California AHMCT Program
University of California at Davis
California Department of Transportation

TELEOPERATED AND AUTOMATED
MAINTENANCE EQUIPMENT ROBOTICS
PHASE III

* Volume I
Andrew McKee, Ross Lamm, Sonja Sun

Andrew Frank, Paul Chen

AHMCT Research Report
UCD-ARR-98-08-31-01

Report of Contract
65X875 T.O.95-8

August 31, 1998

This work was supported by the California Department of Transportation (Caltrans)
Advanced Highways Maintenance and Construction Technology Program (AHMCT)
at UC-Davis

Copyright 2011, AHMCT Research Center, UC Davis

ABSTRACT

The research of this phase at UC Davis was to further improve performance,
productivity and operator comfort of the existing teleoperated front-end loader that has been
developed in Phase I and Phase II. The enhancement of the existing teleoperated front-end
loader includes development of teachable programs and improvement of the 3D video
feedback system.

Three teachable programs (time-based, position-based and hybrid) were developed
during this phase. These programs, with necessary sensory feedback incorporated, enable
the loader to follow the main operation sequences demonstrated by an operator to complete
various tasks. The objective is to automatically execute repetitive tasks in order to reduce
the operator's fatigue and increase productivity. The time-based program records operator
control inputs, duration and sequences, stores them in memory and plays the sequence
back with the stored control values for the amount of time recorded. The position-based
program records data from position sensors on the loader’s bucket and arm, and plays back
accordingly. This program offers man-machine interactive feedback. The hybrid program
takes characteristics from both the time-based and position-based programs. It controls all
loader functions and also incorporates man-machine interactive feedback.

The three semi-automatic programs were compared along with manual operation
and normal teleoperation in field testing. All modes were monitored for accuracy,
productivity, and operator fatigue. The results have shown that among three programs, the
position-base program is most feasible for implementation.

‘ An improved video/audio feedback system was integrated into the teleoperated
front-end loader. The system is compact and low cost compare to the previous system
developed in Phase II. The system employed an ALCS stereo display system developed by
StereoGraphics Corp. for the front view and two LCD monitors by Sharp for side and rear
views.

Field test evaluations demonstrated usefulness of incorporating both side and rear
monoscopic peripheral views in addition to the stereoscopic front view. Peripheral visions
enable operators to identify obstacles to the sides and the rear of the vehicle which could be
dangerous to both the machine and the operator. The flicker-free stereoscopic front view
proved to allow for depth perception which led to more precise control of the vehicle and
bucket operations compared to the monoscopic system. Much energy and effort was
placed into designing and constructing an ergonomic and effective telepresence display
unit. The system which Allows for both multiple telepresence views and line-of-sight has
greatly enhanced the telepresence performance and increased operators’ confidence of
teleoperating a heavy duty equipment.

Copyright 2011, AHMCT Research Center, UC Davis

A relationship between optimal parallel stereo camera separation (Inter-Viewpoint
Distance, IVD) and object distance was determined. For the range of from 10 - 30 feet an
IVD of 5.0 inches was found to present large enough retinal disparity with minimal
distortion to allow for optimal depth perception cues as opposed to the previous standard of
2.5 inch IVD. The (IVD) investigation concludes that an optimum spacing versus range
can be determined. Future research may involve the design and construction of a system
which can be automatically or perhaps manually adjusted to optimize IVD for the task at
hand.

Copyright 2011, AHMCT Research Center, UC Davis

EXECUTIVE SUMMARY

Significant hazards exist for which the enclosed cab devices and other preventive
measures offer inadequate operator protection. Casualties and injuries occur every year
across the nation, despite preventive efforts. The need to remove the operator from the
vehicle cab to a safe operating site under hazardous operating conditions has been made
evident by such hazards inherent in highway maintenance.

In an attempt to eliminate the operator's exposure to the hazards associated with
highway maintenance and to improve productivity, University of California at Davis
initiated and has been granted from California Department of Transportation, a project
entitled Teleoperated and Automatic Maintenance Equipment Robotics (TAMER) to
developed a teleoperation system (remote control package) for a front-end loader. The
development of the TAMER project has three phases.

