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Abstract 

For maintaining a smooth flow of traffic in the nation's highway system, sections 

of pavements that are damaged need to be serviced frequently. Among the various types of 

damage, those caused by heavy trucks are a major concern. Based on a detailed and broad 

literature survey, it is apparent that no analytical model exists which could closely predict 

dynamic pavement response and progressive damage, even qualitatively, due to truck 

loading. It is such a model that is developed in this work. In order to predict pavement 

response and damage analytically, a model will have to be based on a theory that captures 

the essential features of the pavement material. The state-of-the-art Microplane Theory, 

which has never been applied before to pavement, is chosen to model the material behavior 

in this research. The theory is implemented in a finite element code to predict tri-axial 

pavement response. The pavement material damage due to traffic loading is also presented 

qualitatively. Furthermore, using Taguchi Methods, the critical parameters in a pavement 

design are determined. Finally, the response of pavement to various joint designs 

parameters is evaluated. 
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Chapter 1. Introduction 

1.1. Summary of the Problem 

A well designed pavement, assisted by a good preventive maintenance scheme, 

ensures a smooth flow of traffic and a long service life. A pavement whose strength and 

stiffness deteriorates with time gradually fails to support the flow of traffic and eventually 

gives rise to various types of pavement distress. These distresses, when small, may 

initially cause a minor ride discomfort, but after cycles of traffic loading, grow adequately 

large to disrupt the flow of traffic. This costs considerable time and money. It is estimated 

that the United States government's annual expenditure on road maintenance caused by 

heavy vehicles is 9 billion dollars (Cebon, 1993), and this does not reflect the time lost in 

traffic hold-ups. Any means to curtail this expenditure is therefore highly desirable. 

Among the wide spectrum of damage, including those having natural and 

catastrophic origins, the category of damage initiated by traffic is a chief contributor to 

pavement distress. The most severe in that category is the fatigue cracking caused by a 

dynamic transfer of forces from the vehicle tires onto the pavement. In order to plan better 

for the maintenance schemes and design longer lasting pavements for the future, the 

response of a pavement to a given dynamic loading needs to be fully understood. 

Additionally, variation in response with each cycle of traffic loading needs to be predicted. 

This prediction would then caution the highway engineers of an impending distress so that 

necessary maintenance could be appropriately planned. Predicting pavement response and 

damage experimentally is expensive, cumbersome, and can be disruptive to the flow of 

traffic. An analytical model can simulate the dynamic response in a more efficient manner 

and with this idea a literature survey was conducted to ascertain the status of such research. 

However, the literature search will show in the subsequent pages that no such analytical 
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technique exists today, capable of predicting a realistic pavement response due to the 

dynamic loading of a vehicle. Moreover, none exists that can identify even the sensitive 

design parameters responsible for pavement's dynamic performance and damage potential. 

This thesis establishes a major step to such a novel analytical technique capable of 

predicting the dynamic response of a pavement and identifying damage qualitatively. 

1.2. Focus 

Among the types of pavement in service (flexible, rigid and composite), rigid 

pavement is the subject of this research. A typical cross section of a rigid pavement 

(Huang, 1993) is shown in Figure 1.1. The depth of the layers marked by hI and h2 in 

Figure 1.1 are usually within the range of 0.15 - 0.3 m (0.5 - 1.0 ft) and 0.1 - 0.3 m (0.3 -

1.0 ft) respectively. Rigid pavements are constructed of Portland Cement Concrete (PCC), 

and in contrast to flexible pavements, they are placed either directly on the prepared 

subgrade or on a single layer of granular or stabilized material. The rigid pavements are 

paved in section and employ various types of joints for connections and load transfer 

across them. 

Portland Cement Concrete 

1-
Base or Subbase Course Mayor May Not Be used 

Figure 1.1: Typical cross section of a rigid pavement 

hI 

h2 

Fatigue cracking has long been considered the major failure criterion for rigid 

pavement design. The focus of this work is to develop an analytical tool to predict the 

pavement response and the onset of these damages in Plain Concrete Pavements (PCP). 

2 
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This can lead towards the planning of preventive maintenance. Also, the intent is to be 

capable of analyzing future design and construction of Transversely Jointed Plain Concrete 

Pavements (TJPCP) for a wide range of traffic loading and pavement construction 

environments. 

1.3. Summary 

In this chapter, the specific problem of modeling pavement response and predicting 

damage under traffic loading is identified. The research will focus on the response of Plain 

Concrete Pavements. Additionally, the response of Transversely Jointed Plain Concrete 

Pavements under dynamic loading will be investigated in this dissertation. 

3 
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Chapter 2. Summary of Literature Search 

2.1. Objective of the Literature Search 

As mentioned earlier, pavement-vehicle interaction is the leading cause of 

pavement distress. For predicting the response analytically, a vehicle model to compute the 

vehicle loads and a pavement model that uses those loads, can be used to generate the 

material response. Accordingly, an in-depth literature search has been conducted to 

establish the state-of-the-art in several areas that are relevant to the pavement-vehicle 

interaction problem. 

2.2. Survey 

The areas surveyed encompass nine groups, as follows: Physical Observation, 

Fracture Mechanics, Statistical Mechanics, Micromechanics, Plasticity and Continuum 

Mechanics, Finite Element Methods, Damage Assessment on the pavement side and 

Vehicle Modeling and Tire Modeling, on the vehicle side. This section briefly describes the 

status of research in these various areas. 

2.2.1. Papers on Physical Observation 

Concrete, which is a primary building block of the pavement, shows certain types 

of physical behaviors, most of which are evident from a physical inspection of the material. 

Those characteristics are: (i) Brittleness, (ii) Cracking, (iii) Fracture, (iv) Strain-Softening, 

(v) Highly nonlinear stress-strain relationship, (vi) Inclusion toughening (vii) Notch 

Sensitivity, and (viii) Size-Effects, illustrating the complex nature of concrete. Shah et al. 

(1991) recommended that at least the first five should be represented by any reasonable 

model of concrete for purposes of analyzing pavement. 

4 
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To acquire knowledge of concrete through a series of tests in a laboratory, the same 

type of concrete specimens having the same size and constituents must be used in each of 

those tests. Otherwise, the 'size effect' (Bazant et aI., 1984) could become dominant 

particularly at high strain rates in the tension-softening regime of the stress-strain curve. 

Notch Sensitivity in concrete is also very significant when compared to metals like grey 

cast iron. For example, in the case of fracture tests, like the Izod Impact Test (Askeland, 

1993) which requires a V-shaped notch on the specimen, the specimens should all be the 

same size and have identical specifications for the notches to produce experimental data 

from which a generalized inference about concrete behavior can be drawn. Much research 

conducted (Barsom, 1977; Aifantis, 1984; RILEM, 1985; Shah et al., 1991) brings out 

this difficulty in experimentally quantifying the generalized properties of concrete. 

To simulate the response of a concrete part using finite element methods, one has to 

overcome the mesh dependencies caused at the onset of cracking. It is also difficult to relate 

an experimental fracture to a state of failure in the numerical modeling of concrete. Fracture 

in a concrete specimen tested in a laboratory is abrupt (Askeland, 1993), whereas in an 

analytical model, the damage may be slow and mesh dependent. Moreover, if the element 

size is not related to the aggregate size of the concrete used, the simulated damage tends to 

get confined to the width of the element being used. Researchers (Kotsovos et aI., 1978; 

Shah et aI, 1991; Souma et aI., 1994) emphasized this problem in numerically simulating 

the concrete fracture phenomena. Based on the extensive literature reviewed, it appears that 

no technique exists today that could predict all the above features for concrete. 

2.2.2. Papers on Fracture Mechanics 

From a fracture mechanics point of view, concrete, is known as a brittle 

heterogeneous material in which fracture is preceded by a large fracture process zone of 

variable size. The determination of the fracture energy of concrete has been difficult. 

Numerous papers address these problems (Bazant et aI., 1983-1991; Chen et aI., 1986, 

5 
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1989; Cook, 1989; Giaccio, et aI., 1993; Hillerborg, 1985; Landis et aI., 1990; RILEM, 

1985; Taylor et aI., 1986). Some researchers have observed crack growth and damage and 

have built analytical models based on the principles of linear elastic fracture mechanics to 

model cracking (Taylor et aI., 1986). It was suggested that a micromechanics based 

approach, similar to the 'slip theory' in metals, might be studied further (Bazant et aI., 

1983-85), Using fracture mechanics concepts, a method to calculate crack width for a 

monotonic loading was presented by Gerstle et aI. (1992). 

Some researchers have carried out numerical simulations of a center-cracked 

concrete specimen subjected to a step tensile pulse (Giaccio et aI., 1993). Hillerborg, 

Modeer, and Petersson (1985) introduced a 'fictitious crack model' (FCM) which assumed 

that the zone at the tip of a crack is long and infinitesimally narrow, and this zone was 

characterized by a normal stress-versus-crack opening displacement curve, which was 

considered a material property. 

Tension softening behavior in concrete had been predicted by some constitutive 

models (Bazant et aI., 1988-91; Landis et aI., 1989). The localization of the damage zone 

near a crack was also predicted to some degree by their models. This failure localization 

and size-effect of concrete for small specimens and the formulas to determine their fracture 

energies were also discussed, and a strain-averaging concept (later called 'nonlocal') was 

developed (Bazant et aI., 1990). However, the other characteristics of concrete, pointed out 

in the previous section, as well as the effects of load reversals, have yet to be modeled by 

the fracture mechanics researchers successfully. 

2.2.3. Papers on Statistical Mechanics 

A number of papers in the general area of Statistical Mechanics are relevant to this 

study in that many researchers have tried to quantify the various heterogeneous 

characteristics of concrete material by using Statistical Mechanics. Some have used 

statistical theories to develop constitutive modeling as an extension of their earlier work on 

6 
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plasticity applied to metals (Bazant, 1991a; Chen 1986,1989; Chen, 1982,1988). These 

papers basically involve 'an estimate' of the failure probability of concrete and assume 

failure to be a sudden random event. The results from these approaches do not correlate 

well with experimental data, except for simple cases like uniaxial tension and compression, 

and hence these approaches are unsuitable for our purposes. 

2.2.4. Papers on Plasticity and Continuum Mechanics 

Engineers working in the area of Plasticity and Continuum Mechanics have also 

studied the response of concrete and predicted its cumulative damage due to fatigue 

loading. They have discussed the consequences of using different postulates (such as, 

Drucker's and Il'yushin's) from the theories of plasticity (Mizuno et aI., 1992; Chen, 1986; 

Chen et aI., 1990; Dragon et aI., 1979; Drucker, 1950; Drescher et aI., 1993; Il'yushin, 

1961; Kupfer et aI., 1969). Researchers (Dafalias, 1986; Ortiz, 1984; Stevens et aI., 1992) 

employed plastic failure and damage theories from metals (Nadai, 1950) and applied them 

for concrete. Although these constitutive models required a modest number of constants 

(10), in general, they do not perform well at strain-softening and beyond. 

2.2.5. Papers on New Finite Element Formulation 

The majority of the current papers surveyed in this category had one broad 

objective: to develop a new type of an element to model a single crack (Brebbia, 1985; 

Cofer, 1992; Hibbit, 1993-94; Oliver, 1989; Schreyer, 1990; Taylor et aI., 1986; 

Zienkiewicz, 1977, 1992). Krawczuk (1994) simulated crack propagation for point loads, 

and the algorithm used was based on Zienkiewicz's method (1992) for thin, non-cracked 

shell elements. Roelfstra et al. (1985) introduced fracture analyses based on discretization 

of the material into three component structures: aggregate, matrix, and aggregate-matrix 

interface. He termed these three structures combined as a 'mesoscale structure'. 

Nirmalendran et al. (1992) adapted this technique to model the energy distribution at the 

7 
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forming microcrack. The above research was continued by Bolander et aI. (1994) who 

employed an artificial neural network (Kosko, 1992; Masters, 1993) to track interfacial 

strength among grain boundaries of the concrete particles which were modeled by a lattice 

finite element structure. His research assumed all other properties and responses to be 

constant over the range of specimens examined and is only applicable for modeling a three

dimensional response under monotonic loading. Kawai et aI. (1978) introduced the concept 

of rigid particles interconnected by flexible interfaces to model concrete response. Ghosh et 

aI. (1996) extended this concept and used Voronoi polygons to model the geometry of each 

concrete particle. Each polygon formed a rigid finite element which gave satisfactory results 

only for two dimensional problems and under monotonic loading. Toi et al. (1993, 1995) 

extended Kawai's approach to model cracking. However, none of the noted papers have 

addressed techniques to initiate a crack gradually from an undamaged material. 

Additionally, element response to load cycling or strain rate effects is not addressed. 

2.2.6. Damage Assessment and Experimentation 

Researchers have tried to assess damage through experimental techniques for 

materials that are brittle and prone to cracking (Marshek et aI., 1989; Mitchell et aI., 1991; 

Matthews et aI., 1993; SHRP Report, 1993). Notable among those techniques is Acoustic 

Emission (Matthews et aI., 1993). Some researchers used improved laboratory procedures 

to measure characteristic properties of asphalt and concrete experimentally. These 

procedures have been discussed in detail with a lot of experimental data (Drescher et aI., 

1993; Landis et aI., 1989; Matthews et aI., 1993; Roque et aI., 1992-94; Uzan et aI., 1994; 

Van Dijk, 1975,1977; van Mier, 1984). Of particular interest, one investigation has studied 

the effect of truck tire inflation pressure and axle load on flexible and rigid pavement 

performance (Marshek, 1985a,1985b,1989). In general, these papers are test-oriented and 

do not analytically approach material modeling. However, they are good sources for 

8 
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various material constants (e.g., elastic modulus, Poisson's ratio, density, etc.) as well as 

providing a means for verifying the analytical results in this dissertation. 

2.2.7. Papers on Micromechanics 

Papers on Micromechanics (Bazant, 1985a and 1985b, 1988, 1990-1996) are the 

ones most relevant to constitutive modeling of concrete. The theories based on 

micromechanics take into account the granular heterogeneous nature of concrete and are 

based on the response at any point in concrete along all possible planes passing through 

that point. The Microplane Theory, as proposed by Bazant (1988), forms the basis for the 

micromechanics examination of concrete in this study. This theory has opened new 

frontiers in analytically formulating the brittle behavior of geomaterials (concrete, rock and 

ceramic). 

The Microplane Theory calculates an actual response of concrete at a point strained 

along arbitrary orientations called Microplanes. This formulation is also versatile enough to 

capture discontinuities and heterogeneties associated with a composite material such as a 

multilayered reinforced pavement. Figures 2.1 and 2.2 show the typical features 

represented in the microplane formulation. Figure 2.1 shows the response to a cyclic 

loading. Figure 2.2 shows the nonlocal strain with mesh size effects. 

It must be noted that a simulation of cyclic response is essential for damage 

prediction in concrete pavements. A well-defined cyclic loading scheme should have the 

rules defined for loading and unloading. It should also be able to capture progressive 

damage, strain softening and plasticity. Bazant's research has demonstrated all of those 

features. However, Bazant has not implemented his theory in a three dimensional finite 

element code or in any highway environment. 

9 
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-10000 

E-20000 

a:-JOOOO 
'0 
] -40000 

y 

t 

FIG... Flnlte-_ ~ for van Mier'. (1174) SpecItMns 

, , 
.,' 

-50000 ::::..: :='~'O~~' vg~IC~~[ion '0-5 :..::: !1~~'l!b!I!~~:~jer 
- loco I calculotion Ox - nonJocol 25-element 

-6000~8 -6 _.. -2 0 0 -6 - - local 2S-element 
-6 -4 -2 

deformation 6, (lO-2cm) oxial strain t,., (10-3) 

FIG. 9. (a) ComporllOll with van MI",'a (1084) T .. 1a on Effect 01 HeIght_Width 
R1110; (b) Comporlaon with Cyclic Uniaxial Com",,"1ve Teat by von Mlor (1084) 
(Noniocol 25-Element Calculation, Local 25-EIornenI Calculation and Single EIe
menl calCUlollon) 

Figure 2,2: Finite Element Meshes used (top) and van Mier's tests (van Mier, 1984) 

compared with analytical results from Bazant (1993b). 

2.2.8. Papers on Vehicle Modeling 

Papers on vehicle modeling are very important for understanding the dynamic 

interaction between a vehicle (truck) and the pavement. Work done by researchers at the 

University of Michigan Transportation Research Institute (UMTRI) is particularly 

10 
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noteworthy (Cebon, 1993-96; Gillespie, 1992-93a; Goktan et aI., 1995). The papers in this 

category have considered various issues including: 

• The static load carried by each tire (Cebon, 1993). 

• The dynamic variation of load at each tire (Gillespie, 1993a and 1993b) and spatial 

repeatability of the wheel load histories (Collop et al., 1996; Jacob, 1995). 

• The nature of the pressure distribution (normal stress) arising from the total load (static 

and dynamic) which is applied to the surface under the tire (Cebon, 1993). 

• In-plane forces which are applied to the surface in the form of shear stresses (Gillespie, 

1992). 

• Design of truck suspension components for stiffness and damping, and the speed 

dependencies on pavement response (O'Connor et aI., 1996; Streit et aI., 1995; Gillespie, 

1992-93; Mitchell, 1991). 

• Effect on the pavement due to the tire forces and reduction of stiffness for flexible 

pavements (Cebon, 1994,1996; Chatti et aI., 1995; Papagiannakis, 1996). 

• Damage potential of the multi-axle vehicles (Gillespie, 1993; Goktan, 1995). 

Gillespie (1992-1993) used a rigid body planar model (Figure 2.3) with lumped 

masses connected by compliant linkages to represent the suspension. The results (Figures 

2.4 and 2.5) reproduced from this work compare the differences between the measured and 

simulated values of axle force plotted against frequency values. 

11 
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Rigid body model of a tractor-semitrailer. 

Figure 2.3: Truck Model (Gillespie, 1993). 
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10 

Figures 2.4 & 2.5: Simulated Results (Gillespie, 1993). 

The results from these papers are indicative of the successful simulation of the pitch plane 

model up to a range of axle-hop resonance. Some differences were due to the tire 

deformations, others were due to the pavement being treated as linear elastic and used 

mostly as a 'blackbox' (Goktan et aI., 1995; Padovan, 1986a,b and c). 

• Some researchers have also noted the damage susceptibility of the road materials to 

vehicle speed and to the frequency content of the applied loads (AASHO, 1962; Alpan, 

1977; Battiato, 1977; Bhatti et aI., 1994; Christison, 1978; Cryer et aI., 1976; Eisenmann, 

1975; Ferne, 1972; Hallquist et aI., 1989,1995; Hardy et aI., 1988,1993; Nazarian, 1989; 

Peattie, 1978; Sebaaly et aI., 1988). 

12 
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• Vehicle researchers have also discussed the variations in pavement layer thickness and 

material properties. An example of this variation in the properties from a special purpose 

test track: layer thicknesses-typically ±20 %, moduli-typically ±30 % and deflection under 

a standard load-typically ±25 %. They also discussed the nonlinear nature of pavement 

response (Gillespie, 1992; Jain, 1979; Lai, 1994; OEeD, 1985). 

• Two other approaches to estimate road damage due to dynamic tire forces are a) 'Road 

Stress Factor' (Eisenmann, 1975) and b) 'Whole Life Models' (Papagiannakis et aI., 

1996). 'Road Stress Factor' uses the assumption that road damage depends on the fourth 

power of the instantaneous wheel force. 'Whole Life Models' uses an empirical 

relationship between the wheel force and the change of road surface profile. 

In summary, three remarks may be made about this category of papers. First, the 

researchers working in this area looked into pavement response from a vehicle point of 

view. Second, none of the above researchers could provide any technique for the 

development of a predictive tool to simulate dynamic pavement response and damage. Last, 

they however provided extensive test data on areas like prediction of influence function, 

and measurement of vehicle parameters (e.g., truck weight, size, suspension and other 

component characteristics, etc.) which could be used to develop analytical models. 

2.2.9. Papers on Tire Modeling 

Notable work on viscoelastic tire modeling has been done by Padovan (1986a,b, 

c). The trend in the pavement community (Huang, 1993) has been to use circular or 

elliptical patches to represent the area of a moving vehicle-tire in contact with the pavement. 

Padovan's three part series of papers published in 1987 dealt with a more realistic approach 

to analytical tire modeling in which he developed a generalized finite element scheme to 

handle the steady and transient response of moving/rolling nonlinear tire. The solution 

strategy involved very complex mathematical functions with a series of operations at each 
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step. He modeled the tire with 20,000 elements and his extensive mathematical schemes, 

which involved numerous computations, had to be exercised on a supercomputer. His 

formulations involved parameters that needed extensive testing and bench marking for an 

environment similar to the highway's. Padovan's technique would thus be impractical for 

our specific use. 

2.3. Status of Other Analytical Methods 

As the literature search has revealed, the status of technology in the area of concrete 

pavement modeling is still in its incipient stages. While there has been a wealth of work, 

the complex nature of its properties has precluded the development of a model to predict 

cyclic response and damage in pavement analytically. To follow, the available tools to 

perform such a study are summarized. 

2.3.1. Commercial Arena 

The commercial codes available as analytical tools to model concrete as a structural 

material cover a broad range. Most of them are Finite Element Method based software 

(e.g., ANSYS, ABAQUS, NIKE3D, NISA, IDEAS, NASTRAN, DYNA3D, PROBE, 

SAP, COSMOS, ADINA etc.) that could provide commands or user interfaces to help an 

user build a structural model. However, even the most advanced and widely used large 

codes (e.g., ABAQUS, ANSYS and DYAN3D) have yet to provide a model of concrete or 

asphalt in its material library that could capture a realistic constitutive response of a 

pavement under dynamic loading, varying strain rates, or cyclic loading. Table 2.3 lists the 

relevant Finite Element Method based software that have been surveyed for this thesis. 
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Codes Static Transient Harmonic Buckling Fracture Heat Notes 
Post and Pre Transf. 

