems differ substantially in their task

assignments, dynamic characteristics and controller requirements .According to the

coordination scheme proposed in the previous section, the mobile platform is respon
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sible for positioning the manipulator at a specified point in the workspace. This

physical interpretation leads to the decomposition of the model into the mobile plat

form and the manipulator subsystems and motivates the application of decentralized

control to mobile manipulators.

The fixed-base manipulator typically consists of three degrees-of-freedom and can

locate the end-effector at any point within the three-dimensional workspace. The

second and third degrees-of-freedom specify the position of the end-effector in a plane,

while the first degree-of-freedom orients the plane. Consequently, a manipulator with

fewer than three degrees-of-freedom restricts the reachable positions to a plane or line,

and a manipulator with more than three degrees-of-freedom results in a redundant

system. Therefore, in order to avoid further redundancy and to facilitate the control

of the mobile manipulator, a three degrees-of-freedom manipulator is used.

4.3 Modeling of the Mobile Manipulator

The redundant mobile manipulator shown in Figure 4.1 is considered. The wheeled

platform is modeled as a nonholonomic system as in the previous chapter. Because

the configuration of the redundant model is similar to the one of the non-redundant

model, only additional notation is introduced as follows:

q3: the joint angle of link 1,

q4. the joint angle of link 2,

Copyright 2011, AHMCT Research Center, UC Davis



64

q5: the joint angle of link 3,

m1: the mass of link 1,

m2: the mass of link 2,

m3: the mass of link 3,

I~: the moment of inertia of link 1,

12: the moment of inertia of link 2, and

13: the moment of inertia of link 3.

The kinetic energy of the multi-link manipulator can be formulated as follows:

Tm — ~Q~rniv~2+

+ I~w + I~w~ —~ — — 2I w~w~] +

— w~~) + v~(w3~~ — ~ +~ — (4.1)

where

Ix, = ‘!Ji = 0, J~, = I~,

= ~jj = 0, ~j =

= WY, = 0, w~, = Ô + ~

12, ‘y2 0. ‘:2 ‘2,

= 0, ~ = L~2, ~ = 0,

q2, Wy2 (0 + ~1)sinq2, ~2 = (0 + ~i)cosq2,

J~ = L3, ~ = 0, 1Z3 13,
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= 0, ~ = L~, z3 = 0,

w~3 = q2 + q3, w~3 = (0 + ~) sin(q2 + q3), and W33 = (0 + ~) cos(q2 + q3).

The potential energy is written as

V = rn1g(r~ + e + L~ + L2 sin q4 + L~3 sin qs). (4.2)

Apparently, the Lagrangian for the mobile manipulator is L(q, ~) = T~(q, 4~+Tm(q, ~)—

V(q).

Now, the generalized coordinates are defined as

xw

Yw

q~

q= q~ (4.3)

q3

q4

q5

and C(q) is given by

C(q) = [C~(q) C~(q)j (4.4)

where

0 0 000
C~(q) = and (4.5)

~ ~ 0 0 0
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—sine cosO
C~(q) = . (4.6)

—cos& —sin6

Then, we can obtain the motion equations of the mobile manipulator by simply

substituting the Lagrangian L(q, ~) into the Lagrange-d’Alembert formulation

(d 0L 0L T -T (d 8L 8L —
— -~—— — r,, — ~ ~ j — — — — ( )

~ at oqu oqu \~ at oqc eqc

where q~ = (qi q2 q3 q4 q~) and q~ = (x~ Yw).

4.4 Manipulability

Singularities usually correspond to points on the boundary of the manipulator

workspace, that is. to points of maximum reach of the manipulator .At singulari

ties or singular configurations, the rank of the Jacobian decreases, which may mean

that certain directions of motion are unattainable. In some sense, the farther the

manipulator is away from singularities, the better able it is to move uniformly and

apply forces uniformly in all directions. Several measures have been suggested for

quantifying this effect.

Since singular configurations are given by

det(J(6)) = 0. (4.8)

it is natural to use the determinant of the Jacobian in a measure of manipulator

dexterity. The manipulability measure, w is defined as

zv = ~det(J(q).JT(q)), (4.9)
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which for a non-redundant manipulator reduces to

w = jdet(J(q)~. (4.10)

Consider the mobile manipulator shown in Figure 4.1. The Jacobian matrix is

3 x 3 square matrix Jm whose elements are

= —L2 cos q4 sin q3 — L3 cos(q4 + q5) sin q3,

= —L2 cos q3 sin q4 — cos q3 sin(q4 + q~),

= —L3cosq3sin(q4 + q5),

= cos q3cos q4 + L3 cos q3 cos(q4 + q5),

= —L2 sin q3 sin q4 — L3 sin q3 sin(q4 + q~),

= —L3sinq3sin(q4 + qs),

cos q4 + L3 cos(q4 + q5), and

L3 cos(q4 + q5).