Previous phases (phase I and phase II):

During Phase I of the TAMER project, a teleoperation system with human engineered
controls which can be adapted to general purpose heavy equipment was developed. A 116
hp CASE 621 front-end loader with a 2.75 yard bucket capacity was used as a model.
The teledperation system allows the operator to normally operate the loader in the cab, as
well as to leave the vehicle cab and continue the operation remotely at a safe site if
hazardous conditions are encountered. The system has built-in safety features, such as
emergency stop, automatic failure stop and, communication safeguard to assure reliable
communication and safety.

In Phase II, a three dimensional color video/audio feedback system was developed
and integrated into the teleoperated front-end loader. The video/audio feedback system
enables the operator to regain the major senses, as to the status of the vehicle and position
of the vehicle relative to the points of operation, which are lost during remote operation
from a distance greater than 200 ft. The three dimensional and color images enable
operators to better identify objects in unfamiliar environments.

Tests and evaluations have been conducted at various sites including Caltrans District
11 (San Diego), District 4 (Oakland), District 3 (Sacramento) and a land slide site along
Highway 101 (District 1), where the teleoperated front-end loader was operated by more
than 30 Caltrans maintenance workers. The entire system has proven to be practical,
reliable, safe and sufficiently easy to operate. The overall performance of the teleoperated

Copyright 2011, AHMCT Research Center, UC Davis

front-end loader has been very satisfactory according to surveys and questionnaires filled
out by the users.

The feasibility of teleoperating unmanned highway maintenance equipment has thus
been well demonstrated. Demonstrations of the remote controlled front-end loader at
various Caltrans districts have evoked a strong desire of using such equipment for high risk
operations, as commented by the manager of District 1: "Two to four such teleoperated
units are highly desired."

Phase 111:

There are two objectives of the Phase ITI. The first objective was to further improve
performance, productivity and operator comfort of the existing teleoperated front-end
loader that has been developed in Phase I and Phase II. The second objective was to equip
two in-service front-end loaders with teleoperation systems (through subcontract) for
deployment to Caltrans districts for field evaluation and feedback. This report only covers
the enhancement of the teleoperated loader developed at UC Davis. The report on the
development of the additional two teleoperation units was delivered by the subcontractor,
the Unmanned Solutions, Inc. (USI) and included as an attachment of this main report.

The enhancement of the existing teleoperated front-end loader includes development
of teachable programs and improvement of the 3D video feedback system.

Teachable Programs:

Three teachable programs (time-based, position-based and hybrid) were developed
during this phase. These programs, with necessary sensory feedback incorporated, enable
the loader to follow the main operation sequences demonstrated by an operator to complete
various tasks. The objective is to automatically execute repetitive tasks in order to reduce
the operator's fatigue and increase productivity. The time-based program records operator
control inputs, duration and sequences, stores them in memory and plays the sequence
back with the stored control values for the amount of time recorded. The position-based
program records data from position sensors on the loader’s bucket and arm, and plays back
accordingly. This program allows the operator to “rim” the operation during playback.
The hybrid program combines characteristics from both the time-based and position-based
programs. '

iv

Copyright 2011, AHMCT Research Center, UC Davis

Field tests have shown that among three programs, the position-base program is

most feasible for implementation. Excellent accuracy and speed were achieved when

performing repetitive tasks of bucket operations. The feasibility of incorporating teachable

. programs to the teleoperation system to reduce operator’s fatigue and improve productivity

was demonstrated. The position-based program can be upgraded to include vehicle

navigation if desired. However the system will be more complicated and costly than the
existing one.

Video/audio Feedback system:

An improved video/audio feedback system was integrated into the teleoperated
front-end loader. The system is compact and low cost compare to the previous system
developed in Phase II. The system employed an Alternating Liquid Crystal stereo display
system (ALCS) developed by StereoGraphics Corp. for the front view and two LCD
monitors by Sharp for side and rear views.