Abaqus * * * * * * * Nonlinear 
Adina * * * * * * * 
Ansys * * * * * * * Diverse 
A-Sap * * * * Soil 
Asas * * * * Fluid 
Aska * * * * * * 
Beasy * * 
Bersafe * * * * * 
Castem * * * * * * Fluid 
Castor * * * * * * 
Chalm * * * * * * Transient 
Comet * * * 
Cosmos * * * * * * * 
Dart * * * 
Dial * * * * 
Diana * * * * * Cracking 
Dream * * * 
Fasor * * * * 
Felco * * * * 
Fenris * * * * * 
Fidap * * * Buoyancy 
Flash2 * * 
Fluent * * Fluid 
Lawpile * * 
Lisa * * * * *. 
Lusas * * * * * * 
Marc * * * * * * 
Micas * * * Nonlinear 
Mix * * * 
Model * * * 
Modulef * * * * Hybrid 
Nastran * * * * * * Static etc. 
Pafec * * * * * * Seismic 
Patran * * 
Pecet * 
Pre fern * 
Rafts * * 
Scia * * * * 
Sesam * * * * * * 
Set, Star * * * Concrete 
Statik * * 
Stdynl * * * * * 
Strudl * * * 
Thafem * * Phase Ch. 
Titus * * * * * * * Earthquake 

Table 2.3: Survey of FEA based softwares in the commercial arena 
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PC based software is plentiful, but none predict fatigue or cracking accurately, as 

most assume a linear or nonlinear elastic behavior while using empirical or semi-empirical 

constitutive relationships. Some of the plasticity based codes (like ANA CAP 95) use 

smear-cracking and a stiffness degradation approach. Such approaches have convergence 

problems especially in the post-peak softening range, as well as for cyclic loading. It must 

be again noted that strain softening, microcracking, rate, temperature, creep and size effects 

(Bazant et aI., 1984) are some of the features that must be captured in modeling concrete 

response. The commercial programs, even though user-friendly, are not capable of 

modeling the initiation of cracking and accumulation of damage due to a time varying load. 

It is this cracking and damage prediction that is especially relevant to this thesis. 

The methods of flexible highway pavement design can be classified into five 

categories: empirical methods with or without a soil strength test, limiting shear failure 

method, limiting deflection method, regression method based on road test and mechanistic

empirical method. Each of these approaches has their shortcomings as follows. The 

empirical methods (Porter, 1950) can only be applied to a given set of environmental, 

material, and loading conditions. The limiting shear method (Yoder and Witczak, 1975) is 

based on barely preventing shear failures. The limiting deflection method (Kansas State 

Highway Commission, 1947) does not work properly for cases where pavement failures 

are caused by excessive stresses and strains instead of deflections. The regression method 

(Hall et aI., 1989) has design equations that can be applied only to the conditions at the 

road test site. The mechanistic-empirical methods (Huang, 1993) are still at a research 

stage. 

There are a whole variety of small scale pavement computer programs prevalent in 

the highway community (e.g., KENSLAB, KENLAYER, VESYS, ILLI-SLAB, ILLI

PAVE, MICH-PAVE, SAP etc.). In general, the underlying methods use empirical 

relationships which operate in an elastic range. While any of these programs are valuable as 

a preliminary design tool, they have not succeeded in capturing the fatigue response 
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accurately. These computer programs thus fail to deal with phenomena like damage due to 

stress reversal, strain localization, size effects, etc. Moreover, they use Miner's rule (1945) 

based on a one-pass linear response under static monotonic loading to predict concrete 

damage, and hence they do not perform well. 

2.3.2. Academic Arena 

The literature survey had also shown that among all the constitutive models used to 

represent concrete type heterogeneous material behavior, Bazant's Microplane Theory is the 

best among those that captures the essential characteristics like tri-axial response, cracking, 

strain softening, damage (mechanical and thermal), etc. for concrete and other 

geomaterials. However, this theory has yet to be applied to pavement modeling in any 

highway environment. 

2.4. Justification for this Research 

Pavement is a multilayered, non-homogeneous anisotropic structure and 

understanding its response to vehicle loading behavior essentially involves understanding 

its structural characteristics. One of the most important structural materials used in the 

pavement today is concrete (PCC) and its response to vehicle loading, as seen from current 

research, is highly nonlinear (Gillespie, 1992; Goktan et aI., 1995; Huang, 1993). This 

nonlinearity arises out from the inherent heterogeneity of the concrete material itself. 

Engineers have used pavement models to predict its behavior, but as our survey has 

shown, no good correlation exists today that has reproduced three-dimensional concrete 

response to a cyclic loading up to the peak-stress value or even a two-dimensional response 

beyond the post-peak strain-softening range. 

The behavior of concrete could be different for different loading rates and also for 

different types of loading. In particular, the pavement is extremely damage prone to cyclic 
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loading, which accelerates fatigue and damage. If temperature gradients are considered, the 

strain sensitivity of concrete to cracking can worsen. The problem is further complicated 

when cracking is to be simulated in a three-dimensional stress state due to a dynamic traffic 

loading. To add to this problem, we recall that a highway pavement could actually be a 

multilayered material of varying thickness having joints (Jointed Plain) and reinforcements 

(Jointed Reinforced). Prediction of the damage response of concrete involves 

understanding the constitutive characteristics of the virgin concrete material itself. 

However, as mentioned earlier, experimentally measuring a pavement response is 

expensive, disruptive and not practicable, so analytical modeling is essential. This work 

employs a novel analytical approach based on Microplane Theory to capture the essential 

characteristics of concrete. 

Simulation of a traffic loading, being inherently transient and nonlinear, is difficult. 

This loading on the highway is through the vehicle tires which deform when the tires load 

the pavement. However, good literature sources are available that have estimated the 

vehicle loading on the pavement (see Section 2.2.8). Thus, by combining the vehicle 

loading history from these sources with a (Microplane Theory based) pavement model, the 

response can be more efficiently predicted through analytical means. 

Through analytical modeling, it is relatively simple to simulate jointed pavement. 

Thus the joint design can be guided with the above tool to determine the best joint 

parameters in a highway environment. 

2.5. Summary 

In this chapter two objectives are fulfilled. First, a detailed literature search 

identified the need for a predictive tool in the area of pavement response modeling. The 

literature search was divided into nine different categories relevant to the modeling of the 

vehicle pavement interaction and the resultant damage. Second, the search identified the 
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Microplane Theory as the one best capable of capturing the material response of concrete. 

This theory has never been implemented in a 3-D finite element code or in any highway 

environment. 
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Chapter 3. Microplane Theory 

3.1. Introduction 

The literature search in the last chapter identified Bazant's Microplane Theory to be 

the one best capable of capturing the concrete properties most important for modeling 

damage in highway pavement. Accordingly, in this research the Microplane Theory is 

employed to model concrete pavement response. This chapter presents the important 

features of this theory. The theory will be implemented for the study of pavement in later 

chapters. 

3.2. Bazant's Microplane Theory 

Bazant's Microplane Theory is based on representing the material's constitutive 

laws by a relation between the stress and strain components on planes of various 

orientations. These planes may be imagined to represent the damage planes or weak planes 

in the microstructure, such as contact layers between aggregate pieces in concrete. The 

history of the general approach underlying the Microplane Theory had been developed 

initially for plastic polycrystalline metals (Taylor, 1938). Bazant pursued the approach to 

develop his own formulation and coined the term 'Microplane Theory' in 1983 in 

application to geomaterials. His research has continued since then and here, his revised 

work published in the 1992-96 time frame is to be applied. The theoretical framework of 

the work is based on the three hypotheses given below. 

Hypothesis I : The normal and shear (tangential) strains cn and ct on a microplane 

of unit normal are the resolved components of the macroscopic strain tensor cij in that 

direction, which implies that 

20 

Copyright 2011, AHMCT Research Center, UC Davis



(3.2.1) 

(3.2.2) 

Additionally, the normal strain is split into two parts, the (mean) volumetric part 

and the deviatoric part, which are expressed as 

(3.2.3) 

(3.2.4) 

Hypothesis II: Associated with the three strains c
V

' Cd' cl' three corresponding 

stresses a v ' ad' at exist so that their respective products give directly the work done on a 

microplane. The stress-strain laws at this level are a set of relationships, defining the 

evolution of each of those three stresses as a function of the three microplane strains (and 

possibly their histories). The stress-strain laws can be written as 

(3.2.5a) 

(3.2.5b) 

(3.2.5c) 

where F represents the functional relationship between stress and strain discussed in 

Appendix F and the subscript (v, d or t) represents the microplane component (volumetric, 

deviatoric or tangential). 

Hypothesis III: The relationship between the microplane stresses a v ' ad' at and 

the microscopic stress tensor a ij is obtained by applying the principle of virtual work. The 

expression for the incremental macroscopic stress is then expressed as 

(3.2.6) 

21 

Copyright 2011, AHMCT Research Center, UC Davis



A salient feature of this model is that the computation of the stress corresponding to a 

prescribed strain increment of finite size is fully explicit. 

The Microplane Theory uses a kinematic constraint which means that the 

microplane strains are equal to the resolved component of the strain tensor on the plane. 

This is opposed to a static constraint which means that the microplane stresses are equal to 

the resolved component of the stress tensor on that plane. The idea of static constraint was 

used in metals (Batdorf et aI., 1949) and geomaterials (Pande et aI., 1983). Bazant (1983) 

found that to represent the behavior of quasi-brittle materials such as concrete or rock, 

showing strain softening, a kinematic constraint was necessary. 

The basic scheme for the computation of macroscopic stresses from the 

macroscopic strain is shown in the Table 3.2. As shown there, using the kinematic 

constraint, the given strain input is resolved into 3 types of component strains (volumetric, 

deviatoric and in-plane components). Microplane laws relate each component strain with a 

corresponding component stress. The principle of virtual work is then applied to combine 

the component stresses to generate a stress tensor. 

Macroscopic Level Microplane Level 

STRAIN cij (input) Kinematic Constraint 
) 

cv,Cd,C'j 

J, 

Microplane Laws 

J, 

STRESS O"ij (output) ~ 
Principle of Virtual Work. O"v'O"d'O"t, 

Table 3.2: Macroscopic stresses from macroscopic strain 

The relationship between the microplane stresses and strains are expressed as 
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(3.2.7) 

(3.2.8) 

(3.2.9) 

where Cv,Cd,CI represent the volumetric, deviatoric and shear secant moduli, given by 

(3.2.10) 

(3.2.11) 

(3.2.12) 

In equations 3.2.10-3.2.12, wv ' wd ' WI represent the volumetric, deviatoric and shear 

damage. 

3.3. Damage Rule 

Damage as expressed in the Microplane Theory, is inherent to the microplane 

constitutive laws. The degradation in the volumetric, deviatoric and secant moduli is 

expressed in terms of the damage variables as follows 

1 1

1'1 

for cv~O; wv=1-(exp- :i ) 
1 1

1'1 

for Cd ~ 0; Wd = 1- (exp- :~ ) 

for cd<O; wd=1-(exp-I:~r2) 

for CI ~ 0; WI = 1- (exp_I:;l
k

) 
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In equations, 3.2.13 to 3.2.16, the parameters pI, p2, aI, a2, a3, a3° and Ka are material 

constants, and a3 is expressed as 

a3 = a3° + Kacv' (3.2.17) 

The stress-strain curves for each microplane are path-independent as long as there is 

no unloading on the microplane. During each unloading and reloading, each microplane 

response is defined individually and these responses are path dependent. For further details 

on the material constants and their relevance to Microplane Theory, the interested reader is 

referred to Appendix F as well as the reference (Bazant, 1988-96). 

3.4. Summary 

In this chapter, the various features of Bazant's Microplane Theory are briefly 

explained. The constitutive laws for volumetric, deviatoric and in-plane components were 

discussed, and the damage rule defining the degradation of different component moduli in 

any microplane was stated as well. This chapter has been purposely concise, and the 

interested reader is referred to the numerous papers of Bazant for any additional 

information. 
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Chapter 4. Implementation of the Microplane 
Theory 

4.1. Introduction 

The focus of this research is simulating concrete pavement response to traffic 

loading. With that objective, the Microplane Theory, as described in the previous chapter, 

best describes the concrete material behavior under cyclic loading and in particular, can be 

applied to Portland Cement Concrete in the highways. However, this theory has neither 

been implemented in a 3-D finite element code nor has it been applied to modeling the 

highway. Accordingly, the first phase of the research revolves around the numerical 

implementation of the Microplane Theory in a finite element code. A computer program 

applying the Microplane Theory for this implementation in Fortran 77 is developed. This 

program is included in Appendix E. This chapter describes the various aspects of this 

numerical implementation. The next chapter will discuss the validation of the developed 

program with known test results. 

4.2. Constitutive Implementation 

The constitutive implementation is carried out with the help of an user interface 

module which linked the Fortran subroutines written for this purpose, to the large scale 

finite element solver Abaqus (Hibbitt, 1994). The user interface module (called VUMAT) 

was programmed so that the constitutive calculations are performed following the 

developed numerical integration scheme at each element integration point, for each 

increment, and during each load step. Large scale nonlinear finite element codes like 

Abaqus have capabilities to interpret these interface modules so that users may introduce 
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their own constitutive model via Fortran 77 subroutines. It was necessary to numerically 

code the subroutine so that it would integrate the solution dependent state variables, 

stresses, energy measures, etc., to the end of the increment, and provide the Jacobian 

matrix a/j.(Ji for use in the overall Newton scheme. The required number of material 
a/j.cj 

constants, as formulated in the Microplane Theory are introduced through this input module 

for use in the developed explicit program. Provisions for storage have been incorporated at 

each material calculation point for any number of solution dependent state variables. The 

interface of the developed program provided the state at the beginning of each increment 

and the kinematic solution at the end of the increment. The user module is then linked with 

the Abaqus Finite Element Solver to solve the equation in accordance with the developed 

numerical routine and to graphically represent the results (post-process). The steps 

involved in the implementation of the Microplane Theory are summarized below. 

• The constitutive equation (3.2.6) below is rewritten, and expanded for different values of 

i, and j and the volumetric, deviatoric and in-plane contributions are separately incorporated 

into the developed algorithm. This is done at each integration point, depending on the type 

of 3-D finite element chosen. For example, for i = j, the contribution to the macroscopic 

stress tensor is only volumetric and deviatoric as the tangential contribution becomes zero. 

(3.2.6) 

• The strain tensor is to be computed from the Deformation Gradient. The Abaqus user 

module provides the deformation gradient at the start of each increment. So at each 

integration point of an element, the deformation gradient tensor (denoted by F) at the start 

of each increment is called by the developed numerical program. 

The deformation gradient is then used to compute the strain increment /j. E, as 

described next. First, it is noted that the subscripts 'new' denotes the state at the end of an 
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increment and 'old' denotes the state at the beginning of that increment, so that we can 

express ~ E as 

~E=E -E 
- flew - old 

(4.2.1) 

First, the developed Fortran program calculates the Green deformation tensor given by: 

C =F T 
- old - old 

where C is the Green Deformation Tensor at the beginning of any increment. 
- old 

Then the Lagrange Strain Tensor at the beginning of any increment, is calculated as 

E 
1 

= 2 (0-~) 
- old 

Dropping the subscript 'old' we have from 4.2.3 and 4.2.2 : 

(4.2.2) 

(4.2.3) 

FlIF12 + F12F22 + F13F23 

F212 + F\2 + F223 -1 
FlI F13 + F12F23 + F13F33 1 
F12F]3 + F22F23 + F23F33 . 

F2
13 + F223 + F211 -1 

(4.2.4) 

Similarly, E ,the strain tensor at the end of the increment, is calculated as above from 
- flew 

F at the end of same increment. 
- new 

After the developed program has calculated the incremental strain tensor ~ E from 

equation 4.2.1, it resolves ~E into ~£v' ~£d and ~£t using the kinematic constraints 
- I 

(equations 3.2.1 - 3.2.4). The program employs the microplane constitutive laws (eqns. 

3.2.7, 3.2.8, and 3.2.9) to calculate the corresponding volumetric, deviatoric and 

tangential incremental stress components (~(Jv' ~(Jd and ~(Jt respectively) according to the 
I 

microplane flowchart shown in Figure 4.2. While calculating the various strains and 

stresses, the program performs various checks to assure the accuracy in the numerical 

scheme. These checks will be described in section 4.3. 
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The developed program also integrates equation 3.2.6 in accordance with 

hypothesis III, to return the incremental stress tensor re-written below from Chapter 3, 

(3.2.6) 

The stress at a given integration point is then calculated by the developed program as: 

(5.. = d(5.. + (5 .. 
IJnew IJ 1Jold 

(4.2.5) 

The microplane flow chart of Fig. 4.2 represents the numerical routine describing 

the Microplane Theory. 
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• Read Model Parameters at time t = to 

• Read initial state including, history variables at time t = to 

• Read via user module the p~scribed !:ie increment 

Volumetric Computations 

• Compute e: and !:iev from e and!:ie using Hypothesis I 
-n 

• Apply the volumetric law: 
• Read in: Initial state (e: and two volumetric history variables, state variables) and 

prescribed !:i ~ v), e v max and ev min at t = to 

• Write out: New (J'v' Ev"" and volumetric 'state variables' for time t = tn+1 

• Update and store e:""" and e~n 

Compute new ev = ev' + !:iev for t = tn+1 

Loop over all the rnicroplanes 

Deviatoric Computations 

• Compute e~ and !:ied from e and!:ie using Hypothesis I 
-n 

• Apply the deviatoric law: 
• Read in: Initial state (e~ and two deviatoric history variables, state variables) and 

prescribed !:ie ). e/= and ed min at t = to 
-d ' 

• Write out: New (J'd' Ed tan and deviatoric 'state variables' for time t = tn+1 

• Update and store e:;"" and e:;"n 

Tangential Computations 

• Compute e: and !:ie, from e and!:ie using Hypothesis I r f _ n 

• Apply the tangential law: 
• Read in: Initial state (e:, and tangential history variables, state variables) and 

prescribed !:i e, and ev )' e, max and e, min at t = to 
-' 

• Write out: New (J't' E,tan and tangential 'state variables' for time t = tn+1 

• Update and store e;"'" and e,min 

Figure 4.2: Flow Chart of Implemented Microplane Theory 
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4.2.2 Incremental Tangent Stiffness Matrix 

Some discrepancies were encountered in the derivation of the incremental tangent 

stiffness matrix in Bazant's (1992) original paper. Accordingly, a detailed derivation has 

been performed and this is given in Appendix A. The corrected expression for the 

incremental tangent stiffness matrix is given as 

(4.2.5) 

This equation was also used also to double-check the stress calculation as well as to 

see if at zero strain, the initial elasticity matrix of the material was returned. 

4.2.3 Numerical Integration 

The equations 3.2.6 and 4.2.5 have physical significance. They imply the 

summation of all the contributions from all microplanes passing through a point (integration 

point of a finite element) of interest. Thus, summing up all the deviatoric and tangential 

contributions from all the microplanes and adding them with the volumetric contribution 

(which is same for all microplanes) produce the stress response (eqn. 3.2.6) or the 

incremental tangent stiffness (4.2.5). The integrals in the these equations refer to spherical 

integrals and the domain of the integral is the upper hemisphere represented by n. These 

equations need to be integrated so that incremental stress tensor and incremental tangent 

stiffness tensor can be calculated at the end of any given load increment. Moreover, this 

integration needs to be performed at each element integration point, for every increment and 

for each load step. Therefore, an efficient integration scheme is necessary for the developed 

program. 
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To perform these integrations numerically, an integration scheme along the line of 

Bazant (l988a) is employed. The numerical integration formula may be written as a 

summation of the values of the function inside the integrals, evaluated at N integration 

points, and multiplied by their corresponding weights. The integrand can then be computed 

as 

(4.2.6) 

where F(c) is the function of strain to be integrated for N integration points 

(microplanes). 

Microplane integration can be carried out by means of a rectangular mesh in a plane, 

but such an approach is rather inefficient. One reason is that the integration points are 

wastefully crowded near the pole (Bazant, 1985b). Also, the functions that are smooth on 

the spherical surface near the pole may be unsmooth in the rectangular plane. Therefore, the 

appropriate integration formulas should be constructed directly for the surface of the 

sphere. The greatest efficiency is achieved with an uniform distribution of the integration 

points over the spherical surface. These distribution of points would result in a polyhedron 

which can be inscribed in a spherical space passing through the points. Many numerical 

methods have been established for such integrations and procedures have been written in 

books that utilize the orthogonal polynomials for this type of a distribution (Stroud, 1971). 

However, they are inaccurate for the post peak and strain softening region. For this 

research, a similar technique (Bazant, 1988a) is used. 

The technique employed in the developed program uses the Taylor series 

expansions directly for the function values at the surface of the sphere, and relies on the 

computer to find the weights and point locations for which the degree of the error is 

maximized and the coefficient of the truncation term is minimized. In total, 21 points 

(microplane) are chosen. This choice is based on Bazant (1985b, 1988, 1996b) who has 
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shown that 21 integration points for a hemisphere are sufficient for such integrations, as 

increasing the number of integration points has little effect on the results. 

Figure 4.1 shows the 42 points (marked by small circles) in a polyhedron, 

inscribed in an unit sphere and Figure 4.2 shows how those points would be distributed for 

a quarter of the sphere. The 42 points for the full model may be evident from the quarter 

model in Figure 4.4, remembering that some points (points along the edges) will be shared 

as they are common to the boundaries. There are 24 (3 points/quarter X 8 quarters/sphere) 

central points and 18 points on the boundary when calculated for the entire sphere. The 

direction cosines for a microplane passing through a point, is given by the unit normal 

vector connecting the origin to that point. Programming each of these directions in Fortran 

77 to check the convergence error (Figure 4.3) is pertinent to the definition of a microplane 

and numerical implementation. At each integration point of the finite element describing 

pee behavior, the response (e.g., stress) was checked for convergence. Additional tests as 

described below are used to ensure that the integration error is minimized and the response 

is stable. 

Figure 4.1: Microplane Directions (Full model) Figure 4.2: Quarter Model 
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• As the cyclic loading progresses the error between the maximum and minimum values of 

the stresses for any given value of a post peak strain is minimized for the equal weights 

chosen in different directions. The weights for those directions are incrementally varied in 

the computer until the error is steady (converges) and is minimized. Figure 4.5 shows the 

post-peak bifurcation error (denoted by the dotted lines) which differs from the experiments 

of Chen (1988) on PCC Concrete. This approach is a combination of the methods of 

Bazant (1992) and Chen (1988) and is efficiently utilized in our numerical algorithm for the 

first time in pavement modeling. The benefits of the approach are twofold. First, the 

convergence is achieved with respect to an actual PCC experimental curve and error 

minimization is performed through iteration on the weights assigned for each microplane 

direction. Second, by varying these weights until a converged response is reached, certain 

microplanes are automatically made weaker or stronger than the other, thus capturing the 

inherent concrete heterogeneity. 

• The stress strain curves calculated through the integration method must remain the same 

when the set of integration points is arbitrarily rotated as a rigid body with respect to the 

material, while the applied stress is not rotated. This is obvious as the pavement stress 

response in reality is independent of the set of integration points chosen and any exception 

to that may be attributed to numerical error which has to be stabilized. 
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Numerical Integration and Post-Peak 
Convergence Error 
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Figure 4.3: Numerical Convergence 

- - - - - - Analysis 1 
---Chen (1988) 

- - - - Analysis 2 

• The maximum difference among the stress strain curves (shown by Analysis 1 and 

Analysis 2) in the post peak range for all such combinations of rotations is the measure of 

the error as shown by the post-peak bifurcation for PCC concrete in Figure 4.3. 

• Convergence occurred when the curves represented by Analysis 1 and Analysis 2 (in 

Figure 4.3) merged into one curve and maintained a steady error with respect to the 

experimental result. 