Then, the manipulability measure of the manipulator is

w = L2L31(L2 cos q4 + L3 cos (q4 + q5)) sinqsj. (4.11)

It can be seen that w is not related to q3. Also, for the given link length L1, L2, and

L3, the following relation is obtained by assuming sing5 ~ 0 and using ãw/8q4 = 0:

L3sinqs
tanq4=—~

b2 + L3 cos q~

Jm (1,1)

Jm (1, 2)

Jm (1, 3)

Jm(2, 1)

Jm(2, 2)

Jm (2, 3)

Jm(3, 1) = 0,

Jm(3,2) =

Jm(3,3) =

(4.12)
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This means that the tip of the manipulator should be at the same height as the second

joint. This can further be interpreted as maximizing the contribution of the angular

velocity of the first joint to the manipulability measure.

Substituting Eq. (4.12) into Eq. (4.11) yields

w = L2L3~/L~ + L~ +2L2L3cosq5~sinq5j. (4.13)

The value of q5 that maximizes w is given by

~
cosq5 = . (4.14)

6L2L3

If the manipulator is regarded as a two-link mechanism consisting of q4 and q5, the

optimal angle for q5 is 900. For the three degrees-of-freedom manipulator as shown

in Figure 4.1, however, the optimal q5 is smaller than 90° because the contribution of

q3 to w can be made larger by placing the end point of the manipulator farther from

the first joint axis.

4.5 Nonlinear Controllers

The technique of feedback linearization relies on exact mathematical cancellation

of linear or nonlinear terms from the equations of motion. Therefore, the control

law using feedback linearization requires the parameters in the dynamic model of the

system to be known precisely. In practice, the exact model of the nonlinear system is

not available in performing feedback linearization. Then, given uncertainty in the dy

namic model, the performance and stability of the system can be compromised. This
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uncertainty will typically arise from different manipulator loadings which will affect

the parameters in the system. The feedback linearization design utilizes a nominal

robot model which differs from the actual. This modeling error will obviously cause

the actual system to deviate from the dynamics predicted by the motion equation.

There is only limited literature available on the adaptive control of feedback

linearizable systems. Sastry and Isidori (1989) and Marino and Tomei (1995) devel

oped adaptive control designs for output-feedback stabilization of nonlinear systems.

However, they only considered single-input single-output nonlinear systems. Kanel

lakopoulos et al. (1992) proposed a design method of adaptive feedback-linearizahle

controllers for single-input, single-output nonlinear systems, and later expanded it

to multi-input, multi-output systems using similar design techniques. However, two

restrictive conditions were imposed on the control design. They require that the non

linear system be input-to-state linearizable and be transformable into the so-called

parametric-pure-feedback form. Unfortunately, the mobile manipulator is not input-

to-state linearizable due to the nonholonomic constraints and cannot be transformed

into the pure-feedback form because it violates the assumption of linear parametriza

tion.

There are two major approaches to dealing with model uncertainty - robust control

and adaptive control. The typical structure of a robust controller is composed of a

nominal part, similar to a feedback linearizing or inverse control law, and of additional

terms aimed at dealing with model uncertainty. The adaptive controller is similar,
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but in addition the model is actually updated during the operation, based on the

measured performance. In the next subsection, robust adaptive robot control theory

and nonlinear PD control theory based on the input-output linearized system are

introduced and are applied to the control of the mobile manipulator.

4.5.1 Robust Adaptive Control of Robotic Manipulator

The dynamics of a rigid n-joint manipulator (with the load considered as part of

the last link) can be written as

M(q)~ + C(q. ~ + G(q) = r (4.15)

where q is an n vector of robotic joint angles, iVI(q) is the symmetric positive-definite

(s.p.d) manipulator inertia matrix, C(q,~j) is an n x n matrix such that C(q,~

are the Coriolis and centripetal torques. The kjth element of the matrix C(q, 4’)~ is

defined as

(4.16)

The n vector G(q) represents the gravitational torques. In the physical system,

the dynamics have an important passivity property, which ensures that, by proper

choice of C in the above parametrization,

— 2C)s = 0 (4.17)

for any s ~ RTh. This physically significant fact. together with the positive defi

nite nature of M, is fundamentally incorporated into the structure of the control
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Xd q

id Li

Xd q

Figure 4.2: The adaptive controller

law below, permitting a physically motivated simplification of an otherwise complex

multi variable control problem.

To develop a direct adaptive control law for the system, the tracking error metric

is generalized to n dimensions, by defining

s(t) = ~ + A~(t) (4.1$)

where A = AT > 0, ~(t) = q(t) — qd(t), and qd(t) is the trajectory the coordinates q

are required to follow, it is assumed to be bounded and at least twice continuously

differentiable, with bounded first and second derivatives. It is also convenient to

rewrite Eq. (4.18) as s(~) = — ~r(t) where

~r(t) qd(t) - A~(t). (4.19)

Note that this algebraic definition of the error metric s also has a dynamic inter-
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pretation: the actual tracking errors are the output of an exponentially stable linear

filter driven by s. Thus, a controller capable of maintaining the condition s 0 will

produce exponential convergence of ~ to zero, and hence exponential convergence of

the actual joint trajectories to the desired trajectory qd(t).