Field test evaluations demonstrated usefulness of incorporating both side and rear
monoscopic peripheral views in addition to the stereoscopic front view. Peripheral visions
enable operators to identify obstacles to the sides and the rear of the vehicle which could be
dangerous to both the machine and the operator. The flicker-free stereoscopic front view
proved to allow for depth perception which led to more precise control of the vehicle and
bucket operations compared to the monoscopic system. Much energy and effort was
placed into designing and constructing an ergonomic and effective telepresence display
unit. The system which Aliows for both multiple telepresence views and line-of-sight has
greatly enhanced the telepresence performance and increased operators’ confidence of
teleoperating a heavy duty equipment.

A relationship between optimal parallel stereo camera separation (Inter-Viewpoint
Distance, IVD) and object distance was determined. For the range of from 10 - 30 feet an
IVD of 5.0 inches was found to present large enough retinal disparity with minimal
distortion to allow for optimal depth perception cues as opposed to the previous standard of
2.5 inch IVD. The (IVD) investigation concludes that an optimum spacing versus range
can be determined. Future research may involve the design and construction of a system
which can be automatically or perhaps manually adjusted to optimize IVD for the task at
hand.

Two in-service teleoperated front-end loaders:

Two commercial grade TAMER systems were developed by the subcontractor USI
based on the technologies developed at University of California at Davis. The systems
were installed on two Caltrans Case 721B front-end loaders and delivered to Caltrans
District 1 and District 5.

Copyright 2011, AHMCT Research Center, UC Davis

The two systems are ruggedized, weather-proof and vibration tolerant. The
stationary remote operating unit (SROU) is enclosed in a cab from Case Co. to better
protect the control system and provide operator’s comfort. Instead of ON/OFF controls
used in the previous TAMER system, the newly developed systems employed proportional

- controls to implement functions of loader arm, buck, clamshell, steering, throttle and brake
to allow speed control to nearly all of the loader’s functionality. A radio modem that
communicates at 38,400 baud rate and has its’ own ID name was used to enhance
communication reliability. The system’s multiple radio frequency capability was well
demonstrated during field tests with both remote controlled loaders operating in the same
area without communication failure due to interference. Other safety features include a
second modem only for emergency stop and a tilt switch on the PROU to automatically
shut down the system if the operator accidentally falls down.

Recommendations for future improvement include significant weight reduction of the
portable remote operating unit (PROU) by cutting down the power consumption and
selecting light weight joystick and other components, refinement of hydraulic control
subsystem for improved performance, and improvement of battery life.

For detail report on the two TAMER systems, refer to the attachment “Design and
Installation of A Teleoperated and Automated Maintenance Equipment Robotics (TAMER)
System” by USL

vi

Copyright 2011, AHMCT Research Center, UC Davis

TABLE OF CONTENTS

ABSTRACT . oveveeeeeeererersssesssssssssssesesesssessasssnssssssasesstsssssssnsssassassasssssessssssisssstssssssnsssssssstssses i
EXECUTIVE SUMMARYoorterereerersnssestsissssssmesssesssssasssssssssssssssmsssasssstessassssssssessssasesces s iii
LIST OF FIGURESevovereteretereresesenescsesisasssssssssssasssssssstssstsssasssanasssssssssssstsssasssssamassssssasassaces X
DISCLAIMER / DISCLOSURE oo seseesassaseasenassassassrssnerassassasesseassssssssnentansesssnsnsensees Xl
SECTION I - TEACHABLE PROGRAMS OF REMOTE OPERATION........cccoverueeee 1
CHAPTER 1 - INTRODUCTION.....ccccetiirmsrisrnntsenesssassessessssmsssssaessssssssssssssssnesnsasassssessnes 2
CHAPTER 2 - AN OVERVIEW OF TEACHABLE PROGRAMMING.....ccoccsuusemsuscueusns 5
CHAPTER 3 - SYSTEM DESCRIPTIONcoiiininencseisinsnsinnsnnsininnnesssinesnsnsne revesresanins .9
3.1 - Hardware........c..c... ere SRR 9

3.1.1 - LCC COMPULET....corvrrrrurrersrassessssssssscsmsesnsassasssassnsasasntasssstnsanassanssnessasse 9