4.3 Program Checks 

The author devised four further program checks to ensure that the response at each 

increment at each time step is well computed by the developed program as follows 
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1) The tangential strain is a vector with three components in space, but its direction always 

lies in the microplane of normal ni • So for every microplane, the program checks that 

(4.3.1) 

is satisfied at every load increment. 

2) The volumetric strain when added to the deviatoric strain components should give back 

the original strain tensor. Thus the deviatoric Strain must satisfy the following 

(4.3.2) 

3) The volumetric, deviatoric and in-plane stress-strain relationships are plotted to ensure 

that they follow the constitutive relationship (equation 3.2.6) at the microplane level. This 

is a qualitative check on the trend of the microplane component response. 

4) Checks are made to see if initially, at zero or low strain, the developed program returns 

the well-known elastic moduli matrix for isotropic elastic materials (Mellor et aI, 1973). 

That is 

dall A B B 0 0 0 dell 

da22 B A B 0 0 0 dezz 

da33 B B A 0 0 0 de33 

da12 0 0 0 C 0 0 de12 
(4.3.3) 

da23 0 0 0 0 C 0 de23 

da31 0 0 0 0 0 C de31 

where, 

A = E(I- v) 
(1 + v)(I- 2 v) 

(4.3.4) 

B= Ev and 
(1 + v)(I- 2 v) 

(4.3.5) 

35 

Copyright 2011, AHMCT Research Center, UC Davis



c= E =2G 
(1+ v) 

(4.3.6) 

must be satisfied at zero strain which occurs either when the virgin loading starts or after 

loading and unloading the strain is returned to a zero value. 

From Bazant's Microplane Theory (Bazant, 1988) we have: 

A = ~(5CO + 4Co + 6CO) 15 v d , 
(4.3.7) 

B = ~(5CO - 2Co - 3CO) and 15 v d t 
(4.3.8) 

1 (0 0) C=S 2Cd +3C, . (4.3.9) 

Equating A from equations 4.3.4 and 4.3.7 and B from equations 4.3.5 and 4.3.8 and 

solving for v and E we have 

(5CO - 2Co - 3CO) 
v = v d f and 

(1OCO + 2Co + 3CO) 
v d I 

(4.3.8) 

E = (1- 2 v)Cv". (4.3.9) 

These above parameters are also checked by the developed program. 

4.4. Unloading and Reloading 

It was outlined in the Microplane Theory, that the various microplanes undergo 

loading and unloading. The rule governing the unloading and reloading from the 

Microplane Theory (Bazant and Prat, 1988a, 1993) is given as 

(4.4.1) 
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This rule means that if equation (4.4.1) holds true for a given microplane 

component in any microplane, then virgin loading occurs for that component. Alternatively, 

if it does not, then unloading and reloading occurs. To keep track of c:
max and c:min and their 

incremental time histories for each component in each microplane, state variables are 

defined in the developed program. This allows the allocation of space at each material 

calculation point for solution of the dependent state variables. For In' number of 

microplanes, at least '8+3n' state variables are necessary (6 strain components, 2 

components for volumetric stress, 2n components for deviatoric stress, and at least n 

components for tangential-in plane stress). As Abaqus does not store these history 

variables, they were programmed into the user subroutine (V)UMAT to interact with the 

Abaqus finite element code. 

4.5. Explicit vs. Implicit Integration Methods 

The developed program implements the constitutive equations along with the 

relevant integration schemes within the finite element solver Abaqus. To obtain dynamic 

response, Abaqus uses direct integration methods to solve those equations at every 

increment for each time step, following the directives of the developed program. The direct 

integration methods could be implicit or explicit. A brief discussion follows to illustrate 

their differences. 

In a finite element code, for every finite element, the work of external forces is 

equated to the work of internal, inertial, and viscous forces for any small kinematically 

admissible motion and that results in the following equation (Zienkiewicz, 1992) 

n 

J{8uV{F}dV + J{8uV{<I>}dS + ~{8Ur{p}i 
Ve Se i=1 

(4.5.1) 

= f ( { 8c: } T { (j} + {8u} T p {~} + {8u} T Kd {~} )dV 
Ve 
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where, {ou} and {08} are small arbitrary displacements and their corresponding strains 

respectively, {F} are body forces, {<I>} are prescribed surface tractions (which typically 

are nonzero over only a portion of surface SJ, {P}; are concentrated loads that act at a 

total of n points on the element, {ou} ~ is the displacement of the point at which load {P}; 

is applied, p is the mass density of the material, Kd is a material-damping parameter 

analogous to viscosity, and volume integration is carried out over the volume Ve' 

U sing the displacement field {u} we have, 

{u} = [N] [d], 

{~} = [N] [ct], 

and {~} = [N] [ctJ. 

(4.5.2) 

(4.5.3) 

(4.5.4) 

where [N] is the shape function and the nodal degrees of freedom are denoted by [d]. 

Combining equations 4.5.1 with 4.5.2-4.5.4, we have 

(4.5.5) 

For the assembled structure equation 4.5.5 becomes (Cook, 1989), 

[M]{ D} + [C]{D} + {Riot} = {Rext} (4.5.6) 

In direct integration, the above equation of motion is written at a specific instant of time, 

(4.5.7) 

where [M] and [C] are mass and damping matrices, taken as time independent, but in many 

problems, these may be nonlinear. The subscript n denotes time nl::'.t and /),.t is the size of 

the time increment or time step, {Riot L is the internal force vector at time n/),.t due to 
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straining of the material and in our case, it is a nonlinear function of {D} n' {R ext} It is the 

external force vector on the structure. {Rint} n is obtained by assembling element internal 

force vectors {riot} 11 obtained from the equation 

{riot} = f[B]T {a} dV (4.5.8) 
Ve 

where [B] is the derivative of the shape function matrix. 

The equation 4.5.8 is valid for both linear and nonlinear material behavior as the stress 

tensor [a] could be a nonlinear function of strain and strain rate. However, for linearly 

elastic behavior, [a] is given by 

{a} = [E][B][d] (4.5.9) 

where [E] is the elasticity matrix, and in that case, the equation 4.5.8 becomes 

{rint} = [k][d] (4.5.10) 

where [k] is the element stiffness matrix and [d] nodal displacement. But, in our case [a] 

describes the nonlinear stress response obtained from the Microplane Theory. 

The direct integration methods for solving the above equation (4.5.7) can be 

classified as explicit or implicit. The methods that are explicit can be represented as : 

(4.5.11) 

while those that are implicit can be represented as: 

{D},,+1 = f({D}",{D} ,{5} , ... ) 
11+1 n+l 

(4.5.12) 

Therefore, for explicit methods, as in our case, {D t+1 is to be determined in terms of 

completely historical information consisting of displacements and time derivatives of 

displacements at time nl1t and before. In contrast, for implicit, the determination of {D}n+1 

requires the knowledge of the time derivatives of {D},,+I' which are unknown. 
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Additionally, for implicit schemes the structural stiffness matrix [K] has to be formed for 

each increment and {Rint L in equation 4.5.7 is replaced by matrices [K] and [D] as 

(4.5.13) 

This involves decomposition of the stiffness matrix at each increment of the time step and 

that may be numerically difficult depending on the type of nonlinearity. 

These methods are discussed in detail in many finite element books and the 

interested reader is referred to Cook (1989) and Zienkiewicz (1992) who have provided 

excellent treatments of this subject. 

4.6. Time Step Calculation 

It is necessary to estimate the stable time increment in the model. The stable time 

increment (Time Step) is the smallest time taken to transmit a dilational wave across any of 

the elements in the mesh and is given by 

where W d the dilational wave speed, is defined for the developed program as 

= 

The number of increments is given by 

5Cv +4Cd +6Cr 

15* p 

T 
n=-

~t 

where T is the total time period in the developed program. 
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The computer time involved in running a simulation using explicit time integration 

with a given mesh is directly proportional to the time period of the event (Hibbitt et aI, 

1994). The stability limit (ignoring damping) is written as 

(4.6.5) 

where, e 1 is the characteristic length associated with an element, p is the material density, 

and A and f.1 are effective Lame's constants. Therefore, for the developed program, the 

number of increments is defined as 

n"" Tmax(_I- 5Cv +4Cd +6Ct ). 

Lmin 15* P 
(4.6.6) 

To reduce n, we can speed up the simulation compared to the time of the actual 

process, that is, we can artificially reduce the time period of the event T. This will introduce 

two possible errors. If the simulation speed is increased too much, the increased inertia 

forces will change the predicted response (in an extreme case the problem will exhibit wave 

propagation response), The only way to avoid this error is to choose a speed-up that is not 

too large. However, in certain instances like in a rate-dependent material problem, it may 

not be feasible to change the actual time period of the event being modeled. 

4.7. Mass Scaling 

As we note in the equation (4.6.6), artificially increasing the material density,p, by 

a factor f2 reduces n to nlf, in much the same manner as decreasing T to T If. This concept 

is known as mass scaling and it is attractive because it allows us to treat rate dependent 

problems. This concept of mass scaling was used in our simulation. While modeling a 

concrete slab for example, the total weight of the slab in the numerical model was verified 

against the actual weight of the slab from concrete literature, and the additional weight used 
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for mass scaling to speed up the solution (reduce the number of increments) was lumped at 

the locations of least interest. 

4.8. Summary 

In this chapter, Bazant's Microplane Theory is implemented for the first time in a 

three dimensional finite element code. The implementation involved rearranging and 

defining the equations using continuum mechanics so that they could be numerically 

programmed. It involved checks on computations as well as assurance of stability. The 

program employed the implementation of suitable stable integration schemes (Section 

4.2.2) for the user defined algorithm (Section 4.2.1). Additionally, for the material 

parameters chosen, the algorithm in the developed program was checked for minimum 

error between the analysis and literature data for pee concrete. For an explicit formulation, 

the concept of mass scaling has also been introduced to speed up the solution process for 

modeling material response, and this type of an approach is novel for pavement response 

modeling. 
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Chapter 5. Verification of the Numerical Model 

5.1 Introduction 

In Chapter 4, the Microplane Theory was implemented in a Fortran program. In 

this chapter, the simulated response using that program is verified with test data taken from 

the literature. 

The constitutive laws in the Microplane Theory are general laws applicable to 

geomaterials (concrete, rock or ceramic) and involve a set of material parameters (Section 

3.3) which depend on the constituents of the material. Depending on the method of 

production, they vary from concrete to concrete. To determine the values of those 

parameters for Portland Cement Concrete, the Taguchi Method (Roy, 1990) is used. This 

chapters deals with the application of the Taguchi Method and discusses its use in verifying 

the analysis. This chapter also discusses the various laboratory controlled tests that are 

successfully simulated for the purpose of validating the developed program. Finally, the 

developed program is checked for convergence. 

5.2 Sensitivity Study 

Bazant's Microplane Theory (1988-96) requires 14 or more (depending on which 

version of the Microplane Theory is applied) material constitutive parameters to describe 

volumetric, deviatoric and in-plane behavior of the geomaterials. Most of these parameters 

are inherent to Bazant's Microplane Theory only, and they vary from one type of concrete 

to another depending on the type of the mixture, aggregate size, moisture content, 

entrapped air as well as the method of production. Accordingly, they cannot be directly 

obtained from PCC literature. For our problem, we are specifically interested in parameter 
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values for Portland Cement Concrete (PCC). These parameters, which have already been 

discussed in Sections 3.2,3.3 and Appendix F, are as follows: 

• Elastic parameters: E, v, 17
0

, 

• Volumetric law parameters: a, b, p, q, a1 and pI, 

• Deviatoric law parameters: a2 and p2, and 

• Tangential law parameters: a3, Ka and p3. 

Bazant (1988) had suggested a range of values for these parameters for 

geomaterials, and these can be used as starting values. Seven of these parameters stay the 

same for PCC and the rest which vary from one concrete to another are chosen for the 

Taguchi sensitivity study. With the help of this study, the values for the parameters were 

finally determined. 

A finite element model as shown in Figure 5.1 is employed to provide data for the 

Taguchi sensitivity study. This model consists of 750 brick elements each with 8 nodes. At 

each integration point of every element, the constitutive characteristics are defined by the 

developed program. The minimum size of the element used is 0.102 m (4 in.). Two layers 

are used along the depth. Only a quarter of the model is shown in Figure 5.1. The full 

model spans 4.6 m (15 ft) in length and 3.7 m (12 ft) in width resembling the dimensions 

of a highway pavement slab. The model is supported by elastic spring elements (not shown 

in Figure 5.1), the end nodes of which are grounded. The properties of the springs are 

taken from Huang (1993). Symmetry boundary conditions are used at the ends of the slab. 

A pressure load is distributed along the 4 center elements. Altogether,S cycles of loading 

and unloading from a peak load value of 1.60E5 N (36,000 lb) to a zero value is carried out 

to obtain the response. Before proceeding further with the sensitivity study, it is first 

appropriate to discuss the Taguchi Method as it pertains to this research. 
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3 

~l 
Figure 5.1: Finite Element Mesh (quarter model) 

5.3 Taguchi Method and Its Application 

Taguchi's Design of Experiments (Taguchi et aI., 1987; Ross, 1988; and Roy, 

1990) is applied when the objective is to determine the contribution of various factors that 

simultaneously control a desired result. In reality, these factors may occur with different 

sets of values and in all sorts of combinations among themselves to influence the result. 

Experiments can be designed for all possible combinations of these factors to study and 

rank such influence. This is known as Factorial Design or Design of Experiments (Fisher, 

1951). However, as the number of factors and the values (known as 'levels' in the Taguchi 

Method) increase, the number of experiments required can get extremely large. For 

example, in a case involving seven factors and two levels, the total number of 

runs/experiments required for a factorial design will be 128 (28
), and this is known as 'full 

factorial design'. The advantage of the Taguchi Method is that it utilizes a partial factorial 

design. That is, a small set out of all possible combinations is selected in order to reduce 
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the number of required experiments in such a manner that accuracy is retained in predicting 

the contributions of the individual factors. 

Taguchi Method involves a 2-step process. In the first step, this method clearly 

defines a way of conducting the experiments by the use of statistical tables, known as 

'Orthogonal Arrays' (OA). The dimension of the OA depends on the number of factors and 

the level of information available for each factor. The second step uses the Analysis of 

Variation (ANOVA), a common method for statistical analysis (Ross, 1988; Roy, 1990), to 

examine the relative significance of each of the factors. 

The initial range of values for the seven parameters are presented below in Table 

5.3.1. The two levels denote the upper and lower end of the range of the values and is 

chosen from the literature (Bazant, 1992). An orthogonal Array Ls from Taguchi's Design 

of Experiments is used as shown in Table 5.3.2. The target response selected was tensile 

stress in the direction of travel at the bottom of the pavement layer and is shown in the last 

column of Table 5.3.2 for each of the 8 runs required in the array. Table 5.3.3 shows the 

average effect of the variables using Taguchi's Ls array. In Table 5.3.3, 'Sum l' for any 

factor refers to the sum of the stress results for the runs which used level 1 values, 'Sum 2' 

refers to the same for the level 2 values and 'Avg. I' and 'Avg. 2' refer to their 

corresponding average values. Based on Table 5.3.3, the average performance of the 

factors are computed using the Taguchi Method and is represented in Figure 5.2. This 

schematic figure is also known as Main Effects and it shows that two extreme cases are 

possible. In the first case, the factors combine to give the highest value of the target 

response (stress) and in the second case, the factors combine to give the lowest value of the 

response. In our case, a higher stress represents the worst situation with respect to damage 

growth, therefore the chosen combination of values are level 2 for E, level 1 for al, level 2 

for a2, level 1 for a3, level 1 for Ka, either level 1 or 2 for 17
0

, and level 1 for a (Figure 

5.2). Let these values be termed as Base Values and we proceed to the next step ANOV A. 
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Factors Variables Values 

Levell Level 2 

E Elastic Modulus (X 103 psi) 3000 4000 

a1 Volumetric Parameter 1 0.0004 0.00005 

a2 Deviatoric parameter 1 0.004 0.002 

a3 Tangential Parameter 1 0.002 0.003 

Ka Tangential Parameter 2 0.0 0.1 

1]0 Deviatoric parameter 2 0.5 0.8 

a Volumetric Parameter 2 0.005 0.006 

Table 5.3.1: Factors used in The Taguchi Method 

E a1 a2 a3 Ka 1]0 a Stress Response (X 103 

psi) 

1 1 1 1 1 1 1 .4435 

1 1 1 2 2 2 2 .3944 

1 2 2 1 1 2 2 .2969 

1 2 2 2 2 1 1 .2362 

2 1 2 1 2 1 2 .5771 

2 1 2 2 1 2 1 .6260 

2 2 1 1 2 2 1 .4412 

2 2 1 2 1 1 2 .3357 

Table 5.3.2: Layout and Results 
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Factors Sum 1 Sum2 Avg.2 Avg.l (Avg. 2-
Avg.l) 

E Elastic Modulus (X 103 1.37 1.99 .49 .34 .15 

psi) 

al Volumetric Parameter 1 2.04 1.31 .33 .50 .17 

a2 Deviatoric parameter 1 1.61 1.72 .43 .40 .03 

a3 Tangential Parameter 1 1.76 1.60 .40 .44 .04 

Ka Tangential Parameter 2 1.71 1.66 .42 .43 .01 

1]0 Deviatoric parameter 2 1.71 1.70 .43 .43 .00 

a Volumetric Parameter 2 1.75 1.61 .40 .44 .04 

Table 5.3.3: Average Effects of the variables 

0.5 
2 

1J"2~ 
{) LII 

2 

O .. ~....L., ______________________ _ 

Factors 

Figure 5.2: Main Effects 
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As a second step in the Taguchi Method, the Analysis of Variation (ANOVA) is 

employed. Following the steps outlined in the Taguchi Method (Appendix C), the 

percentage contribution of various factors are computed as shown in Table 5.3.4. The 

ANOV A provides a measure of sensitivity of the factors and determines the variability in 

the data. This ANOV A also establishes the relative significance of the individual factors and 

their interaction effects through a percent contribution value which is of interest here. The 

corresponding percentages for the factors are calculated using MINIT AB and are shown in 

the last column of Table 5.3.4. 

The sensitivity study identifies that the parameters aI, E and a2 change the stress 

response the most for a given change in their values. Therefore, iterations involving 

proportionate changes in aI, E, and a2 are made on the Base Values to reach the suggested 

trend of response (Bazant, 1992) shown in Figure 5.3. 

The responses are finally checked with the experimental data from the literature as 

will be described in Section 5.4. The final values used in the analyses are given in Table 

5.3.5. 
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Factors % 

E 36.0 

a1 42.0 

a2 19.0 

a3 2.0 

Ka 0.1 

110 0.2 

a 0.2 

Error 0.5 

Table 5.3.4: ANOV A 

Parameters Optimum Values 

E (psi) 4.0 X 106 

a1 .0004 

a2 .0025 

a3 .0018 

Ka 0.0 

110 0.5 

a .005 

Table 5.3.5: Optimum Values 
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(a) 

(b) 

t 

(c) 

Figure 5.3: Microplane component curves from Bazant (1992); a) Volumetric, 

b) Deviatoric and c) Tangential stress-strain curves. 
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5.4. Verification of The Model 

The response obtained from the analysis using the chosen material parameter values 

is to be verified with a series of experimental tests and available data from the literature for 

PCC concrete in the following section. First, the analyses are verified on a single finite 

element and then on an assemblage of elements with multiple nodal degrees of freedoms. A 

number of runs simulating the laboratory tests are made and a few important and 

representative samples are discussed. 

5.4.1. Uniaxial Tension 

A single solid brick element is generated using the developed program within 

Abaqus and the element is subjected to an uniaxial state of stress to match the experimental 

data of Kupfer (1969). Cofer (1992) had simulated the same experimental results 

analytically and using his guidelines the analysis is performed. The schematic arrangement 

of the loading is shown in Figure 5.4. The finite element had 2.54 cm (1 in) sides. To 

simulate the test conditions, the loading was applied through a prescribed displacement of 

12.7 E-05 cmfs (5.0E-05 in/s) at one end of the element. The other end of the element was 

kept fixed. The results comparing the literature and analysis are shown in Figure 5.5. 

The results show a good overall correlation. The only difference seen in the curve is 

beyond the peak region. Strain-Softening (Cracking) occurs in that nonlinear region, and 

therefore, controlling the number of increments in those segments of the stress-strain curve 

of the analysis would give better results. 
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Tensile Load 

Figure 5.4: Uniaxial Tension 

Uniaxial Tension 
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III .e: 500 
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~ 400 ... -(/) ----- Cofer, 1992 
Q) 300 

Analysis 
III 
I: 
Q) 200 
I-

m 100 
>< 
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0 2 3 4 

Strain (X E-04) 

Figure 5.5: Analysis results for uniaxial tension test 
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5.4.2. Cyclic Compression 

The single solid cube element having each side 2.54 cm (1 in) is tested here in 

uniaxial compression. First, it is tested for one cycle of loading beyond the softening range 

to match the experimental work by Hognestad (1995) which was later simulated by Bazant 

(1992). Then, the simulation in this research is further continued for 5 cycles of similar 

loading and unloading. 

To start with, the solid element is held at one face and strained at the other. 

Following the guidelines of the numerical work by Bazant (1992), the simulation was 

performed. The uniaxial strain is first increased up to a value of .003 (beyond the peak). 

Then it is decreased to .001 and again increased to the final value of .004 all in load steps 

of .0002 in size. The amplitude of the strain cycle is applied such that it varies from the 

peak value to zero (unloading) as shown in Figure 5.6. The results from the finite element 

analysis are shown in Figure 5.7. 

Time 

Figure 5.6: Cyclic Loop 
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Figure 5.7: Post Peak: and Hysteresis Loop compared 

The results (Figure 5.7) show a reasonable correlation between the experimental 

and analytical data. The analysis is found to overpredict the experimental value by a small 

margin. One reason attributed is the lack of a better solution scheme to control the number 

of increments in the nonlinear part of the strain-strain curve beyond the peak: value. 

The same model is then further subjected to 5 cycles of loading and unloading in 

compression. First the numerical model is arbitrarily strained to values of 0.3E-3, O.5E-3, 

1.2E-3, 1.5E-3, 2.0E-3 and then unloaded to strain values of O.2E-3, O.3E-3, 0.4E-3, 

O.6E-3, O.7E-3 respectively. In absence of other test data, the results are compared with 

monotonic data from Bazant (1992). Figure 5.8 indicates the results obtained from the 

analysis using 5 of these loading-unloading cycles. 
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Figure 5.8: Cyclic Compression 

The results showed that the montonic curve enveloped the cyclic response. The 

solution converged and no numerical instability was noticed. 