The state vector for the process is specified in terms of the coordinates q and their

derivatives so that xT [qT, j1Tj E R2’~. With perfect knowledge of M, C, and C

and exact measurement of the state vector, the above derived signals can be used to

design an effective nonlinear tracking control algorithm for Eq. (4.15). Indeed, the

control law

= I1D8 + r~, (4.20)

where KD is a symmetric positive definite matrix and nonlinear components are given

by

T~ M(q)~r + C(q, ~ + G(q) (4.21)

will produce asymptotically convergent closed-loop tracking of any smooth desired

trajectory qd, with asymptotically stable closed-loop tracking error dynamics given

by

M~ + Cs + KDS = 0. (4.22)

Since a practical controller implementation has at best partial information about

the exact structure of the dynamics, the required nonlinear terms are usually not

Copyright 2011, AHMCT Research Center, UC Davis



73

known exactly. To compensate adaptively for this uncertainty requires first obtaining

a factorization of the nonlinear components of the control law:

= Y(q,~r,~r,~r)a. (4.23)

Prior knowledge about the system dynamics must be exploited to separate the

(assumed known) nonlinear functions comprising the elements of M, C, and G, from

the (unknown but constant) physical parameter a. Such a factorization is always

possible for the rigid body dynamics of a fixed-based manipulator, when the physical

uncertainty is on the mass properties of the individual manipulator links (Khosla and

Kanade, 1985) and arises naturally from the structure of the Lagrangian equations

of motion.

Using this factorization, but perhaps lacking exact knowledge of the mass prop

erties of the manipulator, the nonlinear components can be implemented using esti

mates, a, of the true physical parameters, a as

r = —KD5 + Yà. (4.24)

Such a controller results in the closed-loop dynamics

M.~ + Cs + ADS = (4.25)

where a = — a. and the model error Y~i acts as a perturbation on the otherwise

asymptotically stable closed-loop dynamics. The effects of these perturbations can

be asymptotically eliminated by continuously tuning the estimates of the physical
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parameters according to the adaptation law

& = PYTs (4.26)

where P is a constant, symmetric, positive definite matrix controlling the rate of

adaptation. The formal analysis in Slotine and Li (1989) shows that the coupled

learning and control strategy, Eqs. (4.24) and (4.26), ensures globally stable operation

and asymptotically perfect tracking of any sufficiently smooth desired trajectory.

In practice, the model of the robotic manipulator is always subject to some kind of

modeling uncertainties. Among those are the external disturbances. Consideration

of disturbances is particularly important in designing the robust controller of the

mobile manipulator because the coupling terms appear in the motion equation of

each subsystem. Therefore, achieving robustness to the motion disturbances might

be crucial. This motivates the design of robust adaptive controller in the presence of

disturbances (Reed and Ioannou, 1989).

It is supposed that the model of the robotic manipulator with disturbances is

described as

M(q)~ + C(q, ~ + G(q) = r + Td (4.27)

where

(4.28)

When the physical parameters are assumed to be unknown, the following robust
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adaptive law is proposed:

a = oTà — pyT3 (4.29)

and the switching parameter u is chosen as

0, for UaII < a0

= ~o (ll~11 — i), for a0 < ~â~j <2a0 (4.30)

a0, for I&~ > 2a0

The positive scalar 0~0 is a design parameter and a0 is chosen such that a0 > hail.

Examining Eqs. (4.24) and (4.26), the joint-space adaptive controller can be

interpreted as using only reference velocity and acceleration as input signals and

guaranteeing convergence only to these. It is then the definition of the reference

velocity in Eq. (4.19) that guarantees the actual convergence to the desired trajectory.

Because in the case of Cartesian motion a desired joint trajectory is not given, we now

proceed by redefining the joint reference velocity in terms of its Cartesian counterpart.

More precisely, the Cartesian reference velocity and acceleration are defined as

= xd — A~, and (4.31)

Xr Xd — A~. (4.32)

They are related to the joint reference velocity and acceleration by the Jacobian

of the mapping f : q —~ x, under the assumption that f is smooth and invertible,

J(q) = (4.33)
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= J(q)4’r, and (4.34)

= J(q)~ + J(q)~ (4.35)

where J(q) is a jacobian mapping matrix.

To compute the joint quantities, the above equations are simply inverted. Then,

joint reference velocity and acceleration are defined as

= J’±~ and (4.36)

= — JJXr. (4.37)

This approach will guarantee convergence of Cartesian motion to the desired tra

jectory, similar to the joint space case, as long as singularities are avoided. Thus,

the actual inverse kinematic solution for the desired joint position is not computed

directly but rather determined by the dynamics of the system.

4.5.2 Nonlinear PD Control of Mobile Platform

A simple approach to controller synthesis for nonlinear systems is to design a

linear controller based on the linearization of the system about an operating point.

Since the linearization of a system locally determines the stability of the full system,

this class of controllers is guaranteed to be locally stable. In many situations, it is

possible to prove global stability for a linear controller by explicit construction of a

Lyapunov function.
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An example of this design methodology is a proportional plus derivative (PD)

control law. In its simplest form, a PD control law has the form

= Kpq — Adq (4.38)

where ~ = q — q~ is the position error and K~, Ad are diagonal matrices of positive

proportional and derivative gains, respectively. Since this control law has no feedfor

ward term, it can never achieve exact tracking for nontrivial trajectories. However,

the application of nonlinear PD control is very effective for the set-point control of the

mobile platform which is responsible for positioning the manipulator in task space.