3.1.2 - OCC COMPULETcecirirrvernnnrsrssssnsasassssessssasssmssssssssasssssssisnsnsnsssssssssssacs 11

3.1.3 - RF COMMUIICAtION. 1cverrrreerrssensseessssossesssssnsnasessssstsstssssasssssnssssessssosssans 11

3.1.4 - Machine INtEITaCES. ...cceereererscsseissassanssnnsssssssssssenssnssnsssnsscnsesaesssissnnsans 12

3.1.5 - Throttle CONtrOLIErccivrerietsrreiesnerunsensessnsssissesssessssssanensessassesssnsances 12

3.1.6 - Remote WOIKStatioNS....ccereereeerecsessanssnessnesssssscssunsansasassssessassssessssnases 12

3.2 - SOFEWATE .cccverrrerrereseessersressrerssssansssosssstssaesansssassasanns reversessaessesssessstssassesaresaaranass 14

3.2.1 - LCC PrOZIaM....cccuviniussanassunmssssssessusssesensssassssnanasssssssastacassssssnssasasass 16

3.2.2 - OCC PrOZLAIM ...cuvuruiuisinsenssnasssssessassessissssasssnssssasssssssasssssssessassssssassss 16

CHAPTER 4 - PROGRAM DESIGN....ccvcnimmmmmmmmmssussessenssesnsimssmssisisssssens st 18
4.1 - Time-Based PrOGraAM.....ccouviierrssusrssssssssisescsssassensnsususmsnsssssssssssssssasasasissensesacs 18

4.1.1 - Time-Based ReCOTdiNgccorvrerecrsssussesnrsssisnssnnmsnsnasisssncsssessansnanenns 18

4.1.2 -Time-Based Playbackccuvreeeseenensiisessiisiniininnniennsnssiiiniisans 19

4.1.3 - Preliminary Testing and Evaluation ... 22

4.2 - Position-Based PrOZramlcocvuerireeesessssisusiiiesssannmsissssssssssisssnsssasannansssensacess 22

4.2.1 - Position-Based ReCOrdingcceverreeernscsiissnssunssressnininnssessnssssecsnasees 23

4.2.2 - Position -Based Playbackccoeeeeesrsccsecsiinisniisininnnnnsnsessssusiniecnnee 23

4.2.3 - Preliminary Testing and EVAIUAHON c....ccccowverersessmsssssssssssssssssssssssssns 25

4.3 - Hybrid PrOGTAIM c.uvucvueriesssscsscessissensimsssnsssssssssssasssstasssssisssastsissssssssessassassasines 27

4.3.1 -Hybrid Program ReCOTding......ccecvereuvernsussmnmsesicissisensssinimsansnnssasencs 27

4.3.2 - Hybrid Program PlaybacK........ccccouueuimirnimisminmsnensenscsiniinininnsnnnnne: 28

vii

Copyright 2011, AHMCT Research Center, UC Davis

433 - P;eliminary Testing and Evaluationeecevneneeencssnnneninienne 30

CHAPTER 5 -TESTING AND RESULTSccciniiiiiininnnnenenesssssscssissninmeissiisnisiessnsns 32
5.1 - Test Layout and Procedureceesmmesencncscsisisissismisiienenssnissiissnsesesissinee 32

5.2 = RESUIS. eeeeeereerrersresrereesseerarsesssesssssssseessessasnnessasssessssssssssassssssssssesssnsnssssassnsaas 36

5.3 - SUIMIMATY .cucoreerenestsrsrsassssesessnsassssssssssassssstsistesstssssssssssssnssssasmasassssssssssssssstans 42
CHAPTER 6 - CONCLUSION AND RECOMMENDATIONS.....cccoceoteisensnsnsnisisnsnsnsnnnne 43
SECTION II - TELEPRESENCE OF REMOTE OPERATIONccocccoiiiiiiniinininnens 45
CHAPTER 7 - INTRODUCTIONccoreereisersricrmsiisisisssnsssansssssessssstsssssssessasssnsssssnsssssssssnans 46
CHAPTER 8 - SYSTEM DESIGN.......cocversurerresersensencssessonsississsssssssasssssssnssssssasessssissssssssenes 47
8.1 - Video Audio ACqQUiSition SYSteIMcccveverereressscsersessstinsessisessinsusssrnisssnsisasess 48