5.4.3. Triaxial Test / Confining Pressure 

Concrete properties depend on confining pressure. Confining pressure is defined 

by the lateral pressure equal to the average of the principal stresses in two directions (e.g. 1 

and 2 direction) when loading is in the other direction (e.g. direction 3). Confining 

pressure subjects concrete to a triaxial stress state. In all the previous tests, zero confining 

pressure was assumed. There is no commercial program which can simulate concrete 

behavior under such a state beyond the softening region. This example demonstrates the 

capability of the developed program in simulating such a response. 
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In this test (Figure 5.9), an uniform pressure of 34.5 MPa (5000 psi) is applied in 

the 2 and 3 directions, and a constant uniaxial strain is applied in direction 1 as described in 

Bazant et. al. (1992). The loading in the finite element analysis is divided into two steps. 

The constant uniform pressure is applied in the first load step and the second load step is 

used to apply the uniaxial strain increment. The results are shown in Figure 5.10. 

5 ksi 

5 ksi 

- -
Constant Strain 

Figure 5.9: Triaxial Test 

25 

C/) 

~ 20 -,... 
(J) 

- 15 
C/) 
C/) 
Q) ... 10 -(J) 

'" 5 >< « 
0 

0 0.01 0.02 0.03 
------ Analysis 

Axial Strain (El) ---Bazant, 1992 

Figure 5.10: Triaxial Test Results 
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The results show a good correlation between the experimental and analytical data. 

The deviation observed beyond the post-peak region is attributed to the lack of a control of 

the number of increments in that region. 

5.4.4 Bending Test 

In this case, an assemblage of elements is tested by simulating a bending test. The 

results here are compared with the test performed by Bazant and Ozbolt et. al (1992). The 

schematic diagram for the experiment is shown in Figure 5.11. 

The specimen tested had dimensions 1.8 X .5 X .1 m (5.90 X 1.64 X 0.33 ft). In 

the analysis, solid elements are used to simulate the beam in three point bending. A mesh of 

uniform size elements, 5 in depth and 6 along the length are used. As the loading is 

symmetric about the vertical axis transverse to the length, half of the model with half the 

actual magnitude of the load is used and symmetry boundary conditions are used at the 

middle of the beam. 
F 

~------------------------~~ 
rH 

I .... 
L .-, 

Figure 5.11: Three point bend test 
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Figure 5.12: Three point bending test 
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The applied load is allowed to increase from 0 to 35 kN (7868 lb), while the 

maximum displacement increases from 0 to 0.30 mm (.01 in). Unloading is carried out 

from 0.25 mm to 0.1 mm (.008 in to .004 in) and that is followed by reloading back to 

0.30 mm (.01 in). Figure 5.12 shows that the analysis results closely match the literature 

results. The initial difference between the two curves is attributed to a lesser number of 

increments in the analysis and this made the analysis almost linear in the region that 

precedes the start of the loop. In the post peak region, the difference is due to the average 

values of the parameters used as well as the coarse mesh used. 

5.5. Taguchi Method Applied in Numerical Modeling 

The previous tests validated the developed program with the laboratory controlled 

tests. It is now necessary to check the numerical sensitivity of the developed program with 

respect to the modeling factors like mesh density and loading rate. This is because, while 
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modeling the pavement response, optimum mesh size is required for the numerical solution 

to converge and arrive at the actual response, given the aggregate nature of concrete being 

modeled (Shah, 1991). It is necessary to determine the size of the finite elements to 

eliminate mesh dependencies and attain convergence. Also, the loading rate dependencies, 

if any, are to be determined as well. This dependency may arise in two ways. In a 

pavement environment, the rate of loading and unloading is dependent on the vehicle speed 

which may cause a particular strain rate. The speed of the solution in an explicit scheme 

may influence the strain rates as well (Cofer, 1992). Since these two aspects are linked, a 

study was conducted to determine the safe operating conditions for the developed program. 

The study involved mesh sizes, loading rates, and three other material parameters (aI, a2 

and E) which had the highest sensitivity in the previous study (Section 5.3). 

5.5.2 Procedure 

The values for the parameters referred to as factors in the study are listed in Table 

5.5.1. Figure 5.13 show the differences between monotonic and cyclic loading. The peak 

equivalent vehicle axle load (designated by Pmax) was 1.6E5 N (36000 Ib) and was 

allowed to ramp up from 0 for the monotonic loading. For the cyclic loading it is again 

unloaded from the peak value to zero. 

Pmax 
Pmax 

Time (sec) Time (sec) 

(a) (b) 

Figure 5.13: (a) Monotonic Load (b) Cyclic load 
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The axle load is assumed to act at the center of the contact patch represented by 4 

finite elements at the center. The loading rate corresponding to a speed range of 48-96 

kmlhr (30-60 mph) is studied. The time T (in Table 5.5.1) is the time to load the center of 

the contact area of 0.3 m (144 in2
) and is calculated from the speed of the vehicle. Two 

mesh sizes having 144 elements and 256 elements were considered in the analyses. The 

sensitivities of the solution are compared with the responses for the cases of monotonic and 

cyclic loading. 

Factor Levell Level 2 

al .00005 .0004 

a2 .001 .003 

Modulus of Elasticity (E) in psi 3000 X 103 4000 X 103 

Mesh Density 144 Elements 256 Elements 

Duration of Load (Loading Rate) T/2 T 

Table 5.5.1: Factors and their levels in Taguchi Method 

5.5.3. Results 

The results of the numerical sensitivity study are shown in Figures 5.14 and 5.15. 

The factors are arranged in order of decreasing sensitivity in Figure 5.14 which shows the 

results for monotonic loading. For cyclic loading (even in the softening region), the 

sensitivities of all factors are not significant enough to influence the convergence up to 5 

cycles. 
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Figure 5.14: Numerical Sensitivity 
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After significant softening has occurred (beyond 5 cycles), it is seen that the factors 

arranged in the order of decreasing sensitivity are volumetric parameter, mesh size, 

deviatoric parameter, modulus of elasticity and loading rate. In contrast to monotonic 

loading, the order is the same except that switching of places occurs between the modulus 

of elasticity and the mesh size. In Figure 5.14, this switch is indicated by an arrow. To 

conclude this discussion on rate sensitivity, a further analysis is continued beyond 10 

cycles, with Elastic Modulus, Mesh Density and Speed as the variables. Figure 5.15 shows 

the results from this study. 
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Figure 5.15: Comparison between cyclic and monotonic loading 

Figure 5.15 shows that in the case of monotonic loading, the Elastic Modulus is the 

largest contributing factor in determining the maximum longitudinal stress. The mesh 

density is the next most important factor, followed by the strain rate effects. After 10 cycles 

in the post softening region, the pavement material undergoes both plastic deformation as 

well as a degradation in stiffness and is highly load rate sensitive. This rate sensitivity may 

be caused by the vehicle speed as well as numerical factors. It is therefore advised to run all 

the simulations at a controlled rate with a pre-determined number of increments after 10 

cycles. 

Such an effect has been supported by the experiments of Cofer (1992), and Cebon 

and Hardy (1994). A finer mesh avoids excessive strain localization and damage being 

confined to the width of the element, and hence a finer mesh (less than 3 times the 

aggregate size) becomes important as strain softening and progressive damage occurs on 

the pavement element under the load. In particular, the bottom of this element is in tension 
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and this state is immediately followed by a state of compression as the vehicle passes. 

Mesh Density is thus the next most important factor for cyclic loading. 

Therefore, based on this study, as we have only gone up to 10 cycles in this 

dissertation, speed/rate sensitivity is considered insignificant, and therefore, it should not 

influence the stability of the numerical solution in this research. However, the mesh density 

may affect the solution and the next section is devoted to this issue. 

5.6 A voiding Mesh Dependence of the Numerical Solution 

It is known from the literature that concrete response may depend on the size of the 

finite element mesh as well as the size of the specimen used in the test. The researchers 

trying to simulate concrete response using finite element methods, have observed spurious 

mesh dependence of the response beyond the softening regime (Bazant et aI., 1984, 1990; 

Cofer, 1992). This poses a problem in the post peak range of softening (cracking) when 

the response is simulated analytically (Shah et aI., 1991). As reported in their work, the 

response computed gave errors due to the failure being localized to the width of the finite 

element used. They found that the width of the failure zone, which is known as the 

characteristic length, is a material property that must be ascertained through other methods. 

Additionally, they have concluded that by taking the element size to be about 1/3 of the 

characteristic length, the spurious mesh dependence can be removed (Bazant, 1993-95, 

Cofer, 1992). Otherwise, for arbitrary modeling, corrections using the Size Effect Law 

(Bazant et aI., 1984) should be applied in the softening regime. This characteristic length 

was reported to be approximately 3-4 times the aggregate size (Bazant, 1987-88; Cofer, 

1992). One notable paper (Shah, 1991) had also revealed that under cyclic loading, the 

coarse aggregate size determines the fatigue strength and life, and therefore, this size 

should be used in estimating this characteristic length. An average coarse aggregate size of 

100 mm (4 in.) is usually found in concrete (Mehta, 1986). Therefore, for finite element 

modeling, the elements having dimensions in the vicinity of 100 mm (4 in.) or less should 
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be appropriate near the load. To verify this observation, analysis was performed and the 

results are shown in Tables 5.6.1 and 5.6.2. 

To find the optimum mesh with respect to the maximum value of the target response 

(Longitudinal Stress denoted by SII), and the Damage Ratio (defined as the ratio of strain 

at fracture, to the longitudinal strain in the direction of travel) a short study was conducted. 

Damage ratio will be discussed in further detail in Chapter 6. The study used the same finite 

element model as discussed previously. Table 5.6.1 shows a synopsis of the results. Table 

5.6.2 shows the converged mesh size with respect to the damage ratio. Also, 'mixed mesh' 

in the tables refers to a transition in element size from 100 mm (4 in) near the load to 300 

mm (12 in) away from the load. 

For the range of values held by the material parameters, the mesh dependence for 

element size as shown in Tables 5.6.1 and 5.6.2 is insignificant. So, for cyclic loading, 

100 mm (4 in) element size was found to be satisfactory for up to 10 cycles of simulation 

as the developed program gave insignificant error. Moreover, for cases where response 

near the load is of interest, a mixed mesh may be more efficient. 

Mesh size (in) Sll (X 103 psi) 

4 2.2 

6 2.3 

9 2.5 

12 2.5 

Mixed Mesh 2.3 

Table 5.6.1: Numerical Sensitivity Study 1 
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Element Size Damage ratio 

4 .70 

6 .67 

Mixed Mesh .60 

Table 5.6.2: Numerical Sensitivity Study 2 

5.7. Summary 

In this chapter, Taguchi's orthogonal arrays were applied to determine the relative 

contribution (sensitivity) of material parameters (used in volumetric, deviatoric and in-plane 

constitutive laws) to obtain a numerically correct pavement response (longitudinal stress). 

This helped in the selection of appropriate parameter values to match the constitutive curves 

(volumetric, deviatoric etc.) for the pee material used in highways. 

Then, the analysis results were verified with known laboratory controlled 

experimental results. 

Finally, a sensitivity analysis was performed to study the performance of the 

developed program and to determine the stable operating region for the analysis. It was 

shown, that for up to 10 cycles and for a vehicle speed ranging from 48-96 kmfhr (30-60 

mph), the solution is numerically stable for a mesh size of 100-150 mm (4-6 in.) near the 

load. 
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Chapter 6. Pavement Response Modeling 

6.1. Introduction 

In the previous chapter, the developed program was verified with the laboratory 

controlled tests. In this chapter, first, the methods applied to model a foundation are 

discussed and a pavement model is built. The pavement response is then verified with 

the results from the literature as well as with dynamic truck test data. A notion of 

qualitative damage is introduced and progressive damage distribution is represented on a 

slab of a plain concrete pavement. Finally, as damage caused by excessive tensile stress 

(in the direction of travel) is critical to the pavement design and maintenance, a 

sensitivity study of various pavement design parameters is carried out with respect to the 

same stress response. The study identifies for the first time, the relative contribution of 

various pavement design parameters to an increased level of stress and cumulative 

damage for a highway pavement. 

6.2. Foundation Modeling 

In a highway, a layer of concrete pavement slab is supported by one or more 

layers of foundation maintaining a proper load transfer between the layers. Even though 

the main focus of this research is to determine the dynamic response of a given concrete 

slab, the foundation structure, which is of secondary interest, is also a necessary 

component in a highway structure. It is to be modeled with proper material properties 

and stiffness so as to capture the load transfer between the layers of foundation and the 

concrete pavement. For representing a foundation structure analytically, there are three 

types of foundation models in use, namely solid, liquid and layer. The foundation in our 
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research is modeled with linear springs having appropriate stiffness using the principles 

of a liquid foundation and this is discussed in Subsection 6.2.2. The solid foundation is 

briefly described in Subsection 6.2.3, as in one of the examples from the literature with 

which our analytical results are validated, has employed a solid foundation. The third 

type of a foundation, the layer foundation, is only briefly discussed for the purpose of 

completeness. A relationship between a solid and liquid foundation is also discussed 

(Subsection 6.2.4), such that any of these two foundation models (liquid and solid) can 

be interchanged for the conveniences of simulation, as will be demonstrated in 

Subsection 6.4.1. 

6.2.2. Liquid Foundation 

Liquid foundations have been used for most of the finite element computer 

programs, and they are based on Westergaard's theory (Huang, 1993). The deformation 

of the foundation can be modeled by placing the slab over an infinite number of springs 

and allowing the total volume of displacement to be proportional to the total load 

applied. The stiffness of the total foundation is defined by 

k=p/w (6.2.1) 

where k is known as the modulus of sub grade reaction (Huang, 1993); p is the unit 

pressure, or force per unit area; and w is the vertical deflection. 

Figure 6.2.1 shows the discretization of the liquid foundation under a 

rectangular concrete pavement element with a length 2x and width 2y. A replacement of 

a large number of springs under the element is done by identical springs at each of the 

four corners. For each spring, the force is equal to the unit pressure multiplied by the 

area xy. From the above equation p = kw, or the force at node i, F W;' is related to the 

deflection at node i, Wi' by 

Fw = kxyw j • 
I 

(6.2.2) 
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2x 

Figure 6.1: Pavement element discretization 

It is to be noted that multiplying the modulus of subgrade reaction by the 

corresponding area of an element gives the spring constant. Equation 6.2.2 for the liquid 

foundation, is employed for modeling the foundation stiffness in this research. The 

foundation throughout this dissertation, has been modeled as a set of linear springs 

connected between each element corner node and a fixed node (ground node) vertically 

below it. 

6.2.3. Solid Foundation 

For a solid foundation, the deflection at any nodal point depends not only on the 

force at the node itself, but also on the forces at all other nodes. The solid foundation is 

also called a Boussinesq foundation as Boussinesq's (1888) equation for surface 

deflection is used for determining the stiffness matrix as given by the equation 

(6.2.3) 

where w ij is the deflection at node i due to a force at node j, P j is the force at node j, 

V f is the Poisson's ratio of the foundation, E f is the elastic modulus of the foundation, 

and d ij is the distance between nodes i and j. 
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The program KENSLABS with which our analysis results are compared, is based on a 

solid foundation as described by equation 6.2.3. 

6.2.4. Layer foundation 

Burmister's (1943,1958) layered theory is used to form the flexibility matrix of a 

layer foundation. Since this was not pertinent to our work, it is not further discussed but 

only mentioned here for the sake of completeness. 

6.2.5 Relationship between solid and liquid foundation 

In one of the analyses to follow (in section 6.4.1), it will be found useful to 

relate the k value (modulus of subgrade reaction) for a liquid foundation to the elastic 

modulus Ef and Poisson's Ratio vJ of the solid foundation for a given slab thickness 

h. For that purpose, the following relationship between solid and liquid foundations will 

be used (Huang, 1993). 

k = C (EJ J'/3 ( El,) (6.2.4) 
E I-vJh 'i7 

In the above equation E is the elastic modulus for concrete and C is a constan> ~ 
v~ from 114 to 258 kN/m3 (0.42 to 0.95 Ib/in3

) depending upon the material 

constituents of the foundation. 

6.3. Pavement Modeling 

A finite element model of a pavement is built using the pre-processor module in 

Abaqus. Unless otherwise specified, the lane width used for all the analyses, is 3.6 m 

(12 ft) and the length of the concrete slab modeled for simulation ranges from 4.6 m to 

9.1 m (15 to 30 ft). A pavement slab length of 4.6 m (15 ft) is used where the 

instantaneous response under the load (the maximum tensile stress) is of major concern. 
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A slab length of greater than 4.6 m (15 ft) is considered where response at various 

locations which are further away from the load are of interest (as in subsection 6.4.3). 

The pavement slab thickness used is in the range of 0.2 to 0.25 m (8 to 10 inches). 

6.3.1. Finite Element Mesh 

For simulating the pavement behavior, 8 noded brick elements (C3D8 elements 

in Abaqus) are used. At each integration point of the element, constitutive laws, as 

calculated from the previously developed program (Chapter 4), are introduced and the 

PCC constitutive calculations are performed. The finite element mesh for the each model 

used in the analysis consists of a finer mesh of 0.1 m (4 in) under the load and a coarse 

mesh of.3 m (12 in) is used farthest away from the load. Two layers of elements are 

used to model the concrete slab thickness throughout the analysis. 

6.3.2. Boundary Condition and Loads 

A set of linear elastic springs representing the foundation stiffness is connected 

at the four bottom corner nodes of each element. Fixed boundary conditions are used at 

the node on the lower end (grounded end) of the spring. Symmetric boundary 

conditions are applied at the ends of the slab. 

Different types of loading from quasi-static to dynamic are used in the analyses 

depending on the test being verified or simulated. They will be discussed individually on 

a case by case basis. 

6.4. Verification of Pavement Response 

In Chapter 5, the developed program was verified with the lab-controlled tests. 

To verify the capabilities of the program in simulating an actual pavement response, the 

analysis needs to be validated with tests in a highway environment as well. For that 
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reason, the response from the analyses are verified with 3 tests in this section. The first 

of these tests simulates the static response and the other two simulate dynamic response. 

These tests are performed to verify the techniques used in modeling the pavement, the 

foundation, and the material properties used to simulate the dynamic response. 

6.4.1. Static Test 

The first pavement response test is a static problem taken from literature (Huang, 

1993). In this case a large concrete slab 7.3 m X 7.3 m X 0.2 m (24 ft X 24 ft X 8 in) 

was created. An elastic modulus of 68.9E6 N/sq. m (10,000 psi) and a Poisson's ratio 

of 0.4 was used for the PCC concrete material. A 40034 N (9000 lb) static wheel load 

with a contact pressure of 517 kN/sq. m (75 psi) is applied at the center ofthe slab. 

Two commercial programs, KENSLABS and KENLAYER (Huang, 1993), 

widely used in the highway community, are chosen to calculate the response with the 

above properties first. Then, the developed program is used to compute the static 

response for the same model. The simulation is run quasi-statically and the same 

material and boundary conditions are used for all three programs (KENSLABS, 

KENLA YER and the developed program). Both KENSLABS and KENLA YER use a 

solid foundation whereas our simulation uses a liquid foundation. To calculate the 

equivalent spring stiffness for the liquid foundation to substitute for the solid foundation 

used in KENSLABS and KENLA YER, equation 6.2.4 is employed. 

The concrete slab is divided into rectangular finite elements and because of 

symmetry, a quarter model as shown in Figures 6.2 and 6.3 (a and b) is used. The same 

mesh is used in all the programs. The circles in Figure 6.2 denote the springs 

representing the foundation. The deformed plot for the quarter model is shown in Figure 

6.3b. It is noted that only in this problem, large elements (with sizes larger than 6 in) are 

used in areas under the load. This is done to match the similar mesh sizes already in use 
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in KENSLABS and KENLA YER and thus avoid the mesh dependency of the solutions. 

Table 6.4 shows a comparison of the results. 

3.65 m (12 ft) 

Figure 6.2: Finite Element Mesh of the quarter model used in the analyses 
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Max. Deflection Min. Deflection S11 S22 

(inches) (inches) (X 103 (X 103 

psi) psi) 

KENSLABS 0.009 0.005 0.170 0.170 

KENLAYER 0.010 0.005 0.200 0.200 

Developed 0.008 0.005 0.200 0.200 

Program 

Table 6.4 : Comparison of the simulated response with available programs 

The results show that the analytical response from the developed program 

compares very well with the commercial programs, KENSLABS and KENLA YER. The 

longitudinal stress (in the direction of travel) is denoted by S 11 and the lateral stress 

(transverse to the direction of travel) is denoted by S22 and Developed Program refers to 

the analyses performed in this research using our developed program. 

The deflection and stress results obtained by using the commercial programs and 

the Developed Program are in the same range. The results show that even for static 

problems, the developed program can predict the same range of results as the 

commercial programs. 

6.4.2. Influence Function 

The Influence Function is defined as the relationship between the pavement 

response determined at a point of interest for a set of given positions of the axle load. It 

represents the variation in response as a wheel gradually approaches a point in the 
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pavement, reaches it and then and moves away from it. Usually, the Influence Function 

is expressed as a plot of Stress/Axle Load vs. Tire Position at a given point. In all the 

previous research work, the influence function was calculated from a linear static model 

of the pavement. To obtain a dynamic response from those analyses, dynamic factors 

were used (Gillespie, 1992) or the collocation method was applied (Cebon, 1996) to 

convert the response from static to dynamic. These approaches have resulted in 

considerable errors when compared with experimental data. 

To demonstrate the capability of our program, the analysis is simulated with the 

test data from Gillespie (1992). The length of the pavement slab modeled was chosen to 

be 4.6 m (15 ft) for the concrete pavement simulated in the test. A quarter model with 

symmetry conditions at the ends is used for the analysis. In the test, an equivalent single 

axle load 160,135 N (36,000 lb) was distributed by an actual contact area of 0.04 sq. m 

(64 square inches) of the tire. For the simulation, a force of 40,033 N (9000 lb) is used 

on the quarter model and is distributed on four finite elements (16 sq. in.) at the corner, 

as this load is equivalent to a 160,135 N (36000 lb) load on the full model. The 

stiffness of the foundation is calculated as described in Section 6.3 and is based on the 

average homogeneous foundation properties. 

Figure 6.4 shows the deflection basin under a loaded wheel (Gillespie, 1992). 

The bottommost layer under the wheel is in a state of tension. As concrete is weak in 

tension, the tensile stress response in that layer is of utmost concern as it affects the 

pavement life. The response (longitudinal stress at the bottom denoted by S 11) at 

various points in the pavement is plotted. Figure 6.5 shows the simulated basin of 

deformation for the quarter model. The stress response per unit axle load is shown in 

Figure 6.6. 
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Figure 6.4 : Deflection basin under a loaded wheel 

Figure 6.5: Simulated deflection basin under wheel load 
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Figure 6.6: Rigid Pavement Influence Function. Longitudinal Stress at fixed point 

normalized with respect to tire load as a function of tire position relative to 

the fixed point. 