4.6 Interaction Control

In general, the manipulator cannot follow the desired trajectory without the help

of the mobile platform which also positions in the horizontal plane the manipulator

to avoid singular configurations. In the previous section, the nonlinear controller

for each subsystem of the mobile manipulator was briefly described. In this section,

we develop the nonlinear interaction controller based on the redundancy resolution

scheme suggested in Sec.4.l. The interaction controller is represented by the block

diagram of Figure 4.3.

The desired trajectory of the mobile manipulator is given in the global frame.

The manipulator is commanded to move in the local frame fixed on the first joint

axis. Subsequently, the base of the manipulator, which is located on the platform,
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Subsystem I

—

Figure 4.3: The interaction control
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is followed by the mobile platform in such a way that it can track the trajectory

transformed into the local frame.

The transformation of the desired trajectory Xd can be performed using the rota

tion matrix R~(8) about the z-axis:

Xd = R:’(Xd — X~) (4.39)

where xd is the desired trajectory in the local frame,

cos8 —sin6 0

R~(8) sin8 cos6 0 (4.40)

0 0 1

and X~ = [x~, I/wi is the mid-point of the wheel base line.

Therefore, the position error em and the velocity error ~m used in the robust

adaptive control law are modified to

em=xe—R’(8)(Xd—Xw) and (4.41)

em Xe — Xd (4.42)

where Xd is the desired velocity trajectory in the local frame and can be written as

Xd = R~’(8)(Xd - X~) + R~’(e)(Xd - X~) (4.43)

Now, the Cartesian reference velocity and acceleration are redefined as

= — Aem (4.44)
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Xr = — A~m (4.45)

where the desired acceleration in the local frame id is written as

Xd = R~’(Xd — X~) + 2R;’(Xd — X~) + R:’(Xd — X~). (4.46)

Consider the linear parametrization according to Eq. (4.23). The elements of the

parameter vector a are defined as follows:

I’

12

13

a = . (4.47)

L~3 L2m3

L~2m2g

L2m3g

L~3msg

Then, it can be shown that each term on the left-hand side of Eq. (4.23) can be

put into the form of Eq. (4.27) by a proper parametrization and the control and

adaptation laws can be written explicitly as

T = Y(q, ~, ~, ~)a — ADs (4.48)

where Y is the parameterized equations of motion in matrix form and its elements

are defined as
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Y(1,1) —q7-3,

Y(1,2) ~ + q~3 cos(2q4) — q4q7.3 sin(2q4) — ~ sin(2q~)),

Y(1, 3) = ~r3 + ~T3 cos(2(q4 + q5)) — ~4~r3 sin(2(q4 + qs)) — q5qr3 sin(2(q4 + q5)) —

q3qr4 sin(2(q4 + q5)) — q3qr5 sin(2(q4 + q5))),

Y(1,4) ~(~r3 + qr3 cos(2q4) — ~4~’r3 sin(2q4) — ~‘34’r3 sin(2q4)),

Y(1, 5) = cos q5 + ~T3 cos(2q4 + q5) — cos q~ sin(q4 + q5) —

q3q~ cos q4 sin(q4 + q5) — q4q,-3 sin(2q4 + q5) — q3qr4 sin(2q4 + q5),

Y(2, 1) ~ + ~q3qr3 sin(2q4),

Y(2, 2) = 0,

Y(2, 3) = ~T4 + q~ + ~q3qr3 sin(2(q4 + q5)),

Y(2,4) = — ~ cos(2q~) + q3qr3 sin(2q4) + q4qr4 sin(2q4)),

Y(2, 5) = cos q5 + ~q~5 cos q5 — q~4 cos(2q4 + q5) — ~ cos(2q4 + q5) +

q5qr4 cos(q4 + q5) sin q4 + q4qr5 cos(q4 + q~) sin q4 + q5qr5 cos(q4 + q5) sin q4 +

q3qr3 sin(2q4 + q5) + q4qr4 sin(2q4 + q5),

Y(2, 6) = cos q4,

Y(2, 7) = cos q4,

Y(2,8) = cos(q4 + q5),

Y(3, 1) = 0,

Y(3, 2) = 0,
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Y(3, 3) q~4 + q~5 + ~q3qr3 sin(2(q4 + q5)),

Y(3,4) = 0,

d1cos~ d1cos&
(4.51)

d1 sin6

When the mid-point of the wheel base line is selected as the output, it is easily verified

that the system is not controllable. This lack of controllability results simply because

the mobile platform cannot move along the wheel axis instantaneously. However,

full feedback linearization can still be made possible by using the so-called dynamic

Y(3, 5) = cos q5 — ~T4 cos(2q4 + q~) + q3qr3 cos q4 sin(q4 + q5) +

q4qr4 cos q4 sin(q4 + qs),

Y(3,6) = 0,

Y(3,7) = 0, and

Y(3,8) cos(q4 + q5).