8.1.1 - Design ConSideration.......uuuruusmmsrmssssesssseesssenssssssssssssssnssminssisssssnss 48

8.1.2 - Camera Location and Configurationc.cceeeerveesensseseseescrsesscssiesnnens 49

8.1.3 - Description of the Telepresence ACQUiSItioN.....c.cocvuereevesssessetsesssnnes 50

8.2 - Video Audio Display Unit.......ccoeeuersersmsrensnsnssissssssisinnisisesnssnesnsnsiesnsss 51

8.2.1 - Stereo Display Selection.......couueeiveniinsesrerencsssssesissisnisnsiseesesssnssens 51

8.2.2 - Peripheral Display SELECHOM. evveeeeessrereemsnsssnsssssssssasassassssssssasssssesesase 53

8.3 - Telepresence TranSmittal SYSEM . ..ccverercursiscsisisiniisesnsisnsnsssssssnstsesceensesassins 55
CHAPTER 9 TESTING AND RESULTS......coovivinteniirerininresesstisesesssssisecstisessssssasns 57
9.1 - Telepresence Operation TESHNEceeveeriniininiiiiiieneiiesreessncaees 58

0.1.1 - TeStNG SEIUP ..cccvurrirrereerererrsrmnsssssssesssnsscssssssssstsscssesssssssssnssssnasssssasens 58

9.1.2 - Testing PrOCEAUIES......cvrrererrninmstsisesnesssssssssisnstssisnsessissnsnssansssnsasess 58

9.1.3 - Telepresence Operating Testing Resultsccocvvmvivenniernneinscnenns 60

9.2 - Optimal Inter-Viewpoint TEStiNGccceueenisistvnsisiunniusiiiensnsnninnssnsissecnssinisens 62

9.2.1 - IVD TSt SEMUP cvvvverererreresseessersenessessenses ceeteeeenssass s s asa s taes 62

0.2.2 - PrOCEAUIES. .cevereererrenersssssecsissississssassessessnesssssasstsossossssssssnsssssssssasnesees 62

9.2.3 - Optimal Inter-Viewpoint Results......cevvueeruiiniienennneieneniinsiescsnneenss 63

CHAPTER 10 - CONCLUSION AND RECOMMENDATIONS.......cccoismeniserinnsnsnsusnsncnines 68
REFERENCES.......cotvteiereruinisessesssseesssesstsssssesssssssessasesssssssasessesssnsansssssssstsstsssissasassnsassassassnsss 69

viii

Copyright 2011, AHMCT Research Center, UC Davis

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

Program Source Code.......cccevvrvvrenrinnnencnnann. rreevesresassenesnes cerreersneanees e 11
Program SoUrce COdecveuerreerreresisisisisisirisiisisesssesssesssnssssssnerssnssesssenss 83
Program Source Code.......cccuvuiiunruinienrunsnnsunssensennens reeeseneesiaeeaaeens veeeenene 96
Program Source Code.......cuuniiiiniinieniniriseninisnennnnensensssissssessssssenens veeeneee 110