The results show a good correlation between the experimental and the analytical 

data. The differences between the two results are at the peak stress as well as at about 5 

ft removed from the wheel location in the compressive stress region. The discrepancies 

in the peak stress could be due to the difficulties in modeling the actual distribution of 

the applied load to match the experiment. While the actual load in the experiment was 

distributed over a certain area, the analysis used equivalent areas and loads. This 

anomaly in distribution of the load on an area could cause a different localized nature of 

stress in that area of a concrete layer, causing the peak tensile stress to differ. The 

discrepancies in the compressive stress is attributed to the difference in foundation 

characteristics between the actual test and that used in this simulation. 
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6.4.3. Canadian Truck Test 

So far, we have predicted the pavement response (stress) in areas at or near the 

load. The load applied has been an equivalent single axle load applied at the center of a 

concrete slab, distributed on a tire-pavement contact area represented by finite elements. 

A quarter model of a concrete slab having symmetric boundary conditions at the ends 

sufficed for those analyses. This type of an analysis has given an instantaneous 

response of the pavement with respect to an equivalent single axle load for a given point 

and the amplitude of response has been found to diminish as the axle position has 

moved away from the load. This was demonstrated in the influence function approach in 

the previous example (Section 6.4.2). This approach is very useful when damage or 

cyclic behavior is to be studied and the progressive damage due to a single axle load is to 

be tracked in the highway. More of these applications will be discussed in the next 

Subsection. To further demonstrate the capability of our developed approach, a 

pavement response due to the dynamic motion of a multi axle truck will be simulated in 

this subsection. 

The loading and other relevant information for this Truck Test is given in Figure 

6.8. A finite element mesh 3.7 m X 15.2 m (12 ft X 50 ft), with the same mesh size and 

properties as before, is created. The mesh is shown in Figure 6.10. The foundation is 

modeled by linear elastic springs with appropriate spring constants to simulate the load 

transfer from the foundation. The mesh, which is longer than the previous models, is 

created to accommodate the length of the 5-axle truck during the dynamic simulation. 

The experimental data has been provided by the Federal Highway Administration and 

the actual testing was performed at Ohio University in 1995 and 1996 (EI-Gindy, 1996). 

In the finite element model, the respective axle loads are applied on equivalent 

areas of elements. The multiaxle truck is shown in Figure 6.7. The loading applied in 

the test is shown in Figure 6.8 and the distribution of axle load employed in the 

simulation is shown in Figure 6.9. The loading ramps up from a zero value to the 
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maximum amplitude at the center of the tire contact area as indicated in Figure 6.9. The 

load transfer between the axle and the pavement occurs simultaneously for all the five 

axles in a given time calculated from the vehicle speed. The times marked by tI, t2, 13, 

14 and t5 represent the time taken to load the center of the tire-pavement contact areas for 

the first to the fifth axle respectively. The other test conditions are shown in Figure 6.8. 

Figure 6.11 isolates the narrow strip of fine mesh under the load out of the finite element 

model and shows the undeformed plot of the strip on top and the local deformation 

contour plot at the bottom. Figure 6.11 shows the instantaneous deflection results 

comparing the simulation against the field test data. 

National Research Council Canada Test Vehicle 

Figure 6.7: Canadian Truck Test Description 
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Test Date: 12-07-1995 Test Start Time: 11:00AM 
Load No.: C,34Kips 
Sections Tested: SPS8 J1 (390809), SPS8 K13 (390803) 
Pavement Temperature Profile: 1.22°C (-1.0"), -O.88°C (-4.0"), -O.51°e (-7.5") 

0.63°e (-10.0"), 1.49°e (-13.0") 
Axle Configuration: Tandem Axle 
Axle Load Configuration: 

Figure 6.8: Axle Load Distribution in the test. 

First Axle 

I 
I 
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I 
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Figure 6.9: Axle Load Distribution in the analysis 
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Figure 6.12: Dynamic Truck Test Simulation 

Figure 6.12 shows a good correlation between the test results and analysis. In 

the absence of many accurate data (like foundation stiffness, contact area) the mean 

values from the literature (Gillespie, 1992-93; Goktan et aI., 1995; Huang, 1993) were 

used. The differences in the peak loads could be due to the differences in the loading 

areas causing different localized stresses between the analysis and the test. The 

difference in the positive segments of the deflection curve could be attributed to that 

differences in the foundation stiffness as only average values for foundation stiffness 

were used in the analyses. As we will see in the sensitivity study in Section 6.5, the 

influence of the axle load on the loading area is significant, and this has to be taken into 

account when distributing the pressure load from the tires in order to accurately simulate 

the responses at the peaks. 
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6.5. Damage Distribution 

One of the key objectives of the research is to qualitatively predict the trend of 

damage in a concrete pavement slab. It is relevant to mention here that in the Microplane 

Theory which was implemented in the developed program, damage is intrinsic to its 

basic formulation. The developed program based on this theory keeps track of the 

cumulative damage (Section 3.3) for the deviatoric and in-plane components in each 

microplane. State Variables have been defined in the developed program for this purpose 

and the new values of these variables representing the direction and magnitude of 

material degradation is computed at each increment. These computations are taken into 

account in generating the final stress response. So the response at the end of any cycle is 

the net response taking into account all the microplane damage and deformation 

accumulated at the end of that cycle. To sum up, the current state of damage is implicit in 

the calculated response. 

6.5.1. Damage Ratio 

As discussed earlier, damage is calculated internally in the developed program 

and is estimated indirectly by studying the stress (or strain) response. However, to 

visualize damage directly, a damage distribution parameter is defined. From previous 

research (Gillespie, 1992), it is known that in concrete pavements, the bottommost layer 

directly under the wheel is in a state of maximum tension and is the area most prone to 

cracking. This tensile stress in the direction of travel, is the critical response because 

when it reaches a threshold value, it causes cracking and damage at the bottom of the 

pavement. 

In the developed program, cracking is modeled as tensile strain softening. We 

have shown and verified in Chapter 5 that with the progress of strain softening, the 

stress response calculated by the developed program, is fairly accurate even in the post 
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peak region. Thus, the damage ratio at any cycle is defined as the ratio of peak strain 

(denoted by 'ef) beyond which fracture due to softening (cracking) starts, to the tensile 

strain in the direction of travel (denoted by 'e 1'). The idea behind this is to give a 

qualitative indication of the progressive damage with the number of cycles. 

Thus Damage Ratio, which is defined in the developed program, abbreviated as 

SDV (stands for State Damage Variable) is expressed as: 

ef 
SDV = (6.5.1) 

e l 

where ef is the threshold value of strain in the longitudinal direction where visible 

fracture starts and is obtained from the experimental work of Chen, 1988. Also, e l is 

the current value of strain in the longitudinal direction obtained from the analysis. A 

SDV value of 1.0 or more indicates that damage due to cracking has already started and 

a value of less than 1.0 indicates fracture is yet to occur. This Damage Ratio indicates 

how far the cracking (which starts at the peak value of strain) has to go to reach a state 

of visible fracture. 

6.5.2. Pavement Model 

The finite element model used for the damage analysis consisted of a pavement 

slab of 4.6 m (15 ft) in length and 3.7 m (12 ft) in width. The finite element model of 

the pavement used for the analysis is same as that used previously in section 6.4.3 and 

is shown in Figure 6.14. A finer mesh was used near the load and a coarser mesh 

further away from the load as before. The boundary conditions and pavement material 

parameters remain the same as earlier. The loading first consisted of 5 cycles and then 

continues to 10 cycles. Each cycle had a load going from a zero value to a chosen peak 

value of 160,135 N (36,000 lb) as shown in Figure 6.13. In Figure 6.13, Pmax is the 

equivalent single axle load and t, which is the duration of loading on a contact area, is 

calculated from the vehicle speed. The truck axle load and parameters are taken from 
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Huang (1993) and Gillespie et al. (1992). The instantaneous damage distribution is 

indicated in Figures 6.15 and 6.16. 

Pmax 

t 
Time 

Figure 6.13: One loading cycle 

Figure 6.14: Finite Element Mesh 
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Figure 6.15: Instantaneous Damage Distribution after 5 cycles 
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Figure 6.16: Instantaneous Damage distribution after 10 Cycles 
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Figure 6.17: Extrapolated damage distribution along the vehicle path 
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The loading is carried out by repeating the cycle (Figure 6.13) at the corner of a 

quarter model (which is same as the center of a full model). This is supposed to 

represent the effect of the cyclic axle load at points near the load as a vehicle repeatedly 

passes over a certain area of the pavement. This is because the effect was found to be 

maximum at locations under the load from the influence function approach described 

earlier. 

In the developed program, the state variables kept track of the history of stresses 

and strains in all microplanes up to 10 cycles. In total, 118 state variables were defined. 

The state variable for Damage (named as SDV-118 in Figures 6.15 and 6.16) calculated 

the damage ratio for each element to quantify damage. The bottom layer was identified to 

be the one having the most damage. Only a quarter of the slab is shown in Figures (6.15 

and 6.16). These Figures show the instantaneous damage distribution for the bottom 

layer of the pavement. 

The plots show that at any instant the damage is maximum under the load and 

increases from 0 to 10 cycles. Two things are noticeable in the plots. First, the 

instantaneous picture shows that the damage gets concentrated (indicated by damage 

contour lines numbered 10-12 with SDV values of 0.6 and higher) and narrowed at the 

corner of the quarter model (center of the full model), under the load with an increase in 

the number of loading cycles. In other words, the damage gets more severe under the 

load. Second, the damage ratio increases and approaches the fracture value of 1.0, with 

an increase in number of cycles and this increases in a nonlinear fashion. These plots 

however give an instantaneous picture for the instant when the load is at the corner of 

the quarter model (center of the full model). As the load moves, the locations of 

maximum damage move along with the load in the direction of travel and for vehicles 

traveling over the entire length, the damage gradually ends up being the maximum along 

the line of travel (that is, along the end for the quarter model or along the centerline for 

the full model). This fact is corroborated by experimental data (Gillespie, 1992 and 
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Cebon, 1993). Figure 6.17 shows the extrapolated distribution as the vehicle load has 

traveled over the pavement. 

6.5.3. Damage Sensitivity Study 

The damage due to a tensile state of stress or strain response at the bottom layer 

of a slab of concrete pavement under the axle load, increases with each cycle and 

initiates cracking and fracture in the highways. There are factors that influence this 

response and cause damage. Highway engineers need to consider these factors for 

highway design and maintenance. There are factors on the vehicle side as well as on the 

pavement side to be discussed within the scope of this research. 

On the vehicle side, the axle load is an important factor. The Damage 

Distribution analysis shown in the previous Section (6.5) was performed with respect to 

an equivalent single axle load. For a multi axle truck, the distribution of load varies from 

axle to axle. This variation in axle loading influences the instantaneous distribution of 

stresses at the bottom layers. Additionally, in a multiaxle vehicle, the load is transferred 

to the pavement via the tires. Because of the different axle loads and tire conditions (e.g. 

tire pressure, age of the tire on different axles, tread etc.), the tire-pavement contact area 

will vary as well as the axle load. 

On the pavement side, pavement thickness is a variable which the designers can 

change depending on the optimum structural and financial constraints dictated by project 

requirements. This slab thickness varies from one place to another. Moreover, 

depending on the process of manufacturing, the properties of the concrete material varies 

and the elastic modulus varies also. Finally, the characteristics of the foundation on 

which the pavement slab is placed can vary from one highway to another, and this can 

be a variable also influencing fatigue induced damage. 

To sum up, for continuous concrete pavements, there are 5 parameters of 

importance in the design of a pavement slab (Gillespie, 1992). They are axle load, tire-
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pavement contact area, pavement thickness, elastic modulus of the PCC, and the 

foundation stiffness. 

A Taguchi sensitivity study was conducted to identify the relative contribution of 

these various parameters to a high value of tensile stress ( (ill) in the direction of travel 

which is the primary cause of cumulative damage. The analysis was run for five 

complete cycles in the same manner as in the previous section. Table 6.6.1 shows the 

factors used in the Taguchi Method. The layout and results are shown in Table 6.6.2. 

Table 6.6.3 shows the average effect of the variables using Taguchi's Ls alTay. In Table 

6.6.3, 'Sum I' for any factor refers to the sum of the stress results for the runs which 

used level 1 values, 'Sum 2' refers to the same for the level 2 values and 'A vg. I' and 

'Avg. 2' refer to their corresponding average values. Figure 6.18 shows the same 

effects of Table 6.6.3 in a graphical form. For example, the line E1-E2 spans the 

maximum length along the vertical stress axis showing its maximum influence on 

longitudinal stress (tensile stress at the bottom of the layer, under the applied load). 

Symbols Factors Levell Level 2 

Values Values 

P Magnitude of the load 36 27 

(kilopounds) 

A Tire Contact Area (sq. in.) 64 48 

t Foundation Thickness (in.) 8 6 

K Foundation Stiffness 0.20 0.15 

E Young's Modulus 4.0E-3 3.0E-3 

Table 6.6.1: Factors used in the Taguchi Method 
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Using the Taguchi method, once the Orthogonal Array is set up, Analysis of variation 

(ANOVA) is performed with respect to a cyclic loading. This ANOVA establishes the 

relative significance of the individual factors and the interaction effects. Following the 

previously outlined steps, we have the percentage contribution of various factors 

represented in Table 6.6.4. 

(1) (2) (3) (4) (5) (6) (7) 
Axle Load Contact Area Pavement Found. f:last.Mod Stress 

P A Thickness Stiffness E 
P*A t K A*t 0'11 

1 1 1 1 1 1 1 .8 

1 1 1 2 2 2 2 .4 

1 2 2 1 1 2 2 .6 

1 2 2 2 2 1 1 .7 

2 1 2 1 2 1 2 .6 

2 1 2 2 1 2 1 .6 

2 2 1 1 2 2 1 .6 

2 2 1 2 1 1 2 .4 

Table 6.6.2: Layout and Results 

93 

Copyright 2011, AHMCT Research Center, UC Davis



Factors Sum 1 Sum 2 Avg.2 

1 Axle Load (P) 2.5 2.2 .625 

2 Contact Area 2.4 2.3 .6 

(A) 

3 Interaction 1 2.2 2.5 .54 

(P*A) 

4 Pavement 2.6 2.1 .65 

Thickness (t) 

5 Foundation 2.4 2.3 .6 

Stiffness (K) 

6 Interaction 2 2.4 2.2 .61 

(A*t) 

7 Young's. 2.7 2.0 .675 

Modulus (E) 

Table 6.6.3: Average Effects of the variables 

0.9 --

Avg.l 

.55 

.575 

.625 

.525 

.575 

.55 

.5 

(Avg. 2-
Avg.l) 

.075 

.025 

.085 

.125 

.025 

.06 

.175 

A=Load 

B= Thickness 

C= Contact 
Area 

D= Foundation 
Stiffness 

E= Elastic 
Modulus 

0.2 __ ~ __________________________________________ ~~ ______ ~ 

Factors 

Figure 6.18: Main Effects in Cyclic Loading 
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Factors P(%) 

Load Magnitude 10 

Contact Area 1 

Interaction 1 8 

Thickness 24 

Foundation 1 

Stiffness 

Interaction 2 0 

Young's Modulus 48 

Other 7 

Total 100 

Table 6.6.4: ANOV A Table (Cyclic Loading) 

Table 6.6.4 shows that the elastic modulus has the greatest effect. That is, the 

degradation in stiffness is most sensitive to the elastic modulus. The thickness of the 

slab has the next most significant effect. The magnitude of the load and the interaction 1 

(the combined effect of the load acting on a small or large contact area) have the next 

greatest influence on the tensile response. A large load applied on a smaller area 

increases the stress response and the probability of damage. 

As seen from the above tables, the stress response was rather insensitive to the 

foundation stiffness as stress is very localized and changing the foundation stiffness 

uniformly under the pavement does not cause a major effect. The Table 6.6.5 

summarizes the relative importance of the parameters. 
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For Damage Growth Cyclic Loading 

Arranged in Young's Modulus 

Decreasing order of Pavement Thickness 

influence of factors Equivalent Vehicle Load 

Tire-Pavement Contact Area 

Stiffness of The Foundation 

Table 6.6.5: Relative Importance of parameters to damage growth 

6.6. Summary 

In this chapter, first a concise description of the principles used in modeling the 

pavement and its supporting foundation was given. The response from the developed 

program was then validated with both problems from the literature (Subsection 6.4.1) as 

well as actual dynamic tests (Sections 6.4.2 - 6.4.3). 

The course of damage in a slab of concrete pavement layer is then predicted. A 

qualitative damage growth from zero to five and up to ten cycles of dynamic loading was 

determined. This was represented in the instantaneous damage plots describing the state 

of accumulated tensile strain with respect to the strain at fracture. The factors responsible 

for accelerating damage was highlighted with the aid of a sensitivity approach. 

Prior to this work, no numerical model was in existence that could accurately 

predict dynamic pavement response or even qualitatively predict the directional growth 

of damage in plain concrete pavements. The numerical approach developed in this work 

provides a valuable tool to guide designs by emphasizing a scientific basis for 

consideration of the specific factors that can trigger a high degree of tensile stress and 

cumulative damage in a pavement. 
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The work in this dissertation has been limited to ten cycles of loading due to 

available computational resources. However, the approach is directly applicable for 

predicting the performance of a pavement due to a large number of loading cycles, and 

only requires, the use of additional computer resources. Based on the rapid 

improvements in computer technology, such resources should be readily available in the 

not too distant future. Accordingly, this work has tremendous potential to impact the 

design of pavement in the future. 
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Chapter 7. J oint Design 

7.1. Introduction 

So far in this dissertation, the response of a plain concrete pavement has been 

discussed. However, in the highways, the concrete pavements may have joints and 

these joints can be either transverse or longitudinal joints with or without 

reinforcements. The focus of this chapter is the design and analysis of Transversely 

Jointed Pavements. This chapter discusses the sensitivities of the various pavement joint 

parameters with respect to the tensile stress at the bottom of the pavement using the 

Taguchi Method. Additionally, using our numerical approach, a method of calculating 

joint stiffness, which is an useful parameter in pavement joint design, is implemented. 

Predicting the dynamic response of a jointed pavement is novel and this response has 

never been simulated before under dynamic loading. 

7.2. A Typical Joint 

Joints are designed in concrete pavements to prevent premature cracking. Among 

the four types of joints (contraction, expansion, construction, and longitudinal) in 

common use in the highways, our focus is the contraction joint. Contraction joints are 

basically a type of transverse joint designed to relieve tensile stresses in concrete. The 

important parameters in this type of a joint design are i) Joint width, ii) Depth of the 

dowels in the joint, iii) Dowel spacing, and iv) Dowel diameter. 

Figure 7.1 describes the specifications for a typical contraction joint. Along with 

the joint parameters, slab length is a parameter of importance. The currently practiced 

rule of 
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Dowel Bar W 

Side View 

Plan View 

W = Joint Width 
d = Dowel Diameter 
h = Depth of the Dowel 
S = Dowel Spacing 

Figure 7.1: A typical Joint 

Travel Direction .. 

thumb (Huang, 1993) is to use a joint spacing which is 24 times the slab thickness. 

AASHTO (1986) guidelines specify that the slab length should not to exceed 1.25 times 

its width for designing these types of joints. These starting values are used in our 

approach. 

7.3 Pavement Response Under Dynamic Loads 

To simulate traffic loading on the pavement, a time-varying dynamic load is 

applied on the jointed concrete pavement and the response of the pavement joint is 

studied. 
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Figure 7.2: Finite Element Model of the Jointed Pavement 

The pavement is modeled with brick type 8 noded finite elements, and the 

foundation with spring elements as before. The finite element mesh is shown in Figure 

7.2. The joint simulated in our model is doweled, and it is modeled by beam elements 

connecting the brick elements on either side of the joint. The beam elements are placed at 

the middle of the pavement thickness. The dowel dimensions are calculated as discussed 

in Section 7.4. The set of bottom nodes of the two slabs on either side of the joint, are 

rigidly connected to each other representing load transfer through the slabs due to 

aggregate interlocking at the bottom (Huang, 1993). 

To simulate the load transfer from the vehicle onto the pavement, the area 

representing the pavement-tire contact patch is represented on the jointed plain concrete 

pavement by an equivalent amount of element surface area on top, distributed equally on 

the elements which are on located on both sides of the joint. Loading, in the form of 

distributed pressure is allowed to gradually build up from 0 to 160,135 N (0 to 36,000 

lb) on this surface area, representing the wheel-pavement contact patch, and the 
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amplitude ramps up to the peak value and then decreases down to zero to complete a 

cycle. The duration of the loading (t) has been calculated from the tire-load contact patch 

length and vehicle speed. Load vectors are then longitudinally moved (along the 

direction of travel) to the next set of finite elements to represent the vehicle passing over 

the joint. An explicit algorithm as discussed in Subsections 4.5-4.7 is employed for the 

analysis. Before continuing the analysis any further, appropriate dowel dimensions are 

chosen from the considerations as described in the next section. 

7.4. Dowel Design 

Dowels transfer the load across a transverse joint in two adjoining slabs. Design 

of dowels is still based on experience (Huang, 1993). The Portland Cement Association 

(PCA 1975,1991) have provided recommendations for selecting dowel parameters like 

diameter, spacing and length etc. These recommendations are based on a conservative 

estimate and Appendix D includes a table summarizing the data. To begin the analysis, 

the recommended values are selected. 

When calculating the minimum diameter of the dowels, it is noted that the 

contraction joints are assumed to withstand the tensile stresses occurring as a result of 

the volume change in concrete due to factors like decreases in temperature, etc. The 

concrete moves to the center from both ends causing the doweled joint to be in tension. 

The frictional stresses developed between the concrete slab and the sub grade oppose the 

motion of the slab as shown in Figure 7.3. The minimum dowel diameter required can 

be calculated from this assumption (Huang, 1993). 
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Ll2 

i------t-J j 
t 

Frictional Force t 
Figure 7.3: Pavement slab under tension 

Therefore, equating frictional force per unit width of the slab to the tensile force ( a
e 
t ): 

(7.4.1) 

or, a = Yc LJ1 
e 2 (7.4.2) 

where: Ye = Unit weight of concrete, t is the pavement thickness, J1 is the average 

coefficient of friction, L is the slab length, ae is the stress in the concrete, aa is the 

allowable stress in the steel, and As is the cross section of steel required/per unit width. 

When (steel) dowels are used, it is assumed that they carry the tensile stresses as' so 

if As is the steel cross section area per unit width, then by replacing a e t by As as above, 

we have: 

(7.4.3) 

For a 3.6 m (12 ft) wide slab, the minimum cross section required for the steel dowels 

to satisfy the thermal requirements is then calculated from eqn. 7.4.3 to be 2.0E-4 m 2 

(0.35 in2
). 