We restate the velocity constraint equations obtained in the previous chapter as

follows:

= d1h(~1 + ~2) cos 0 and (4.49)

= d1h(~ +~2) sinS. (4.50)

Then, the Jacobian mapping matrix of the mobile platform is defined as

Jp=
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extension algorithm (Isidori, 1995). The idea of this algorithm is to delay some

combinations of inputs simultaneously affecting several outputs, via the addition of

integrators, in order to enable other inputs to act in the meantime and therefore

hopefully to obtain an extended decoupled system. Instead, the reference point X~,

directly under the end-point of the manipulator in an optimal configuration is chosen

as the output. Then, the Jacobian is written as

— psin8 d1 cos8 +psin8
= (4.52)

+pcos8 disin8—pcos8

where p is the distance from the mid-point of the wheel base line to the reference

point. Now, the mobile platform is controllable because J~, is not singular. Also, the

system is input-output linearizable by using a nonlinear feedback.

As described in Sec. 4.1 and Sec. 4.5, the mobile platform is responsible for posi

tioning the manipulator at the desired position in the global frame. In the nonlinear

PD control law, the position error has the form

Xe — Xp (4.53)

where Xe and X, are the position coordinates of the end point of the manipulator

and the reference point of the platform respectively. They can be written as

Xw + xecos(O +q3)+ d3cosO
and (4.54)

11w + YeSlfl(S +q3) + d3sinO
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x,~, + p cos 8
X~ = . (4.55)

Yw +psin8

In most control schemes, including the feedback linearizing control and the inter

action control which were developed in this work, the measurement of state variables

is required to provide the necessary information for feedback control. The most com

monly used sensors are the angular position sensors, the angular velocity sensors,

and the angular acceleration sensors. In Appendix A, measurement devices used in

robotic manipulators and wheeled mobile robots are presented.

4.7 Simulations

In this section, computer simulation is carried out to test the performance of the

nonlinear interaction controller developed throughout this chapter. The mobile ma

nipulator shown in Figure 4.1 is used in the simulation and the following parameters

are used:

rri~ = 90kg, m~ = 5kg, rn1 = 2kg, rn2 = 5kg, m3 = 5kg,

I~=9kg.rn2, Iw0.5kg~m2,Im0.1kgm2,

I~ = 0.15kg m2, ‘2 = 0.25kg rn2 13 = 0.25kg in2,

L1 = 0.4m, L2 = 0.4m, L3 = 0.4m,

0.2m, L~2 = 0.2in, L~3 = 0.2rn,

e = O.0375m, r~ = 0.075m, d1 = 0.2m, d2 = 0.3Srn, and g = 9.8m/sec2.
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For each simulation, the mobile manipulator is initially at rest and the heading

angle is set to be zero. For the PD controller, the feedback gains are arbitrarily

initialized to K,, = diag(35, 35) and ‘~d = diag(25, 25). The actual parameters used

in the simulation are

a = (0.15, 0.25,0.25,0.8,0.4,9.8, 19.6, 9.8)T.

The adaptation gains and the feedback gain matrix are arbitrarily assigned. The

adaptation gains P and A are chosen respectively as

F = diag(0.15, 0.15, 0.15,0.15.0.15,0.25,0.25,0.25) and

A = diag(20, 35, 45)

The gain matrix KD is set to diag(10, 15,5).

Three different desired trajectories are applied in simulation to the redundant

mobile manipulator. The desired trajectories are chosen as follows:

Simulation I

Xd(t) = 1.0528 + t/10

yd(t) = 0

Zd(t) = 0.5125 + üi sin (it)

Simulation II

Xd(t) = 1.0548 + t/10
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yd(t) = 0.1 sin (it)

Zd(t) = 0.5115 + 0.1 sin (ft)

Simulation III

Xd(t) = 1.1028 + 0.2(1 — ~ (~t)~

yd(t) = 0.2 sin (ft)

Zd(t) = 0.5125 + 0.1 sin (*t)

Sinusoidal trajectories are used in all simulations. At the beginning of each simula

tion, the manipulator is controlled to follow the desired trajectory while the platform

remains stationary. Then, the platform is commanded to track the set-point located

on the horizontal plane directly below the end-point in such a way that the manipula

tor can avoid a singular configuration. Initially, the end point is not on the specified

initial position in each simulation. The position error of the end point, the heading

angle, the angular displacement of each wheel, the angular displacement of each joint,

the position of the mobile platform, and the control inputs are plotted in Figure 4.4

- 4.24.

Only partial information of the actual parameters (&(0) = 0.75a) is given to the

controller at the beginning. Due to this uncertainty on the mass properties of the

system, z position error is relatively large for the first few seconds of transient period

as can be seen in Figure 4.4, 4.11, and 4.18. However, the tracking errors improve

as the robust adaptive controller extracts parameter information from the tracking
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errors.

Figure 4.7, 4.14, and 4.21 depict the angular displacement of each joint of the

manipulator. From these plots, it is observed that the joint angles drift for the first

few seconds while the end-point is tracking the desired trajectory with relatively large

initial errors due to the mass uncertainty imposed on the controller. As the tracking

errors improve, each joint repeats similar patterns of configurations without drift.

Figure 4.9, 4.16, and 4.23 show the actual trajectory of the mid-point of the wheel

base line. Note that the reference point located ahead of the platform is chosen as the

output of the set-point control of the platform. Therefore, the trajectory of the mid

point of the wheel base line does not necessarily look close to the desired trajectory.