ix

Copyright 2011, AHMCT Research Center, UC Davis

Figure 1.1
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7

Figure 8.8

Figure 9.1
Figure 9.2
Figure 9.3

LIST OF FIGURES

TAMER System Block Diagramceevviiceninessssisesimiininesiie, 2
Simple 2-Link Manipulator......cceuceiiisesesesssusesissiesisismsnissnsnsnsnssenmssssssssssns 5
LCC IO LINES..ctsurererersrrensesssesssesssessassssssssstsssssssssansassasasssssssessssossessssssasssssasss 10
OCC T/O LINES ceuvvererreerrrersressnessnssssessssssstsssasssssssssssssssnsssssssssassssssssssssssssssssssasass 11
sit-down Workstation (SROU)....cccvverrcrennreiniinnecienneenninineneecimecn 13
Portable Control Unit (PROU)....cccviriiinninieininnisinienimnseissmmisiscssasesssinco 14
Software Utilities INtEractioncevveeecressvemsaniseessessssssssnssesssessassssssssssssseesans 15
LCC Program Block Diagram........cceveererisnsivesesressenssscsussisisusnsiesssssuninsnssssesens 17
Time Based Flowchart - Record......ocvceevminvernnicinnnennennee e eeeessersssesessssenes 20
Time Based Flowchart - P1aybackcccceeieinunnunnniriienniensessnssiisecsnesnneiien, 21
Position Based Flowchart - RECOTA....c.coviniivinneisnninnsnenienninninsessnsssnissesessnnnee 24
Position Based Flowchart - PlaybackK.......cceveerenininiensinininennnnicnnnnenincininiinn. 26
Hybrid RAP Flowchart - RECOTA ..covvvvrevrrerescecsusiesisnnimsnniiiiissnisinenssessineees 29
Hybrid RAP Flowchart - Playback seeesessresat bbb s b s e a s R eRe st bsbtaes 31
TESEt LAYOUL cuveveerrirrerinsineiniisistiaesesaessasesssressesessssnsssssscssssesssassnssesssssasssasnssnsasens 32
TESE SILE cvvvrreerrrersuerssenserrreersessesssoseesssssesseesseessnsssnssssessssssnesssessaessssssssssessstsssnsssnnes 33
TSt RESULLS c.veeurereerrerreriereresressesresseasssesesseesssossesssssnessssasssnassssaesnesssssasssssssossnsssess 37
COITECHON THITIE «..vvevevrvrscverssisesessssessesssesssssssssasasnssssssssssessssesesssssssssasssssnsasses 38

 Load AcquiSition Datacccceiersesenenesensesineninisininisissnsensesssssasiessssnsnss 39
Accuracy of DUMP Dataciiveiiiierinninncnncnninsccsiiisnnssisssnee 40
Composite Testing SCOTES.....ccerrernninresesreresrsssensscssssssestsnens eeeseresesstsssaesaeesneses 42
Telepresence System Diagram........coveeensireseernesssssssisisssiisisnisiiessnnsneseas 47
Vehicle Camera Positioning (Loader ROOL)......cccevevverennveninesenenncrisessscisenscnnes 49
Stere0SCOPIC CAIMETAS ..vcuviviierirererssnsnsssesssssnsssesesssessessssssstsssssacsisssassssasassnsnsass 50
Threshold of Human Flicker Recognitionccoeeevisuieiscenenes eenemmm s ssssaenns 52
Telepresence Display Configuration........cescseersesessessscsssescsiscsisisnsisnsssasnsnsnns 53
Final Telepresence Display Unit.......ccorvvesenvesesresnsccisssncscsinssssiscscsiosnsnsanns . 55
Initial (horizontal) Configuration of the Video Transmitters.........cooeeveicrucencenes 56
Vertical Tree Mount Transmitter Configuration........ccceeeereeeieniensenssesecssessseeaees 56
Telepresence Test COUISE ...cuuuimnmrirmmmmninrstsrsrsssssssssasissssststsrsssssisnsssnsssssassssssaens 59
Precision Bucket Placement With Various Video Feedbackcccceevvererunnucee. 60
Pile Height under the Three Front View SyStems.........cccevvcenvcniiissninnsnisneens 61