We chose 2.4 E-4 m2 (0.375 in2
), a value close to the calculated value from 

Appendix D, and with this starting value, the design requirements under a traffic load is 

studied. The effect of dowel spacing on peak longitudinal tensile stress which causes 

cracking, will also be analyzed to guide dowel design. 
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7.5. Jointed Pavement Response 

The simulation is carried out through a two step process. The first part of the 

simulation is for the instant when the vehicle is directly over (hitting) the joint and the 

second step is the instant when the vehicle is passing over it. In both the cases, dowel 

spacing is varied from 0.3 m to 0.9 m (1 ft to 3 ft) and the longitudinal response at the 

bottom of the pavement is calculated. The two cases are discussed below. 

7.5.1 Loading Onto The Joint 

In the first step, the resultant single axle load is distributed over a loading area 

on the joint modeled by a group of three dimensional brick type finite elements whose 

constitutive law at each integration point, is defined by our developed program. The 

program, as discussed in Chapter 5, is based on the Microplane Theory. Because of the 

presence of the joint, the pressure is scaled so that the product of the pressure and the 

contact area gives the equivalent load of 160135 N (36,000 lb). The finite element mesh 

used here is same as described in Section 7.3 (Figure 7.2). The deformed plot 

(longitudinal cross sectional view) is shown in Figure 7.4. The results are shown in 

Table 7.5.1. For clarity, deformation is magnified in the plot. 

7.5.2 Loading Adjacent To The Joint 

Here the instant when the vehicle has just passed over the joint and is on the area 

next to the joint is simulated. This case, as we will see in section 7.8, will be used to 

calculate the stiffness of the joint. The deformed plot (longitudinal cross sectional view) 

is shown in Figure 7.5. The results are represented in Table 7.5.2. 
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Figure 7.4: Deformed plot: Loading on the joint 

Figure 7.5: Deformed Plot: Loading next to the joint 

104 

Copyright 2011, AHMCT Research Center, UC Davis



RESPONSE UNDER CYCLIC LOADING 

Response Calculated Dowel Spacing 

1 ft 2ft 3ft 

In Peak: Stress (psi) Tensile 15.0 17.0 17.0 

Concrete 

Pavement Shear 5.0 6.0 6.0 

Max. Deflection UnderLoad 2.9 3.1 3.1 

(E-4) 

In Steel Dowel Force (psi) Near Load 556 562 562 

Table 7.5.1: Load On The Joint 

RESPONSE UNDER CYCLIC LOADING 

Response Calculated A verage Dowel Spacing 

1 ft 2ft 3ft 

Tensile 16.0 16.6 16.6 

In Max. Stress (psi) 

Concrete 

Pavement Shear 9.62 9.63 10.0 

Max. Deflection UnderLoad 4.3 4.4 4.4 

(E-4) 

In Steel Dowel Force (psi) Near Load II 12 13 

Table 7.5.2: Loading Next to the Joint 
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7.5.3. Discussion 

The following points can be noted here: 

• First, with an increase in the dowel spacing from 0.6-0.9 m (2-3 ft), the maximum 

tensile stress in concrete does not change after the end of one cycle for either of the cases 

analyzed. 

• As the vehicle passes over the joint, the longitudinal (tensile) stresses at the bottom of 

the pavement are lower than when the vehicle is directly over the joint (hitting the joint), 

as the load transfer to both sides of the joint is facilitated by a direct loading of the joint. 

The longitudinal tensile stresses decrease slightly when the vehicle has already passed 

over the joint. This effect is verified from the experimental observations of Gillespie 

(1993a,b) and Huang (1993). 

• The shear stresses in concrete at the bottom increase when the vehicle is next to the 

load as compared to that case when vehicle is directly above it. 

• The deflections increase only slightly with an increase in dowel spacing. This is 

observed both when the loading is directly over the joint as well as adjacent to it. 

However, the deflection increases by more than 25 % when the loading is next to the 

joint as compared to the instant when vehicle directly hits the joint. The shear forces in 

concrete also increase by a similar margin. For, calculating joint stiffness, as will be 

done later, the deflections are taken into account for the instant when loading is next to 

the joint, fully on one slab. 

• The dowels are assumed to take the tensile stresses, and the cross-sectional forces 

through them only increase marginally with an increase in dowel spacing and decrease 

considerably as the vehicle passes form one slab to the other. 
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• The study can be extended to 10 cycles of traffic loading as the vehicle passes from 

one cycle to the other using the same approach. 

7.6. Taguchi Sensitivity Study 

A sensitivity study to identify the critical joint design parameters for a jointed 

pavement under cyclic loading is performed. Table 7.6.1 summarizes the conditions 

examined which influence the design. The values are selected based on the following 

points. 

• Both the longitudinal stress (along the direction of travel) and the dowel section force 

are higher when the vehicle hits the joint. So loading directly on the joint represents the 

worst scenario. 

• An increased dowel spacing is desirable from a cost savings point of view, so the two 

cases of 0.6 m (2 ft) and 0.9 m (3 ft) spacing are studied. 

• Joint width varies from 2.5 to 20.3 mm (0.1 in to 0.8 in ) with 20.3 mm (0.8 in) being 

the worst case. 

• A dowel diameter of 20 mm (0.75 in) was chosen for our study from Appendix D. 

• Dowel Depth to start with was chosen as half the pavement thickness. 

The results of the sensitivity analysis involved eight sets of runs and are 

tabulated in 7.6.2. In all the tables, S 11 refers to the maximum tensile stress in concrete 

and SFl is the cross-sectional force in the dowel. 
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Factors Level 2 (in) Levell (in) 

Joint Width .8 .5 

Dowel Diameter .75 .5 

Dowel Spacing 3 2 

Dowel Depth 4 2.7 

Table 7.6.1: Pavement Factors 

Taguchi Orthogonal Array ( Ls) Results 

Case 
No. Joint Dowel Dowel Dowel Sll SF1 

Width Dia. Spac. Depth 
(X 103 (kilopounds) 

psi) 

1 1 1 1 1 2.14 0.867 

2 1 1 1 2 1.76 0.506 

3 1 2 2 1 2.69 1.385 

4 1 2 2 2 2.04 0.735 

5 2 1 2 1 2.00 0.56 

6 2 1 2 2 1.53 0.331 

7 2 2 1 1 2.47 1.02 

8 2 2 1 2 1.71 0.601 

Table 7.6.2: Results from the Analyses 
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The next step involved is the calculation of the statistical analysis of variation 

(ANOVA). The commercial software Minitab (1992) is used. The results are listed in 

Table 7.6.3. 

Factors P (%) 

Joint Width 10 

Dowel 26 

Diameter 

Dowel 1 

Spacing 

Dowel 60 

Depth 

Error 3 

Total 100 

Table 7.6.3: ANOV A Calculation 

7.7. Discussion of the Results 

The ANOVA Table 7.6.3, shows that the dowel depth is the most important 

factor in controlling pavement joint design. The bottom layer of the pavement is in 

tension. Lowering the dowels (increasing dowel depth), puts the dowels in the layer of 

pavement to take up tensile load, thus lowering longitudinal stress by transferring the 

load on the other slab and increasing pavement life. Dowel geometry (diameter, cross 

section) is the second most important factor affecting a build up of the longitudinal 

stresses in cyclic loading. Joint width is the next most important factor. An increase in 

joint width decreases load transfer. The fact that dowel spacing is insignificant should be 
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judged in the context that dowel spacing was changed from 0.6 m to 0.9 m (2 ft to 3 ft). 

Earlier it was recognized in Table 7.5.2, that the longitudinal (tensile) stress increases 

with the decrease in dowel spacing. This is due to reduced load transfer from one slab to 

another, until a spacing of 0.6 m (2 ft) is reached at which point the change in magnitude 

of the longitudinal stress becomes steady. Accordingly, increasing dowel spacing does 

not contribute significantly. 

7 .8. Joint Stiffness Study 

The stiffness of a joint can be calculated from the dynamic analyses presented in 

Section 7.5. A dowel spacing of 0.6 m (2 ft) is chosen and the same load is distributed 

dynamically on the elements next to the joint as before. This represents the case when 

the vehicle has just crossed the joint and is now completely on one slab as in Section 

7.5. Following the definition of Huang (1993), the stiffness of a joint can be 

represented by a shear spring constant Cw and a moment spring constant Co as, 

C = Fs 
IV ~U 

(7.8.1) 

where Cw is the shear spring constant of the joint, F s is the average shear force per unit 

length of the joint and ~U is the difference in deflections between the two slabs. The 

moment spring constant Co is defined as 

M 

~e 
(7.8.2) 

where M is the moment per unit length of the joint and ~e is the difference in rotations 

between two slabs. 

The procedure to calculate the joint stiffness is similar to that performed by Chou 

et al. (1978, 1982) and Huang (1993). The vertical shear forces are measured at the two 

end nodes of each dowel represented by a beam element, and the mean value of those 
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shear forces per unit length of the joint is calculated. The vertical deflection is measured 

at each end of the dowel element and the mean value along the length of the joint is 

obtained from the results to calculate ilU. The shear spring constant is then calculated 

from equation 7.8.1. 

The moment spring constant is calculated in a similar fashion. However, the 

moment per unit length of the joint between the two slabs is found to be insignificant 

and hence the moment spring constant is found to be close to zero. This is corroborated 

by the research of Ball and Childs (1975) and Huang (1993). 

The results from the analyses are compared with the theoretical results based on 

the work of Huang (1993). The shear spring constant is represented by the following. 

equation 

1 
(7.8.3) 

where Sb is the dowel spacing, z is the joint width, Ed is the elastic modulus of the 

dowel, Id is the moment of inertia, G is the shear modulus and A is the area of the 

dowel. Also, f3 is given by the equation 

(7.8.4) 

where K is the modulus of dowel support, a constant whose mean value is 245.25 

GN/m3 (0.9E06 Ibs/in3
), and d is the diameter of the dowel. Thus, using the 

appropriate numbers, the theoretical value of the shear spring constant is calculated 

using equation 7.8.3 as shown 

C 
1 . 

w = pSI 
24( 0.8 2+0.7XO.8) 

11 X 106 X 0.44 + 2xO.73 x30xl06 xO.015 

(7.8.5) 
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or, C ( 1 J . - ~ 

w - 24(0.165 + 8.2928)10-6 P 
(7.8.6) 

This finally gives, Cw to be equal to 33.96 MN/m2 (4926 psi) and this value is listed in 

Table 7.8. 

Cw (X 103 psi) Co (lb/deg) 

Theory 4.926 - 0.0 

Developed 4.436 - 0.0 

Program 

Difference (%) 9.0 0.0 

Table 7.8: Joint Stiffness Comparison 

The results from the Developed Program are compared with the theory in Table 

7.8. The results show a good comparison between the theory and the analysis using the 

Developed Program. The theory uses the average values of the material constants like 

the modulus of dowel support (K), and equivalent static axle loading. The difference 

could be attributed to that as well as the dynamic nature of loading employed in the 

Developed Program. However, the approach used in this research is a superior one for 

the following two reasons. 

First, the theory is not expected to give accurate results for a pavement subjected 

to dynamic loading as the underlying theory is based on static consideration (Huang, 

1993). Second, it can be concluded from equation 7.8.6, that the deformation of 

concrete actually determines the spring constant of the joint as the term relating to the 

deformation of dowel is 9.4 E-4 miN (0.165 in/lb) while that relating to the 

112 

Copyright 2011, AHMCT Research Center, UC Davis



deformation of concrete is 473.5E-4 mIN (8.293 in/lb). Thus, the micromechanics 

based approach used in the Developed Program is better at capturing concrete 

characteristics. Accordingly, the stiffness computed using this approach is expected to 

be more accurate. 

7.9. Summary 

In this chapter, the response of a transversely jointed pavement was studied. The 

analysis was broken down into two cases. First, the vehicle (represented by an 

equivalent axle load) being directly over the joint and the next being the vehicle passing 

over the joint. The relative differences in the responses of the two cases were illustrated 

for the first time using simulations. 

The transverse joint analyzed was also doweled and the various dowel 

parameters which are important in designing transverse joints were discussed with a 

Taguchi sensitivity study. For the first time, the contributions of these parameters in 

influencing a dynamic response is detailed by the use of an analytical program developed 

in this research. The dowel depth is the most critical parameter contributing to the level 

of stress in the jointed pavements. The various cases illustrated in this chapter could be 

extended to a variety of loading and transverse joint descriptions. 
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Chapter 8. Conclusions and Recommendations 
for Future Research 

8.1. Contributions of this Thesis 

At the beginning of Chapter 1, the need for studying a concrete pavement 

behavior under traffic loading was recognized. It was pointed out that the prediction of a 

pavement response through analytical means was more efficient. A literature survey was 

conducted and it showed a dearth of analytical models available both in the academic and 

commercial arena (Chapter 2), that could predict a dynamic response accurately. 

The literature search also identified the Microplane Theory (Chapter 3) as the one 

best suited to capture the typical features of concrete. But that theory had never been 

implemented before in a highway environment. Accordingly, the Microplane Theory 

was implemented in a developed program for the first time in a 3-D finite element code 

in Chapter 4. The results from the developed program were verified with known results, 

both experimental and analytical, from the literature in Chapter 5. 

The approach developed in this research was then used to simulate dynamic 

loading of pavement successfully. In particular, the analysis correlated well with 

dynamic test data from the Canadian Truck Test conducted in Ohio (Section 6.4). The 

model was exercised first for 5 cycles and then up to 10 cycles of loading and the pattern 

of response was characterized (Chapter 6). The progressive damage for a pavement slab 

was qualitatively estimated and its distribution due to cyclic loading was represented in 

contour plots (Section 6.5) showing damage in different areas of the pavement layer. 

This has never been simulated before. Specifically, the damage growth from 5 to 10 

cycles in the bottom layer of the pavement was compared and was characterized by an 

increase in the value of damage ratio as well as by a concentration in the distribution of 

damage under the load. 
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A sensitivity study identified the sensitive parameters in pavement critical to the 

longitudinal stress causing damage (Section 6.5). This could be used as a novel tool to 

guide the design of plain concrete pavements. It was determined that the elastic modulus 

is the most significant parameter followed by pavement thickness, vehicle load, contact 

area and the foundation thickness. 

Finally, in Chapter 7, a jointed pavement was studied and the dynamic response 

of a pavement, as the axle passes over the joint, was broken down into two phases. The 

first phase response was categorized as 'loading on the joint' and the next phase as 

'loading next to the joint'. The responses in both were analyzed to understand the 

mechanism of load transfer through the joints, under dynamic loading per cycle of single 

axle loading. This was followed by a sensitivity study that classified and ranked the 

sensitive joint parameters according to their damage potential. Finally, a novel method of 

calculating joint stiffness was described. It was determined that this approach developed 

in this research is a method superior to the available methods in the literature and could 

be used as an useful tool to guide joint designs in the highways. 

The above examples demonstrated the various capabilities of the developed state

of-the-art-approach and no other existing code can perform similarly in guiding a 

pavement design. This is a major contribution for the following reasons. First, this is 

the first time that the Microplane Theory, which is applicable to any type of geomaterial 

(concrete, ceramic and certain metal-matrix composites), has been implemented in a 3-D 

finite element code using a novel unified approach (based on employing the nonlinear 

finite element constitutive implementation, spherical integration schemes, Taguchi 

method, experimental data and the principles of continuum mechanics). Second, in the 

area of modeling pavement response analytically, this research captures the actual 

nonlinear pavement response under dynamic loading more accurately. The previous 

researchers have employed simplified linear models with hypothetical factors to account 

for the wide margins of variation between the analysis and test data. Third, prior to this 
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work, no analytical code existed today that could provide the response of pavement 

under dynamic or cyclic loading. Fourth, this approach is novel as no other code can 

even predict any preliminary damage distribution, even qualitatively, for any number of 

cycles. Also, using the developed unified approach, one can predict the relative 

importance (sensitivity) of the various parameters in pavement design. Finally, this 

work has employed the developed approach to better understand the design of joints 

under dynamic and cyclic loading. 

This work has the potential to significantly affect the manner in which future 

pavement performance and redesign is accomplished. It should also be noted that this 

research can be easily extended to predict pavement life under large number of cycles 

through the use of more powerful computers. 

8.2. Future Research 

The one area that needs further research is the extrapolation of the response from 

a small number of cycles to a large number of cycles to predict pavement life. As it 

currently stands, there is no means of rapidly and effectively predicting pavement life by 

either experimental or analytical methods. In this research, the pavement response up to 

10 cycles was obtained. The numerical obstacles that came in the way of extrapolating 

the response to a large number (million or so) of cycles is beyond the scope of this 

research and can be summarized as follows: 

• Beyond 10 cycles, the numerical error increases significantly. This error can be 

attributed to factors that are associated with the peculiarities of concrete like the Size 

Effect and Crack Branching which become significant for higher number of cycles 

beyond the softening regime. Further information about the nature of the crack, crack tip 

geometry, energy release rate etc., and the type of constituents used in the concrete, are 

necessary to account for the nonlinearities in the response. Adaptive meshing techniques 
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are necessary to remesh the cracked areas as the damage becomes confined to the width 

of the element (Cofer, 1992, 1996) close to the state of fracture (Damage Ratio "" 1). 

• The numerical simulation generates large amount of data with each iteration. This is 

because for the type of formulation employed, many time-history variables need to be 

stored and updated at each memory location, at each iteration, and for each time step. 

This generates a huge amount of data even after a few cycles. In this study, computer 

resources have been quite limited, thus allowing only the low number of cycles. If we 

remember that pavement life is in millions of cycles and a large number of iterations are 

inevitable, we recommend the use of a supercomputer currently, and expect that a large 

number of cycles will be more easily simulated in the not too distant future as the 

computer technology rapidly grows. 

• Experimental Data for one pass is available but not for a small number of intermediate 

passes (say 10 or 20 or 100). This is because of the practical difficulty in tracking the 

micro-level crack growth rate as it progresses in each cycle. Therefore, we recommend 

that crack growth rate be tracked at specific locations under controlled loading conditions 

in the highway. 

• When it comes to obtaining the experimental data from pavements, it is found that the 

majority of the data available in the literature is after the damage has already occurred at 

or near the end of pavement life. This is because the pavement life is in the range of 2 to 

4 years and it is not practicable to track the progressive damage by impeding the traffic 

for any long period of time. Therefore, we recommend that more road tests be 

undertaken to record data for intermediate numbers of cycles. 

~ The Size Effect also cause problems in laboratory testing. This explains the scatter of 

data seen in the literature (Huang, 1993). The Size Effect implies that after a large 

number of cycles, different types and sizes of concrete exhibit different responses. We 

recommend further research on Size Effects specific to the PCC material used in a 

highway environement. 
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• For the numerical method, a nonlinear scheme is employed at the beginning, to track 

progressive damage. But the type of material nonlinearity changes as we move from a 

low-cycle to a high cycle fatigue, well beyond the cracking (softening) regime. In other 

words, a different type of a numerical scheme is necessary after a certain number of 

cycles have been completed. We therefore recommend a unified numerical scheme that 

can handle both types of nonlinearity be researched. 
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APPENDIX A 

Derivation of The Incremental Tangent Stiffness Matrix 

The incremental tangential stiffness matrix of the Microplane Theory is rederived below. 

Using hypothesis III in Chapter 4, and the principle of virtual work, we have the 

incremental macroscopic stress tensor: 

(A.I) 

From Bazant (1992), the increments of stresses at the microplane level must be replaced 

by their incremental expressions in terms of the current volumetric, deviatoric and 

tangent modulus and the increments of strain at that level. These are for the volumetric 

component, 

(A.2) 

or, (A.3) 

or, (A A) 

For the deviatoric component, we have 

(A.S) 

or, (A.6) 

or, (A.7) 

or, (A.8) 
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Using the definition for tangential component, we have 

(A.9) 

or, (A. 10) 

or, (A. 11) 

Using the constitutive law (Bazant, 1988b), we have 

(A.12) 

Now to produce a matrix which is symmetry-consistent, Zijkl is to be replaced by Dijkl' 

where 

(A. 13) 

Substituting the equations AA, A.8 and A11 into A.1 and using equation A. 13, 

we then have the expression for the incremental tangential stiffness matrix: 
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APPENDIX B 

Tal:uchi Method 

Dr. Genichi Taduchi espoused an excellent philosophy for quality control in the 

manufacturing industry. His philosophy has far reaching consequences, yet it is 

founded on three very simple and fundamental concepts (Taguchi et aI., 1987). These 

concepts are: 

• Quality should be designed into the product and not inspected into it. 

• The deviation from the target has to be minimized to improve the performance 

of the product. 

• The cost should be measured as a function of deviation from the standard and 

the losses should be measured system wide. 

These concepts had tremendous industrial use after the second world war by Electrical 

Communications Laboratory (ECL) in Japan and then gave birth to the 'quality based 

manufacturing design' in the USA. Ford Motor Company, for example has decreed that 

all Ford Motor engineers be trained in the Taguchi Methodology and use the above 

principles to resolve quality issues to improve the product. 

In the nineties, different industries used the Taguchi method for other design 

applications, that were non-quality or manufacturing related. The second concept from 

above was utilized to optimize designs and rank the sensitive factors that influence any 

desired response (Ross, 1988; Roy, 1990). This concept which later became known as 

'Taguchi's Design of Experiments' was used in this research and is pertinent to our 

discussion. 

There are two essential steps to guide the Design of Experiments that are 

explained as follows. First, the Taguchi Method clearly defined a way of selecting 
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information (through experiments or analyses) by the use of specially constructed tables, 

known as 'Orthogonal Arrays' (OA). A set of OAs that can be used for many 

experimental situations is constructed and the dimension of the OA depends on the 

number of factors and the level of information available for each factor. Taguchi's OAs 

represent a partial factorial design in contrast to a full factorial design (Fisher, 1951). 

For example, in a case involving 7 factors, the total number of runs/experiments will be 

128 (2s) for a full factorial design. The Taguchi Method selects a small set out of that to 

reduce the number to only 8 runs. 

Taguchi's arrays (OAs) are tables that describe the order of arranging the 

experimental results involving several factors. Based on the number of factors and levels, 

the dimension of the arrays vary. For example, the design involving 4 and 7 factors, may 

all be accomplished by using the same orthogonal array Ls. The OAs contain both the 

number as well as the configuration of the experiment. The Ls OA was applied throughout 

this research. Once the results have been tabulated in a Ls array, the average effects of the 

variables can be computed and are usually represented in a plot known as the 'Main Effect'. 

This plot gives the influence of the factors when each factor assumes a statistical average 

number between the ranges considered. Two sets of extreme combinations among the 

factors are possible as observed in the Main Effects plot. In one combination, the factors 

combine to give the highest value of response (Case 1) and in the other combination, the 

factors combine to give the lowest value of the response (Case 2). Taguchi recommends 

that depending on the objective of the experiment, either of the criteria is to be chosen to 

proceed to the next step. 

The second step is to determine the contribution (in percentage) for each of the 

factors that were used in the OA. This step involves a statistical treatment of those factors 

such that the ones which contribute the most will end up with a higher percent contribution. 