This can be seen from Figure 4.23 in which the platform appears to deviate from the

circular trajectory. However, the heading angle and the tracking errors, as shown in

Figure 4.24 and 4.18 reveal accurate set-point tracking performance of the platform

controller.
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Figure 4.12: Simulation II - actuator torque of each joint of the manipulator
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Figure 4.13: Simulation II - actuator torque of each wheel of the mobile platform
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Chapter 5

Violation of Ideal Constraints

In Chapter 3 and 4, the motion equations of the mobile manipulator were derived

based on the assumption that the pure rolling and the non-slipping conditions are

satisfied at the contact point of each wheel with the ground. In Chapter 4, the novel

interaction control scheme was developed for the kinematic model of the redundant

mobile manipulator which operates under no-slip condition and very accurate tra

jectory tracking was achieved. However, as the mobile manipulator is employed to

perform heavy duty work under very high speeds, the impact of wheel slip on the

tracking performance of the interaction controller is expected to be substantial.

Recently, Boyden and Velinsky (1994) investigated the importance of dynamic

modeling of wheeled mobile robots for high load applications such as highway main

tenance and construction. They claimed that use of the kinematic model must be

limited to lightweight vehicles which operate under very low speeds, very low accel
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erations, and under lightly loaded conditions. This results motivate the investigation

of the tracking performance of the interaction controller for the mobile manipulator

subject to wheel slip. First, the dynamic equations of the wheeled mobile robot is

derived using Newton’s second law. Then, the robustness of the interaction controller

is investigated through simulations and a suitable control method is suggested for

high load applications as a part of future work.

5.1 Dynamic Modeling of Wheeled Mobile Robots

When ideal kinematic constraints are violated due to wheel slippage, modeling

of wheeled mobile robots using the Lagrange-d’Alembert formulation is not valid.

The equations of motion of the wheeled mobile robot shown in Figure 5.1 can be

derived using Newton’s second law. Again, note that this is a planar wheeled mobile

robot model with three degrees-of-freedom. The detailed derivation of the dynamic

equations of wheeled mobile robots can be found in Boyden and Velinsky (1994) and

Zhang and Velinsky (1994).

The force and moment equations for the mobile platform can be expressed as

(5.1)

~ F~ rn~(~ + uw) F~1 + Fvr, and (5.2)

> I~ = d1(F~1 — F~~) — d2(F~1 + F~). (.5.3)
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x

Y

Figure 5.1: Wheeled mobile robot
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where m~ is the mass of the platform, I~, is the moment of inertia of the platform

about z axis, I,~, is the moment of inertia of the combined mass of the wheel and

the actuator system about the wheel axis. The velocity constraints of the system are

written as

= + ut), (5.4)

V = ~(u1 — ~r) + vS, and (55)

= — Ur) (5.6)

where u is the longitudinal velocity, v is the lateral velocity v, w is the yaw rate, v5

is the lateral slip velocity, and u~ and Ur are the longitudinal velocities of the wheel

centers. The longitudinal velocities of the wheel centers can described as follows:

‘UI = r~wi — u~ and (5.7)

Ur = TwWr U~ (5.8)

It is not difficult to show that the motion of the reference point X~, are described

by the following equations:

±=ucos~—(v+d4w)sin&. (5.9)

~=usin9—(v+d4u~)cos~, and (5.10)
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(5.11)

Then, the equations of motion of the mobile platform can be written as

• F~1+F~,.
= + vw, (5.12)

• F,ji+Fijr

________ — uw, (5.13)

[di(Fui — Fur) — d2(F~1 + Fvr)], (5.14)

= ~(Ti — F~1), and (5.15)

= ~(Tr — Fur) (5.16)

where r,. and r~ are the controls. Note that the equations of motions are not in

the closed form. The longitudinal and lateral forces on the wheels are calculated by

Dugoff’s tire friction model (Dugoff et al., 1970).

To see how wheel slip is modeled as the disturbance to the system, we rewrite

Eqs. (5.9), (5.10), and (5.11) as

th = ucos8 — d4wsin8 — ~, (5.17)

~=usin8+d4wcos&+6~, and (5.18)

(5.19)
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where

= ~vssin8 and (5.20)

6~=v5cosO. (5.21)

Now, the state variables are defined as

x

y

= (5.22)

w

Then, the equations of motion can be written in the state space form as

= f(~) + g(i~)r + ~ (5.23)

where

u cos S — d4L’ sin 8

u sin S + d4w cos 8

f(~) = (5.24)

d2mpr~,~,2

Xu

2dm r2
— -
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0 0

0 0
Tu

g(77) = 0 ü (5.25)

Tw

~r.!~L 0
x”

4r~d2

Xw

0 (5.26)

0

0

= ~(r1 + Tr), (5.27)

= ~(T1 — Tr), (5.28)

Xu = m~r~ + 2I~, and (5.29)

xw = 4I~d~ + 2r~(I~ + m~d~). (5.30)