X

Copyright 2011, AHMCT Research Center, UC Davis

Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10

TVD TESE SELUP..vrviuercrieersicesnsisaessnasasssssesnsesessssesestsssacsnssssasssnssssnsnssssatsssacssns
2.5 INCH IVD EITOT «.cevveeirrrreecsissesesuesseesiesssssssessessnessessssssnsassssssssssssessasssssnosasassess
5.0 iNCH TVD EITOT «.vovivimiiuiinrerenierissssesnsesesssssstsnsisnisiisssesssssnssnssessssssssasatnsnss
MONOSCOPIC EITOT c.voviviuiiiriririnenniririesisnniseisisiniiniiiissesnsssssssssssscsssstensasaes
Average Error of each IVD vs. Object DiStance.........covecusisussnsssersnssnsssisenens
Optimal IVD as a Function of OBJEct DISLANCEcvrvusmmrsssrresssssssssssssssssssssses

xi

Copyright 2011, AHMCT Research Center, UC Davis

63
64
64
65
66
66
67

DISCLAIMER / DISCLOSURE

"The research reported herein was performed as part of the Advanced Highway
Maintenance and Construction Technology (AHMCT) Center, within the Department of
Mechanical and Aeronautical Engineering at the University of California, Davis and the
Division of New Technology and Materials Research at the California Department of
Transportation. It is evolutionary and voluntary. It is a cooperative venture of local, state
and federal governments and universities."

"The contents of this report reflect the views of the author(s) who is (are) responsible
for the facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the STATE OF CALIFORNIA or the FEDERAL
HIGHWAY ADMINISTRATION and the UNIVERSITY OF CALIFORNIA. This report
does not constitute a standard, specification, or regulation."

Copyright 2011, AHMCT Research Center, UC Davis

SECTION |

SEMI-AUTOMATIC CONTROL (TEACHABLE PROGRAM) OF THE

TELEOPERATED FRONT-END LOADER

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 1

Introduction

The Teleoperated and Automated Maintenance Equipment Robotics (TAMER) project
was created with the intent of improving the safety of the operators of heavy earth moving
equipment. The project was developed by the University of California, Davis’ Advanced
Highway Maintenance and Construction Technology (AHMCT) center with the support and
funding of the California Department of Transportation (Caltrans). Caltrans’ interest in
teleoperation was piqued when it realized that injuries and casualties to operators in hazardous
environments can be reduced or eliminated. Teleoperation would allow the equipment operator
to be safely distant from the site of danger, while retaining full control. With this goal in mind,
a Case 621 front end loader with a 2 yard bucket was converted to be capable of both normal
operation and teleoperation.

The TAMER loader system has five basic: computers, machine interfaces,
communications, operator interfaces, and operator. A block diagram of the system follows:

r Tl
I Throttle ||
> Controller
| I
Operator Operator Radio Loader | Pneumatic '
Interface {—>! Control Frequency Control H—>| Interface ||
Controls Computer Modem Computer | Module |
¢ | Hydrautic ||
Human l | Interface |
Operator L Module

S ———
Figure 1.1 Tamer System Block Diagram

The computers consist of the Loader Control Computer (LCC) and the Operator
Control Computer (OCC). The OCC acts as a data acquisition device by interpreting the
human operator’s control movements and sending that information to the LCC. The OCC also
receives loader status messages from the LCC and displays them to the operator. The LCC is
the heart and brain of the whole system. It decodes the OCC data and translates it into machine
movements. It also controls the mode, e.g., remote, standby, emergency stop, etc., the loader
is in.

Copyright 2011, AHMCT Research Center, UC Davis

There are three machine interface modules for directly controlling the loader: throttle,
pneumatic, and hydraulic. The LCC controls the pneumatic flow, which controls the loader’s
brakes, and the hydraulic flow, which controls steering, bucket, and arm operations. Because
of the importance of precise throttle control, it has its own controller and actuator.

Communication between the OCC and LCC is accomplished through a secure’ Spread
Spectrum radio frequency modem link operating in the 900 MHz range. With the addition of a
three dimensional (3-D) video system, the loader can be safely operated from as far as a quarter
of a mile away. This operational range is limited only by the radio link.

For flexibility, two different operator interfaces have been created. One is a sit-down
station that duplicates the layout of controls on the loader, and allows long distance operation
as well as long periods of operation. It further provides operator familiarity with the controls.
The second is a portable unit which is used for rough terrain, where closer supervision and
mobility is needed. It is a portable back pack and chest-mounted unit that enables the operator
to control all loader functions with just his hands, including throttle and brakes.