This statistical treatment is known as 'Analysis of Variation' (ANOV A). The steps involved 

in carrying out ANOV A are discussed in the Appendix C. 
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APPENDIX C 

Steps to Calculate ANOV A 

The steps to calculate ANOVA are summarized below: 

• Step 1: Calculate Total of all results (T) 

(C.1) 

where Y is the result and n is the number of experiments. 

• Step 2: Correction Factor (C.F.) calculation. 

CF=T**2/N (C.2) 

• Step 3: Calculate Total Sum of Squares. 

8 

St = LY; - C.F. (C.3) 
i=1 

• Step 4: Calculate Factor Sum of Squares. 

(C.4) 

where i denotes factors A, B, etc. 

• Step 5 : Total and Factor Degrees of Freedom (f) Calculation. 

f t = Total Dof = No. of test runs-1 (C.5) 

f i = No. of levels of factor i-I (C.6) 
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.. Step 6: Calculate Mean Square (variance V). 

(C.7) 

• Step 7: Calculate Percentage Contribution (P). 

(e.8) 
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Appendix D 

Table of Dowel Diameter and Length 

The recommended dowel diameter, length of the dowel for a spacing of 0.3 m (1 ft) as 

recommended by the Portland Cement Association in 1991 and reproduced from Huang 

(1993) follows. 

Slab Thickness (in.) Dowel Diameter Cin.) Dowel Length (in.) 

5 5/8 12 

6 3/4 14 

7 7/8 14 

8 1 14 

9 9/8 16 

10 5/4 18 

11 1118 18 

12 3/2 20 

Table D.I: Recommended Dowel Dimensions 
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APPENDIX E 

The Developed Program 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 19 th MAY 1996 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C IT 
C CC 
C **************** EXPLICIT CODE ******************* CC 
C CC 
C CC 
C THIS IS ARUN'S SAMPLE USER SUBROUTINE. CC 
C THIS IS TO BE USED IN A NONLINEAR FINITE ELEMENT CODE. CC 
C THIS INVOLVES A DAMAGE PHENOMENA. CC 
C THIS CODE IS WRITTEN BY ARUN BHATTACHARYA CC 
C AT UNIVERSITY OF CALIFORNIA AT DAVIS. THIS WAS CC 
C WRITTEN AT THE AHMCT LAB. (STATRED IN SEPTEMBER 1994) . cc 
C CC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C JULY 18 th,1995, NEW FROM 1992 paper, from umat.f324 CC 
C NOTE THAT OTHER LOADING UNLOADING SCHEMES HAVE CC 
C BEEN USED> IN THIS ONE SCHEME AS PER BAZ92 have been used CC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Constants neeeded as input (in Abaqus file) C 
C C 
C E,NU,A,B,P,Q C 
C C 
C Constants defined in this subroutine C 
C CVZ,CDZ,M=M1,N,E1=E11,ETA,ALPHA,BETA,AK, C C 
C C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

SUBROUTINE VUMAT( 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccccc 
C Read Only -

1 NBLOCK, NDIR, NSHR, NSTATEV, NFIELDV, NPROPS, LANNEAL, 
2 STEPTIME, TOTALTIME, DT, CMNAME, COORDMP, CHARLENGTH, 
3 PROPS, DENSITY, STRAININC, RELSPININC, 
4 TEMPOLD,STRETCHOLD,DEFGRADOLD,FIELDOLD, 
5 STRESSOLD,STATEOLD,ENERINTERNOLD,ENERINELASOLD, 
6 TEMPNEW,STRETCHNEW,DEFGRADNEW,FIELDNEW, 

C Write Only -
7 STRESSNEW, STATENEW,ENERINTERNNEW,ENERINELASNEW) 

C 
INCLUDE 'VABA PARAM.INC' 

C 
C23456789123456789123456789123456789123456789123456789123456789123456789 
C 

REAL N,NU,M1,M2,M 
C 
C23456789123456789123456789123456789123456789123456789123456789123456789 
C 
C All Arrays dimensioned by (*) are not used in this algorithm 
C 

DIMENSION PROPS (NPROPS) , DENSITY (NBLOCK) ,COORDMP(*), 
1 CHARLENGTH(*) , STRAININC(NBLOCK,NDIR+NSHR) , 
2 RELSPININC(*),TEMPOLD(*), 
3 STRETCHOLD(*) , DEFGRADOLD(NBLOCK,NDIR+NSHR) , 
4 FIELDOLD(*) , STRESSOLD(NBLOCK,NDIR+NSHR) , 
5 STATEOLD(NBLOCK,NSTATEV) ,ENERINTERNOLD(NBLOCK), 
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C 

6 ENERINELASOLD(NBLOCK) ,TEMPNEW(*) , 
7 STRETCHNEW(*) ,DEFGRADNEW(*) , 
8 FIELDNEW(*), 
9 STRESSNEW(NBLOCK,NDIR+NSHR) ,STATENEW(NBLOCK,NSTATEV), 
1 ENERINTERNNEW(NBLOCK) ,ENERINELASNEW(NBLOCK) 

C 
C23456789123456789123456789123456789123456789123456789123456789123456789 
C 

C 

C 

C 

C 

DIMENSION SN(3,3) ,DSN(3,3) ,EN(21) ,DEN(21) ,ENN(21), 
1 EDP(NBLOCK,21) ,EDN(NBLOCK,21) ,DED(NBLOCK,21) ,DSD(NBLOCK,21), 
2 SDN(NBLOCK,21) ,EDMAX(NBLOCK,21) ,EDMIN(NBLOCK,21) ,SDP(NBLOCK,21), 
3 ETP(NBLOCK,21) ,ETN(NBLOCK,21) ,DET(NBLOCK,21), 
4 ETMAX(NBLOCK,21) ,ETMIN(NBLOCK,21) ,EVMAX(NBLOCK) ,EVMIN(NBLOCK), 
5 SIGT1(NBLOCK,21) ,SIGT2(NBLOCK,21) ,SIGT3(NBLOCK,21), 
6 GAMMAN(NBLOCK,21) ,SIGMVP(NBLOCK) ,TAU(NBLOCK,21), 
7 SIGMVN(NBLOCK) ,DELSV(NBLOCK) ,WC(21) ,TAUGA(NBLOCK,21), 
8 STRAN(NBLOCK,6) ,DSTRAN(NBLOCK,6) 

DIMENSION ETP1(NBLOCK,21) ,ETP2(NBLOCK,21),ETP3(NBLOCK,21), 
1 ETN1(NBLOCK,21) ,ETN2(NBLOCK,21) ,ETN3(NBLOCK,21) ,DET1(NBLOCK,21), 
2 DET2(NBLOCK,21) ,DET3(NBLOCK,21) ,EPVP(NBLOCK) ,EPVN(NBLOCK), 
3 DEPV(NBLOCK) ,EPVDV(NBLOCK) 

DIMENSION TB11 (NBLOCK,21) ,TC11 (NBLOCK,21) ,TB22 (NBLOCK,21) , 
1 TC22 (NBLOCK,21) ,TB33 (NBLOCK,21) ,TC33 (NBLOCK,21) , 
2 TB12 (NBLOCK,21) ,TC12 (NBLOCK,21) ,TB23 (NBLOCK,21) , 
3 TC23 (NBLOCK,21) ,TB31(NBLOCK,21) ,TC31 (NBLOCK,21) , 
4 BT11 (NBLOCK) , 
5 CT11 (NBLOCK) ,BT22 (NBLOCK) ,CT22 (NBLOCK) ,BT33 (NBLOCK) , 
6 CT33 (NBLOCK) ,BT12 (NBLOCK) ,CT12 (NBLOCK) ,BT23 (NBLOCK) , 
7 CT23 (NBLOCK) ,BT31 (NBLOCK) ,CT31 (NBLOCK) 

DIMENSION SVMAX(NBLOCK) ,SVMIN(NBLOCK) ,EV1(NBLOCK) 
DIMENSION SDMAX(NBLOCK,21) ,SDMIN(NBLOCK,21) ,ED1(NBLOCK,21), 

1 ET1(NBLOCK,21) ,STMAX(NBLOCK,21) ,EN1(21) 

DIMENSION N(21,3) 
C DIMENSION ZER03(NBLOCK) ,ZERO(NBLOCK,21) 

DIMENSION WV(NBLOCK) ,WD1(NBLOCK,21) ,WT1(NBLOCK,21), 
2 WD(NBLOCK) ,WT(NBLOCK) 

C23456789123456789123456789123456789123456789123456789123456789123456789 
C 

CHARACTER*8 CMNAME 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C If romano, etc is used (at ASB) 

OPEN (UNIT=10,FILE='/acs mnt/users3/a/abhattac/PHD/CHECK.OUT', 
C If canard etc is used (at Bainer) 
COPEN (UNIT=10,FILE='/u/arun/PHD/CHECK.OUT', 

1 STATUS='OLD' ,ACCESS='APPEND') 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 

DO 100 KM=l,NBLOCK 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CC Dimenioning N matrix: Direction cosine matrix, for 21 
C microplanes and 3 components in space. 
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C 
C Orthogonal symmetries; 
C23456789 

Bazant p 571 

Ca CHECKED WELL READ 
C 
C 
C 
C 
C 
C 

microplanes and 3 components in space. 
The numbers below obtained from microplane calc program 
based on 87-88 and 95/96 papaers 

N(l,l)=l.O 
N(l,2)=0.0 
N(l,3)=0.0 
N(2,l)=0.0 
N(2,2)=1.0 
N(2,3)=0.0 
N(3,l)=0.0 
N(3,2)=0.0 
N(3,3)=1.0 
N(4,l)=0.707106781187 
N(4,2)=0.707106781187 
N(4,3)=0.000 
N(5,l)=0.707106781187 
N(5,2)=-0.707106781187 
N(5,3)=0.0 
N(6,l)=0.707106781187 
N(6,2)=0.0 
N(6,3)=0.707106781187 
N(7,l)=0.707106781187 
N(7,2)=0.0 
N(7,3)=-0.707106781187 
N(8,l)=0.0 
N(8,2)=0.707106781187 
N(8,3)=0.707106781187 
N (9,1) =0.0 
N(9,2)=0.707106781187 
N(9,3)=-0.707106781187 
N(lO,l)=0.387907304067 
N(lO,2)=0.387907304067 
N(lO,3)=0.836095596749 
N(ll,l)=0.387907304067 
N(ll,2)=0.387907304067 
N(ll,3)=-0.836095596749 
N(12,l)=0.387907304067 
N(12,2)=-0.387907304067 
N(12,3)=0.836095596749 
N(13,l)=0.387907304067 
N(13,2)=-0.387907304067 
N(13,3)=-0.836095596749 
N(14,l)=0.387907304067 
N(14,2)=0.836095596749 
N(14,3)=0.387907304067 
N(15,l)=0.387907304067 
N(15,2)=0.836095596749 
N(15,3)=-0.387907304067 
N(16,l)=0.387907304067 
N(16,2)=-0.836095596749 
N(16,3)=0.387907304067 
N(17,l)=0.387907304067 
N(17,2)=-0.836095596749 
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C 
C 

N(17,3)=-0.387907304067 
N(18,1)=0.836095596749 
N(18,2)=0.387907304067 
N(18,3)=0.387907304067 
N(19,1)=0.836095596749 
N(19,2)=0.387907304067 
N(19,3)=-0.387907304067 
N(20,1)=0.836095596749 
N(20,2)=-0.387907304067 
N(20,3)=0.387907304067 
N(21,1)=0.836095596749 
N(21,2)=-0.387907304067 
N(21,3)=-0.387907304067 

WC(1)=0.0265214244093 
WC(2)=0.0265214244093 
WC(3)=0.0265214244093 
WC(4)=0.0199301476312 
WC(5)=0.0199301476312 
WC(6)=0.0199301476312 
WC(7)=0.0199301476312 
WC(8)=0.0199301476312 
WC(9)=0.0199301476312 
WC(10)=0.0250712367487 
WC(11)=0.0250712367587 
WC(12)=0.0250712367587 
WC(13)=0.0250712367587 
WC(14)=0.0250712367587 
WC(15)=0.0250712367587 
WC(16)=0.0250712367587 
WC(17)=0.0250712367587 
WC(18)=0.0250712367587 
WC(19)=0.0250712367587 
WC(20)=0.0250712367587 
WC(21)=0.0250712367587 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C CONSTANTS CALCULATED 
C 

E= PROPS (1) 
NU=PROPS(2) 
P= PROPS(3) 
A= PROPS (4) 
Q= PROPS (5) 
8= PROPS (6) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C VUMAT11.f addition, EF is strain coresp to fracture strength 
C Source Chen & Han: 'plasticity for structural engineers' p-350 
C from Springer-Verlag 
C case 2 

EF= -0.13 
C Case 3 
C EF= -0.001 
C EF= -0.1 
C EF= -0.01 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C Virgin Volumetric Tangent Stiffness Modulus 
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C 
CVZ=PROPS(l)/(1.0-2.0*PROPS(2)) 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

1 

1 

1 

1 
2 

1 
2 

STRAN(KM, 1) = (DEFGRADOLD(KM, 1) **2.+DEFGRADOLD(KM,4) **2.+ 
DEFGRADOLD(KM,6)**2.-1.0)*O.S 

STRAN(KM,2) = (DEFGRADOLD(KM,4) **2. +DEFGRADOLD(KM, 2) **2.+ 
DEFGRADOLD(KM,S)**2.-1.0)*.S 

STRAN(KM,3) = (DEFGRADOLD(KM, 6) **2.+DEFGRADOLD(KM,5) **2.+ 
DEFGRADOLD(KM,3)**2.-1.0)*O.5 

STRAN(KM,4) = (DEFGRADOLD(KM, 1) *DEFGRADOLD(KM,4) + 
DEFGRADOLD(KM,4) *DEFGRADOLD(KM,2) + 
DEFGRADOLD(KM,6)*DEFGRADOLD(KM,S))*.5 

STRAN(KM,S) = (DEFGRADOLD(KM,4) *DEFGRADOLD(KM,6) + 
DEFGRADOLD(KM,2) *DEFGRADOLD(KM,S) + 
DEFGRADOLD(KM,S)*DEFGRADOLD(KM,3))*.5 

C STRAN(KM,6) = (DEFGRADOLD(KM, 1) *DEFGRADOLD(KM,6) + 
C 1 DEFGRADOLD(KM,4)*DEFGRADOLD(KM,S)+ 
C 2 DEFGRADOLD(KM,6)*DEFGRADOLD(KM,3))*.S 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

DSTRAN(KM,l)=STRAININC(KM,l) 
DSTRAN(KM,2)=STRAININC(KM,2) 
DSTRAN(KM, 3) =STRAININC(KM,3) 
DSTRAN(KM,4)=STRAININC(KM,4) 
DSTRAN(KM,5)=STRAININC(KM,S) 
DSTRAN(KM,6)=STRAININC(KM,6) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C USING STATEVARIBALES no 66 to 71 for stran 

STRAN(KM,1)=STATEOLD(KM,66) 
STRAN(KM,2)=STATEOLD(KM,67) 
STRAN(KM,3)=STATEOLD(KM,68) 
STRAN(KM,4)=STATEOLD(KM,69) 
STRAN(KM,5)=STATEOLD(KM,70) 
STRAN(KM,6)=STATEOLD(KM,71) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C PRINT*,'NEXT INCREMENT STARTS' 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

STATENEW(KM,66) =STRAININC(KM, 1) +STRAN(KM,l) 
STATENEW(KM,67)=STRAININC(KM,2)+STRAN(KM,2) 
STATENEW(KM,68) =STRAININC(KM,3) +STRAN(KM,3) 
STATENEW(KM,69) =STRAININC(KM,4) +STRAN(KM,4) 
STATENEW(KM,70)=STRAININC(KM,5)+STRAN(KM,S) 
STATENEW(KM,71) =STRAININC(KM,6) +STRAN(KM,6) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C STATENEW IS THE NEW STRAIN TENSOR AT THE END OF INCREMENT 
C 
C 
C 
C 

PRINT*, 'New Strain in 1 dir=' ,STATENEW(KM,66) 
PRINT*,'New Strain in 2 dir=' ,STATENEW(KM,67) 
PRINT*, 'New Strain in 3 dir=' ,STATENEW(KM,68) 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccCCC 
C.Volumtric strain at the beginning and its Increment 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

EPVP(KM) = (STRAN(KM,1)+STRAN(KM,2)+STRAN(KM,3»/3.0 
DEPV(KM) = (DSTRAN(KM,1)+DSTRAN(KM,2)+DSTRAN(KM,3»/3.0 

PRINT *,'NBLOCK=' ,NBLOCK 
PRINT *,'NSTATEV=' ,NSTATEV 
PRINT *, 'STRAININC=' ,STRAININC(l,3) 

PRINT *, 'DSTRAN(l)=' ,DSTRAN(KM,l) 
PRINT *,'DSTRAN(2)=' ,DSTRAN(KM,2) 
PRINT *, 'DSTRAN(3)=' ,DSTRAN(KM,3) 
PRINT *, 'DSTRAN(4)=' ,DSTRAN(KM,4) 
PRINT *, 'DSTRAN(5)=' ,DSTRAN(KM,5) 
PRINT *, 'DSTRAN(6)=' ,DSTRAN(KM,6) 
PRINT *,'STRAN(l)=' ,STRAN(KM,l) 
PRINT *,'STRAN(2)=' ,STRAN(KM,2) 
PRINT *,'STRAN(3)=' ,STRAN(KM,3) 
PRINT *, 'DEPV=' ,DEPV(KM) 
PRINT *, 'EPVP=' ,EPVP(KM) 

CC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C NEW Volumetric Strain 
C 

EPVN(KM) = EPVP(KM)+DEPV(KM) 
C PRINT *, 'EPVN=' ,EPVN(KM) 

EPSINC=1.0/(10.0**18.0) 
C 

EPVDV(KM)= EPVP(KM)*DEPV(KM) 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

M1=0.5 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

E11=0.0004 
item 9 below 

C E11=0.00005 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Volumetric constitutive relationship 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCc 
C Working with 2 state varibales : Volumetric Behavior 
C 

C 
C 

C 
CC 

IF (EPVN(KM) .GE.STATEOLD(KM,l» THEN 
STATENEW(KM,l)=EPVN(KM) 

ELSE 
STATENEW(KM,l)=STATEOLD(KM,l) 

ENDIF 

IF (EPVN(KM) . LT.STATEOLD(KM,2) ) THEN 
STATENEW(KM,2)=EPVN(KM) 

ELSE 
STATENEW(KM,2)=STATEOLD(KM,2) 

ENDIF 

C Defining the maximum and minimum strain then 
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c 
EVMAX(KM)=STATENEW(KM,l) 
EVMIN(KM)=STATENEW(KM,2) 

SVMAX(KM)=CVZ*EVMAX(KM)*«1.0+(ABS(EVMAX(KM»)/A)**(-P)+ 
3 ( (ABS (EVMAX (KM) ) ) /B) ** (Q) ) 

SVMIN(KM)=EVMIN(KM)*CVZ*(EXP(-«ABS(EVMIN(KM»)/E11)**M1» 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C Check the value of EPVP for loading and unloading. 
C 

IF (EPVN(KM)*DEPV(KM) .GE.O.O.AND. (EPVN(KM)-EVMAX(KM»* 
1 (EPVN(KM)-EVMIN(KM» .GE.O.O) THEN 

C Loading occurs 
IF (EPVN(KM) .GT.O.O) CV=CVZ*«1.0+(ABS(EPVN(KM»)/A)**(-P)+ 

2 «ABS (EPVN(KM») /B) ** (Q» 
C Loadin Stiffness in Tension 

C 
C 

C 

C 

ELSE 

IF (EPVN(KM) .LE.O.O) CV=CVZ*(EXP(-«ABS(EPVN(KM»)/E11)**M1» 
SIGMVN(KM)=CV*EPVN(KM) 

Unloading and Reloading occurs 
PRINT *,'UNLOADING volumetric WATCH1' 

IF (EPVN(KM) .GT.O.O) THEN 
SIGMVN(KM) =STATEOLD(KM,72) +CVZ*DEPV(KM) 

EV1(KM)=EVMAX(KM)-SVMAX(KM)/CVZ 
IF (EV1(KM) .LT.EPSINC) EV1(KM)=0.0 

IF (SIGMVN(KM) .GE.O.O) GO TO 11 
IF (SIGMVN(KM) .LT.O.O) SIGMVN(KM)=CVZ*(EPVN(KM) 

4 -EV1(KM»*(EXP(-«ABS(EPVN(KM)-EV1(KM»)/E11)**M1» 
ELSE 

IF (EPVN(KM) .EQ.O.O) SIGMVN(KM)=O.O 
IF (EPVN(KM) .LT.O.O) SIGMVN(KM)=EPVN(KM)* 

5 (SVMIN(KM) /EVMIN(KM» 
ENDIF 

ENDIF 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

11 STATENEW(KM,72)=SIGMVN(KM) 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C DAMAGE RULE (VOLUMETRIC) 

IF (EPVN(KM) .LE.O.Ol THEN 
WV(KM)=EXP(-«ABS(EPVN(KM»)/Ell)**Ml) 

ELSE 
WV(KM)=O.O 

ENDIF 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Redefining STRAN(NTENS) INTO A 2-D ARRAY SN(I,J) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

C 

SN(l,l)=STRAN(KM,l) 
SN(2,2)=STRAN(KM,2) 
SN(3,3)=STRAN(KM,3) 
SN(1,2)=STRAN(KM,4) 
SN(2,3)=STRAN(KM,5) 
SN(1,3)=STRAN(KM,6) 

SN(2,1)=STRAN(KM,4) 
SN(3,2)=STRAN(KM,5) 
SN(3,1)=STRAN(KM,6) 
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C 
C Inrementall Strain (GLOBAL); matrix form. 
C 

C 

DSN(l,l)=DSTRAN(KM,l) 
DSN(2,2)=DSTRAN(KM,2) 
DSN(3,3)=DSTRAN(KM,3) 
DSN(l,2)=DSTRAN(KM,4) 
DSN(2,3)=DSTRAN(KM,S) 
DSN(l,3)=DSTRAN(KM,6) 

DSN(2,1)=DSTRAN(KM,4) 
DSN(3,2)=DSTRAN(KM,S) 
DSN(3,1)=DSTRAN(KM,6) 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Normal Strain EN & its increment DEN for # M-Planes. 
C NEW Normal Strain ENN at the end. 
C 

C 
C 

DO 10 K=1,21 
EN(K) = 0.0 
DEN(K)=O.O 

DO 20 1=1,3 
DO 20 J=1,3 

EN(K)=SN(I,J)*N(K,I)*N(K,J)+EN(K) 
DEN(K)=DSN(I,J)*N(K,I)*N(K,J)+DEN(K) 

20 CONTINUE 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C234S6789123456789123456789123456789123456789123456789123456789123456789 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