5.2 Simulations

With the ideal velocity constraints, it is possible to design the nonlinear PD

controller of the mobile platform based on the feedback-linearized system in which
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the platform Jacobian exists. However, in real case, the Jacobian mapping does not

exist any more because of the wheel slip. Therefore, the platform dynamics cannot be

linearized by nonlinear state feedback, which rules out the direct application of the

well known nonlinear control algorithms such as feedback linearization and nonlinear

PD control. One way to deal with this situation is to use the model of the mobile

manipulator subject to the ideal velocity constraints and consider the wheel slip as

the disturbance to the system. In this report, we are interested only in investigating

the robustness of the interaction controller when wheel slip is introduced to the mobile

platform. Another approach to the problem is to design a robust controller for the

platform. So far, there is only one literature available on robust control of wheeled

mobile platforms which operate under highly loaded conditions. Feng and Velinsky

(1996) showed that position tracking control using pulse width modulation is invariant

to the external forces and wheel slip. Thus, the interaction control utilizing pulse

width modulated control may prove to be very important for high load applications

of the mobile manipulator. The design of the robust controller is left to future work.

The same dimensions, physical parameters, and control parameters as with the

simulation in the previous chapter are used here with the addition of the parameters

in Dugoff’s tire friction model:

longitudinal tire stiffness C~ = 40034 N/rad

lateral tire stiffness C~ = 40034 IV/rad

friction cOefficient ~i 0.8
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The following desired trajectory used in simulation I in Chapter 5 is applied here in

simulation to the redundant mobile manipulator subject to wheel slip:

Xd(t) = 1.0528 + t/10

yd(t) = 0

Zd(t) = 0.5125 + 0.1 sin (it)

The position error of the end point, the heading angle, the angular displacement of

each wheel, the angular displacement of each joint, the position of the mobile platform,

and the control inputs are plotted in Figure 5.2 - 5.7. In addition to the uncertainty

on the mass properties of the system, wheel slip is considered as a disturbance to the

system as described in the previous section. As shown in Figure 5.2, the results of

this simulation indicate that the tracking errors does not seem to improve reasonably

fast as in the ideal case owing to the fact that wheel slip acts as a disturbance to the

system. Also, Figure 5.5 shows that the joint angles drift for a long period of time.

It is expected that the harmful effects of wheel slip can be weakened by a robust

controller for the platform (Feng and Velinsky, 1996). This would provide challenging

problems such as the tracking performance and stability of the interaction controller.

In this chapter, motivated by the work in Boyden and Velinsky (1994), we explored

the robustness problem of the interaction control scheme in the presence of wheel slip.

Our intention was to open up some potential problems of the interaction controller

for high load and high speed applications of the mobile manipulator and suggest a

suitable control design for the platform as a part of future work.
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Chapter 6

Conclusion

The contributions of this thesis to the area of the modeling and control of mobile

manipulators are given in this chapter. Then, future work based on the developments

in this thesis is discussed.

6.1 Contributions of this Thesis

Mobile manipulators are expected to play very important roles in the future in

many applications. In fact, interest in the area of mobile manipulators has increased

significantly because of their combined mobility and dexterity.

The primary goal of this research is to develop new control algorithms for a spatial

mobile manipulator subject to nonholonomic constraints and kinematic redundancy.

To achieve the goal, the actual research starts with the non-redundant mobile ma

nipulator model in Chapter 3.
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A wheeled mobile robot introduces nonholonomic constraints to the equations

of motion when wheel slip is neglected. Therefore, the mobile manipulator which

consists of a wheeled mobile platform and a robotic manipulator is also subject to

nonholonomic constraints. In Chapter 3, the solvability of tracking problem is investi

gated for the non-redundant mobile manipulator subject to nonholonomic constraints.

First, the Lagrange-d’Alembert formulation is used to obtain a concise description of

the system dynamics which is in a form well suited for closed-loop control. Then, a

nonlinear control law is derived based on static input-output linearization, and the

efficacy of the proposed control scheme is verified by simulations.

In Chapter 4, the complexity of the model is increased by introducing kinematic

redundancy which is created when a multi-linked manipulator is used. The kinematic

redundancy is resolved by decomposing the mobile manipulator into two subsystems;

the mobile platform and the manipulator. According to the redundancy resolution

scheme, the manipulator is commanded to follow the desired trajectory given in task

space and the platform is responsible for positioning the manipulator at a specified

point in the workspace to avoid singular configurations of the manipulator. This

motivates the development of the interaction control algorithm in which two nonlin

ear controllers are designed for the subsystems based on the redundancy resolution

scheme. The interaction controller consists of robust adaptive controller for the ma

nipulator and nonlinear PD controller for the mobile platform. The simulation results

demonstrate excellent tracking performance of the interaction controller.
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While the interaction control algorithm represents the significant contributions to

the area of the control of mobile manipulators subject to nonholonomic constraints

and kinematic redundancy, consideration of wheel slip might be crucial for high load

applications because wheel slip is expected to act as a disturbance to the system. In

Chapter 5, the dynamic equations of the wheeled mobile platform subject to wheel

slip are derived. The simulation results show degradation of tracking performance of

the interaction controller in terms of convergence speed to the desired error bound.

Therefore, the presence of wheel slip motivates the design of a robust controller for

the mobile platform subject to wheel slip.

6.2 Future Research

In the practical case of a desired trajectory ended by a rest position, it is known

that the mobile platform is not stabilizable at the equilibrium point by at least con

tinuous state feedback laws. To deal with this stabilization problem at equilibrium

points, we can use a hybrid strategy and switch to a stabilizing time-varying feedback

law when the trajectory enters a sufficiently small disk centered at the equilibrium.

The control algorithms for mobile manipulators were developed with the system

subjected to ideal constraints. However, in the presence of wheel slip, it was shown

that the tracking performance of the interaction controller can degrade. However, we

were able to show that the wheel slip can be modeled as a disturbance to the system

and satisfies the matching condition because the control variable and the wheel slip
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appear in the same equation. This important fact motivates various approaches to the

design of the outer ioop control to stabilize the nominal system. Then, the additional

feedback can minimize the harmful effects of wheel slip.

In this report, we considered one robotic manipulator mounted on a mobile plat

form. However, one might be interested in multiple manipulators on the same mobile

platform. Then, the combined control algorithm of the interaction control and some

kind of known coordinated manipulator control can be developed. Certainly, this

would provide challenging performance and stability problems.
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Appendix A

Sensors

in many applications of robot control schemes, state variables are used as feedback

signals. Many measurement devices and techniques have been developed to meet

the needs of accurately measuring state variables. In the following sections, state

measurement devices used in robotic manipulators and mobile robot systems are

summarized.

A.1 Angular Position Sensors

Position sensors are installed at each joint of most robotic manipulators. The

most commonly used position sensors are encoders, synchros, and resolvers.
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A.1.1 Encoders

By far digital transducers called encoders are in wide use. Three major classes -

tachometer, incremental, and absolute - are available commercially. Encoders of all

three types can be constructed as contact devices or as noncontacting devices using

either magnetic or optical principles. For the finest resolution, optical encoders are

generally required.

The encoder is mounted on the servo motor. When the motor rotates certain

degrees, the absolute position of that joint can be read from the digital output of

encoder. The resolution of the encoder is equal to 36O/2’~ degree, where n is the

track’s number.

A.1.2 Synchros

Synchros are used to measure and compare the actual angular position with its

commanded position. The error voltage is an ac voltage of the same frequency as the

excitation and of amplitude proportional to the error angle. When the error angle

is zero, the error voltage is zero and thus the system stays at rest. When the error

voltage is not equal to zero, the motor will rotate so as to return the actual position

to the reference angle.

Synchros are similar in construction to three-phase wound-rotor motors. There

are one winding for rotor and three windings for stator. In operation, the rotor is

energized with an ac voltage. The voltages induced on the three stator windings are
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precisely related to the angle of the rotor. An electronic circuit known as “synchro

converter” is used to convert the synchro output voltage to an analog or digital

representation of the rotor angle.

A.1.3 Resolvers

Resolvers are small ac rotating machines similar to synchros. In general, they

have two stator windings and two rotor windings.

A.2 Angular Velocity Sensors

In principle, the signal from a joint position sensor can be eleQtronically differenti

ated to obtain joint velocity. However, if the joint position sensor has a noisy output,

differentiating the position sensor signal can effectively magnify the noise sufficiently

to make the servo system unstable or unreliable. To overcome this difficulty, several

velocity sensors can be used to measure the joint velocity directly.

A.2.1 DC Tachometer System

A DC tachometer system consists of a voltage meter and a small DC generator

which produces an output voltage roughly proportional to speed. The latter is usually

constructed with a permanent magnet stator and a multipole wound armature. The

armature is connected directly to the rotating shaft of the servo motor which is used to
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drive the manipulator joint. When the small permanent magnet DC generator rotates

with the servo motor, its output voltage (when driving a high-impedance load) varies

in proportion to the rotation speed of the armature. Voltage output variations can

then be translated into speed changes or be used as a feedback signal to control the

robotic manipulator.

A.3 Angular Acceleration Sensors

Gyroscopes and accelerometers are used to measure rate of rotation and accel

eration. Measurements are integrated once (or twice) to yield position. These in

struments are commercially available in a wide variety of types and ranges to meet

correspondingly diverse application requirements.

A.3.1 Accelerometers

Most of the advanced accelerometers are dual axis angular tilt sensors with high

resolution, response speed, and accuracy. These sensors make use of two 2 accelerom

eters, one oriented along the X-axis and one oriented along the Y-axis, to measure

the angular tilt of an object with respect to the horizontal. Typical accelerometers

are equipped with an on-board microcontroller, A/D converter, and temperature sen

sor. The combination of temperature sensing and microcontroller yields a system

requiring no user calibration. Accuracy of commercially available accelerometers is
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typically 0.1° - 0.5°.

A.3.2 Optical Gyros

The basic optical rotation sensor consists of two laser beams traveling in opposite

directions (i.e., counter propagating) around a closed-loop path. The constructive

and destructive interference patterns formed by splitting off and mixing parts of the

two beams can be used to determine the rate and direction of rotation of the device

itself. Recently, the price of highly accurate fiber-optic gyros(also called laser gyros),

used in airplane, have come down significantly. With the price tags of S 1,000 to

$5,000, these devices have now become more suitable for many robot applications.
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