EN1(K)=SN(l,1)*N(K,1)*N(K,1)+SN(l,2)*N(K,1)*N(K,2)+SN(1,3)*N(K,1) 
1 *N(K,3)+SN(2,1)*N(K,2)*N(K,1)+SN(2,2)*N(K,2)*N(K,2)+SN(2,3)* 
2 N(K,2)*N(K,3)+SN(3,1)*N(K,3)*N(K,1)+SN(3,2)*N(K,3)*N(K,2)+ 
3 SN(3,3)*N(K,3)*N(K,3) 

C PRINT*, 'ENl(K)=' ,EN1(K) 
C PRINT*,'EN(K)=' ,EN(K) 

ENN(K) =EN(K) +DEN(K) 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C (Normal) Deviatoric Strain; Begin=EDP, New=EDN, Incr=DED 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C DEVIATORIC BEHAVIOR 
C 

EDP(KM,K)=EN(K)-EPVP(KM) 
EDN(KM,K)=ENN(K)-EPVN(KM) 
DED(KM,K)=EDN(KM,K)-EDP(KM,K) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C IF (EDP(KM,K) .GT.O.O.AND.EDN(KM,K) .LT.O.O) PRINT*, 'WATCH4 
Cj 1 DED=' ,DED(KM,K) 
C IF (EDP(KM,K) .LT.O.O.AND.EDN(KM,K) .GT.O.O) PRINT*,'WATCH5 
C 2 DED=' ,DED(KM,K) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C PRINT*, 'K=' ,K,' EDN=' ,EDN(KM,K),' EDP=' ,EDP(KM,K) 
C 
C Using state variables no. 3 to 23. 
C 

IF (EDN(KM,K) .GE.STATEOLD(KM,2+K)) THEN 
STATENEW(KM,2+K)=EDN(KM,K) 
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C 

ELSE 
STATENEW(KM,2+K)=STATEOLD(KM,2+K) 

ENDIF 

C Using State variables no. 24 to 44 
IF (EDN(KM,K) .LT.STATEOLD(KM,23+K)) THEN 

STATENEW(KM,23+K)=EDN(KM,K) 
ELSE 

STATENEW(KM,23+K)=STATEOLD(KM,23+K) 
ENDIF 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
CC Value of ETA 

ETA=0.5 

C 

C 

C 

C 
C 

C 
C 

CDZ=ETA*CVZ 

IF (EDN(KM,K) .GE.O.O) THEN 

ELSE 

Loadin Stiffness in Compression 
M=1.5 

E1=.0025 

Loadin Stiffness in Tension 
M=0.5 

item 11 

ENDIF 

E1=.00005 
E1=.0004 

Unloading (from compression to) tension 
M2=0.5 

C item 13c 
E2=.0004 

C E2=.00005 
C 
C Maximum and Minimum Values of Deviatoric Strain so far 
C 

C 
C 

EDMAX(KM,K)=STATENEW(KM,2+K) 
EDMIN(KM,K)=STATENEW(KM,23+K) 
SDMAX(KM,K)=CDZ*EDMAX(KM,K)*EXP(-(ABS(EDMAX(KM,K))/E1)**M) 
SDMIN(KM,K)=CDZ*EDMIN(KM,K)*EXP(-(ABS(EDMIN(KM,K))/E2)**M2) 
PRINT*, 'EDMIN=' ,EDMIN(KM,K),' EDMAX=' ,EDMAX(KM,K) 
PRINT*, 'SDMIN=' ,SDMIN(KM,K),' SDMAX=' ,SDMAX(KM,K) 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Deviatoric CONSTITUTIVE RULE 
C Using State Variables from 73 to 93 

I=72+K 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C234567 

IF 
1 

C 

(EDN(KM,K)*DED(KM,K) .GE.O.O.AND. (EDN(KM,K)-EDMAX(KM,K))* 
(EDN(KM,K)-EDMIN(KM,K)) .GE.O.O) THEN 

Loading occurs 
SDP(KM,K)=CDZ*EDP(KM,K)*EXP(-(ABS(EDP(KM,K))/E1)**M) 

SDN(KM,K)=CDZ*EDN(KM,K)*EXP(-(ABS(EDN(KM,K))/E1)**M) 
ELSE 

C 
C 
C 
C 

Unloading and Reloading occurs 
WRITE(10,*) ,'Unloading deviatoric WATCH2, K=' ,K 
WRITE(lO,*), 'DEPV=' ,DEPV(KM) 

PRINT*, 'Unload deviat WATCH2, K=' ,K,' DED=' ,DED(KM,K) 
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C 

C 
C 

C 

C 

C 

2 

3 

IF (EDN(KM,K) .GT.O.O) THEN 

ELSE 

ENDIF 

PRINT*, 'EDN .GT. 0.0' 
ED1(KM,K)=EDMAX(KM,K)-SDMAX(KM,K)/CDZ 
IF (ED1(KM,K) .LT.EPSINC) ED1(KM,K)=0.0 

SDN(KM,K)=STATEOLD(KM,I)+CDZ*DED(KM,K) 
PRINT*,' SDN=inter=' ,SDN(KM,K) 
PRINT*,'CDZ=' ,CDZ 
IF (SDN(KM,K) .GE.O.O) GO TO 12 
IF (SDN(KM,K) .LT.O.O) PRINT*,'WATCH7' 
IF (SDN(KM,K) .LT.O.O) SDN(KM,K)=CDZ*(EDN(KM,K)

-ED1(KM,K))*EXP(-(ABS(EDN(KM,K)-ED1(KM,K))/E2)**M2) 

PRINT*,' EDN .LE. 0.0' 
IF (EDN(KM,K) .EQ.O.O) SDN(KM,K)=O.O 
IF (EDN(KM,K) .LT.O.O) SDN(KM,K)=EDN(KM,K)* 

(SDMIN(KM,K)/EDMIN(KM,K) ) 

ENDIF 
C 
C PRINT*, , SDN=' ,SDN(KM,K) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Updating state varibales 

12 STATENEW(KM,I)=SDN(KM,K) 
Cn PRINT*,'STOLD=' ,STATEOLD(KM,I) 
C PRINT*,'I=' ,I,'STNEW=' ,STATENEW(KM,I) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C DAMAGE RULE (DEVIATORIC) 
C 

WD1(KM,K)=EXP(-(ABS(EDN(KM,K) )/E1)**M) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

10 CONTINUE 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C TANGENTIAL/INPLANE COMPONENTS 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

DO 30 K=1,21 
C 
C Components of ETN:New ten strain vector as ET1, ET2,ET3 
C 
C Change January 23, 95 
C 
CCCCCCCCCCCCC~~~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C23456789123456789123456789123456789123456789123456789123456789123456789 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

1 

1 

1 
C234567 
C 

C 

ETP1(KM,K)=SN(1,1)*N(K,1)+SN(1,2)*N(K,2)+SN(1,3)*N(K,3) 
-EN(K)*N(K,l) 

ETP2(KM,K)=SN(2,1)*N(K,1)+SN(2,2)*N(K,2)+SN(2,3)*N(K,3) 
-EN(K)*N(K,2) 

ETP3(KM,K)=SN(3,1)*N(K,1)+SN(3,2)*N(K,2)+SN(3,3)*N(K,3) 
-EN(K)*N(K,3) 

ETP(KM,K)=SQRT(ETP1(KM,K)**2.+ETP2(KM,K)**2.+ETP3(KM,K)**2.) 

DET1(KM,K)=DSN(1,1)*N(K,1)+DSN(1,2)*N(K,2)+DSN(1,3)*N(K,3)-
1 DEN(K)*N(K,l) 
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c 
c 
c 

c 

DET2(KM,K)=DSN(2,1)*N(K,1)+DSN(2,2)*N(K,2)+DSN(2,3)*N(K,3)-
1 DEN(K)*N(K,2) 

DET3(KM,K)=DSN(3,1)*N(K,1)+DSN(3,2)*N(K,2)+DSN(3,3)*N(K,3)-
1 DEN(K)*N(K,3) 

ETN1(KM,K)=ETP1(KM,K)+DET1(KM,K) 
ETN2 (KM,K)=ETP2(KM,K) +DET2 (KM,K) 
ETN3 (KM,K)=ETP3 (KM,K) +DET3 (KM,K) 

ETN(KM,K)=SQRT(ETN1(KM,K)**2.+ETN2(KM,K)**2.+ETN3(KM,K)**2.) 
GAMMAN (KM, K) =ETN (KM, K) . 

c 
C ZERO(KM,K)=ETN1(KM,K)*N(K,1)+ETN2(KM,K)*N(K,2)+ETN3(KM,K)*N(K,3) 
C ZERO(KM,K)=ETP1(KM,K)*N(K,1)+ETP2(KM,K)*N(K,2)+ETP3(KM,K)*N(K,3) 
c 
c 

DET(KM,K)=ETN(KM,K)-ETP(KM,K) 
c 
C PRINT *,'DET(l)=' ,DET(l) 
c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
C CONSTANTS A3 P3 AND CTZ , E33 AND Kl DEFINED 
C AK defined 
C 

AK=O.O 
A3Z=.0015 
A3=A3Z+AK*EPVN(KM) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

A3=.0018 
P3=1.5 

c 
CTZ=(l.0/3.0)*( (5.0-10.0*NU)/(l.0+NU) -2.0*ETA)*CVZ 

c 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccc 
C Using state variables no.45 to 65. 
C 

IF (ETN(KM,K) .GE.STATEOLD(KM,44+K)) THEN 
STATENEW(KM,44+K)=ETN(KM,K) 

ELSE 
STATENEW(KM,44+K)=STATEOLD(KM,44+K) 

ENDIF 
c 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Maximum and Minimum Values of tangential Strain so far 
C ETMIN is always zero 
C PRINT*,'K=' ,K 
C 

ETMAX(KM,K)=STATENEW(KM,44+K) 
ETMIN(KM,K) =0.0 
STMAX(KM,K) =CTZ*ETMAX(KM,K)*EXP(-(ETMAX(KM,K)/A3) **P3) 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C Inplane (tangential) Constitutive rule 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccccc 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C STESSES AND INCREMENTAL STRESS 
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C 
C PRINT*, 'ETN=' ,ETN(KM,K),' DET=' ,DET(KM,K) 
C 
C2345678 

PRINT*, 'ETMAX=' ,ETMAX(KM,K),' STOLD=' , STATEOLD(KM,K+93) 

1 
C 

C 

C 

IF (ETN(KM,K)*DET(KM,K) .GE.O.O.AND. (ETN(KM,K)-ETMAX(KM,K))* 

ELSE 

ENDIF 

(ETN(KM,K) -ETMIN(KM,K)) .GE.O.O) THEN 

TAU(KM,K)=CTZ*ETN(KM,K)*EXP(-(ETN(KM,K)/A3)**P3) 

PRINT*,'Unloading -tangential WATCH3',' K=',K 
TAU(KM,K)=STATEOLD(KM,K+93) +DET(KM,K) *CTZ 
IF (TAU(KM,K) .LT.O.O) TAU(KM,K)=O.O 

C PRINT*, 'TAU=' ,TAU(KM,K) 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C DAMAGE RULE (TANGENTIAL) 

WT1(KM,K)=EXP(-(ETN(KM,K)/A3)**P3) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Defining State variables from 94 to 114 

STATENEW(KM,K+93)=TAU(KM,K) 
C PRINT*,' STNEW=' ,STATENEW(KM,K+93) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

C 

IF (GAMMAN(KM,K) .LE.O.O) THEN 
TAUGA=O.O 

ELSE 
TAUGA(KM,K) =TAU(KM,K) !GAMMAN(KM,K) 

ENDIF 

C Tangential Stresses 1,2 and 3 
SIGT1(KM,K)=TAUGA(KM,K)*ETN1(KM,K) 
SIGT2(KM,K) =TAUGA(KM,K) *ETN2(KM,K) 
SIGT3 (KM,K)=TAUGA(KM,K) *ETN3(KM,K) 

CC 
30 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 
C 
C NEW GLOBAL STRESS= TERMA + TERMB +TERMC 
C 
C 
C 

c 

TA12=0.0 
TA13=O.O 
TA31=0.0 
TA23=0.0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

DO 201 K=1,21 
TB11(KM,K)=SDN(KM,K)*N(K,1)*N(K,1) 

C23456 

C 
C 

TC11(KM,K)=SIGT1(KM,K)*(N(K,1)-N(K,1)**3.) 
1 -SIGT2(KM,K)*(N(K,2)*N(K,1)**2.) 
2 -SIGT3(KM,K)*(N(K,3)*N(K,1)**2.) 
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201 CONTINUE 
C 

C 

BTll (KM) =0.0 
CTll (KM) =0.0 

DO 202 K=1,21 
BT11 (KM) =TB11 (KM,K) *WC(K} +BT11(KM} 
CT11(KM} =TC11 (KM,K) *WC(K} +CT11 (KM) 

202 CONTINUE 
C 
C 

STRESSNEW(KM,l}=SIGMVN(KM}+6.0*(BT11(KM}+CT11(KM}} 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

DO 203 K=1,21 
TB22(KM,K}=SDN(KM,K}*N(K,2}*N(K,2} 

C234567 
TC22(KM,K}=-SIGT1(KM,K}*N(K,l}*(N(K,2}**2.}+ 

C 
203 

C 

C 

C 
204 

C 

1 SIGT2(KM,K}*(N(K,2} -N(K,2}**3.} 
2 -SIGT3(KM,K}*(N(K,2}**2.}*N(K,3} 

CONTINUE 

BT22(KM}=0.0 
CT22(KM}=0.0 

DO 204 K=1,21 
BT22(KM}=TB22(KM,K}*WC(K}+BT22(KM} 
CT22 (KM) =TC22 (KM,K) *WC(K} +CT22 (KM) 

CONTINUE 

STRESSNEW(KM,2}=SIGMVN(KM}+6.0*(BT22(KM}+CT22(KM}} 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

DO 205 K=1,21 

C23456 

C 
205 

C 

C 

1 
2 

TB33(KM,K}=SDN(KM,K}*N(K,3}*N(K,3} 

TC33(KM,K}=-SIGT1(KM,K}*N(K,l}*(N(K,3}**2.} 
-SIGT2(KM,K}*N(K,2}*(N(K,3)**2.) 
+SIGT3(KM,K}*(N(K,3)-N(K,3)**3.) 

CONTINUE 

BT33(KM}=0.0 
CT33(KM}=0.0 

DO 206 K=1,21 
BT33 (KM}=TB33 (KM,K) *WC(K}+BT33 (KM) 
CT33 (KM}=TC33 (KM,K) *WC(K} +CT33 (KM) 

206 CONTINUE 
C 
C 

STRESSNEW(KM,3}=SIGMVN(KM}+6.0*(BT33(KM}+CT33(KM}} 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

DO 207 K=1,21 
TB12(KM,K}=SDN(KM,K)*N(K,l}*N(K,2} 

C 
TC12(KM,K}=0.5*SIGT1(KM,K}*(N(K,2}-2.0*N(K,2}*N(K,l}**2.O} 

1 +0.5*SIGT2(KM,K}*(N(K,l}-2.0*N(K,l}*N(K,2}**2.0} 
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207 
C 

C 

2 -SIGT3(KM,K)*N(K,1)*N(K,2)*N(K,3) 
CONTINUE 

BT12(KM)=0.0 
CT12(KM)=0.0 

DO 208 K=1,21 
BT12 (KM) =TB12 (KM,K) *WC(K)+BT12 (KM) 
CT12 (KM) =TC12 (KM,K) *WC(K) +CT12 (KM) 

208 CONTINUE 
C 
C 

STRESSNEW(KM,4)=6.0*(BT12(KM)+CT12(KM)) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

1 
2 

C23456 
211 

C 

C 

DO 211 K=1,21 
TB31(KM,K)=SDN(KM,K)*N(K,3)*N(K,1) 

TC31(KM,K)=0.5*SIGT1(KM,K)*(N(K,3)-2.0*N(K,3)*N(K,1)**2.0) 
-SIGT2(KM,K)*N(K,1)*N(K,2)*N(K,3) 
+0.5*SIGT3(KM,K)*(N(K,1)-2.0*N(K,1)*N(K,3)**2.0) 

CONTINUE 

BT31(KM)=0.0 
CT31(KM)=0.0 

DO 212 K=1,21 
BT31(KM) =TB31 (KM,K) *WC(K)+BT31(KM) 
CT31(KM)=TC31(KM,K)*WC(K)+CT31(KM) 

212 CONTINUE 
C 
C 

STRESSNEW(KM,5)=6.0*(BT31(KM)+CT31(KM)) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

209 
C 

C 

1 
2 

DO 209 K=1,21 
TB23(KM,K)=SDN(KM,K)*N(K,2)*N(K,3) 

TC23(KM,K)=-SIGT1(KM,K)*N(K,1)*N(K,2)*N(K,3) 
+0.5*SIGT2(KM,K)*(N(K,3)-2.0*N(K,3)*N(K,2)**2.0) 
+0.5*SIGT3(KM,K)*(N(K,2)-2.0*N(K,2)*N(K,3)**2.0) 

CONTINUE 

BT23(KM)=0.0 
CT23(KM)=0.0 

DO 210 K=1,21 
BT23 (KM)=TB23 (KM,K) *WC(K)+BT23 (KM) 
CT23 (KM) =TC23 (KM,K) *WC(K) +CT23(KM) 

210 CONTINUE 
C 
C 

STRESSNEW(KM,6)=6.0*(BT23(KM)+CT23(KM)) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C DAMGE WEIGHTED 

WD(KM)=O.O 
WT(KM)=O.O 

C 
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DO 215 K=1,21 
WD(KM)=WD1(KM,K)*WC(K)+WD(KM) 
WT(KM)=WT1(KM,K)*WC(K)+WT(KM) 

215 CONTINUE 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccccccccccccc 

STATENEW(KM,115)=WV(KM) 
STATENEW(KM,116)=WD(KM) 
STATENEW(KM,117)=WT(KM) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccccccccccccc 
c 

STATENEW(KM,118)= (STATENEW(KM,66)+STATENEW(KM,67)+ 
1 STATENEW(KM,68»/(3.0*EF) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c WRITE(10,*) ,'EL DAM.=' ,STATENEW(KM,118) 
c WRITE(10,*) ,'VOL DAM.=' ,WV(KM),' DEVI DAM=' ,WD(KM),' TAN DAM=', 
C 2 m(KM) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ZER03 (KM) =CTll(KM) +CT22 (KM)+CT33 (KM) 
C PRINT*, 'ZER03(KM)=' ,ZER03(KM) 
c 
c 
c PRINT *, 'STRESSNEW(KM,l)=' ,STRESSNEW(KM,l) 
c PRINT *,'STRESSNEW(KM,2)=' ,STRESSNEW(KM,2) 
c PRINT *,'STRESSNEW(KM,3)=' ,STRESSNEW(KM,3) 
c PRINT *,'STRESSNEW(KM,4)=' ,STRESSNEW(KM,4) 
c PRINT *,'STRESSNEW(KM,5)=' ,STRESSNEW(KM,5) 
c PRINT *,'STRESSNEW(KM,6)=' ,STRESSNEW(KM,6) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

100 CONTINUE 
C 

CLOSE (UNIT=10) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C NOTE: Changes made to the vumat6.f program since 4/3/1996 april 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

NOTE: Changes made to the vumat6.f paramters since 4/3/1996 april 
Prior to this date all the single element test have been performed. 

since this (4/3) date I have started making a pavement model and runs 
for the pavement. 

Note3: 4/24/96, Parameter Ell for Hydrost. tension changed from 
.0004 to .00005 to match with the corected. This is the first param change 
from the controlled tests. 

C MAy 19, 1996 Damge rule added 
C STATEVARIABLES INCREASED TO 118 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

RETURN 
END 
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APPENDIX F 

Stress-Strain Equations 

The explicit equation for the stress strain curve in the Microplane Theory 

(Bazant, 1992a) can be written as follows: 

For volumetric behavior: 

(G. 1) 

For deviatoric behavior: 

(G.2) 
for Cd < O. 

For tangential behavior: 

r = E~re-(r/a3)P3 (G.3) 

where r=~at·at (G.4) 

and r = ~CtCt . (G.S) 

There are 14 parameters for the explicit version of the Microplane Theory 

(1992a). These parameters can be divided into 4 categories as follows: 
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• Elastic parameters: E, v, 11
0

, The elastic parameter E represents the Young's Modulus, 

V is the Poisson's ratio, and 11" is the additional elastic parameter that is linked with the 

deviatoric behavior. 

• Volumetric law parameters: a, b, p, q, al and pI. The parameters a, b, p and q 

represent the constants used in describing the material behavior in volumetric 

compression. The parameters al and pI represent the same in volumetric tension. 

• Deviatoric law parameters: a2 and p2. These parameters represent the material behavior 

in deviatoric compression. 

• Tangential law parameters: a3, Ka and p3. The parameters represent the in-plane 

stress-strain response for each microplane. The equations shown from G.3 to G.5 relate 

the resultant in-plane response r in a microplane to a given absolute magnitude of the 

shear strain r. 
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c 

E 

F 

L 

M 

p 

S 

SFl 

T 

W 

APPENDIX G 

Nomenclature 
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Cross sectional area of steel 

Green Deformation Tensor 

Volumetric Secant Modulus 

Deviatoric Secant Modulus 

Tangential Secant Modulus 

Incremental Tangent Stiffness Tensor 

Elastic Modulus 

Deformation Gradient 

Parameter used in tangential law 

Length of the pavement slab 

Mass 

Load applied on the pavement 

Dowel Spacing 

Section forces in the dowel 

Time 

Width of the joint 

Volumetric parameter (compression) 

Volumetric parameter (tension) 

Deviatoric parameter (compression) 

Tangential parameter 1 

Tangential parameter 2 

Volumetric parameter (compression) 
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d Dowel diameter 

h Depth of the dowel 

hI Thickness of the concrete layer 

h2 Thickness of the base or subbase 

n Number of microplanes 

n;orj Unit normal vector defining microplanes 

p Volumetric parameter (compression) 

pI Volumetric parameter (tension) 

p2 Deviatoric parameter (compression) 

p3 Tangential parameter 3 

q Volumetric parameter (compression) 

u Nodal displacement 

Wv Volumetric damage 

Wd Deviatoric damage 

WI Tangential damage 

/).t Time increment 

O;j Kronecker Delta 

Cij Strain Tensor 

CIl Normal Strain 

Cv Volumetric Strain Tensor 

Cd Deviatoric Strain Tensor 

ct 
Tangential Strain Tensor 

l/J Surface traction 

r Shear Strain 

110 Additional elastic constant 

v Poisson's ratio 

p Mass density 
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(Je Max. Stress in concrete 

(J1l Longitudinal Stress 

(Jij Stress Tensor 

(Jv Volumetric Stress Tensor 

(Jd Deviatoric Stress Tensor 

(Jt Tangential Stress Tensor 

1: Shear Stress 
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