The most important subsystem of TAMER is the operator. In teleoperation, the human
is always in control of the machine and is responsible for its movements. While some
operations may be automatic, the operator has the power to interrupt and take control at will.
The result is a safer system that is less dependent on sophisticated sensors and controls.

Adding computer control to the loader system creates more flexibility, resulting in
greater productivity and convenience. The computer enables multiple tasks at the push of a
button and even “teachable functions”. Current industrial methods for teaching a robot include
guiding (either by pendant or manually), off-line programming, and on-line programming [1].
The TAMER project is unique in that it integrates all three methods. The guiding method is
used initially to watch and memorize as the operator works through a sequence of movements.
During subsequent playbacks of the recorded information, the operator has the option of
modifying the motion in the recorded program, an aspect of on-line real-time programming.
Off-line programming is also available, where preset motions are pulled from libraries or
programmed mathematically step by step. Certain preset sequences include lifting a load of dirt
to dump height, dumping a load, moving fore and aft, etc. Recorded functions can be played
back multiple times, increasing productivity and reducing operator fatigue.

This section of the report involves the incorporation of “teachable functions” into the
TAMER front end loader’s control programs. The goal is to have a “record-and-play”
capability that will perform as accurately and in the same amount of time, or less, as normal
manual operation. In order to do this, the program will be constructed with both open loop and
feedback control techniques. Feedback will be introduced in both conventional and unique
forms. Conventional feedback will involve a concept known as a “finite state machine,” where
each state is defined as the position of all controls, components, etc. at a given moment in time
[12]. The unique method of feedback will be “human controlled” automatic controls or an
“interactive automated system”. The human will have the option to correct or alter automated

3

Copyright 2011, AHMCT Research Center, UC Davis

functions at every instant in time so that he is in continuous control. He does not, however,
have to control all functions completely since he is only performing a trim function. In this
thesis it will be shown that this control scheme, with its combination of automatic and

interactive feedback control, greatly reduces the human task load and is both repeatable and
accurate.

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 2
An Overview of Teachable Programming

From the introduction of industrial robots in the 1960’s, a primary factor determining
their usefulness has been successfully teaching them their task(s). The first robots,
“UNIMATES,” were constructed by Unimation, Inc. in 1961. UNIMATE operators used a
method called “teach by showing,” wherein an operator guided the robot through the task to be
learned with a hand-held controller. Other early robots were taught by direct human
manipulation, wherein an operator physically guided the robot through its motions. Both of
these methods were sufficient for simple point-to-point movement, such as spot welding, or
continuous path, such as spray painting operations.

With the advent of more powerful computers and sophisticated programming
languages, off- and on-line programming of robots became possible. Robot programming
languages (RPL’s) were developed having special features that apply specifically to the
manipulation of robots. Current robot teaching research is focusing on task-level programming
languages. These are languages that allow the user to command desired sub-goals of the task
directly, rather than to specify the details of every action the robot is to take [1,2].

To best present teachable programming in robotics, a description of some background
concepts and definitions is necessary. The most basic concept is that of the point. The point
gives a description of the robot manipulator configuration at a given instant. Most commonly it
is represented in one of two different coordinate systems. In the joint-level representation
(JLR), the position of all the links of a manipulator of n degrees of freedom can be specified
with a set of 7 joint variables, often referred to as the joint vector. The space of all joint vectors
makes up joint space [2]. The JLR of a simple two-link manipulator is as follows:

E

L2

N

L1

Figure 2.1 Simple 2-Link Manipulator

Copyright 2011, AHMCT Research Center, UC Davis

In order to know the location of the end effector E with respect to the manipulator base B, only
the joint angles and arm lengths need be known.

However, in many instances it is desirable to represent points in Cartesian or World
Coordinate Representation (WCR). In this representation the point is specified by the vector of
positions and orientation of a representative coordinate frame on the robot with respect to the
room coordinate frame [1]. In the case of the simple mechanism shown in Fig. 2 the joint
angles and lengths can be used to find the end effector point with respect to the base through
trigonometry:

X, .. = L;sin®, + L,sin(®,+®,)
Y, =L,cos®, + L,cos(®,+D,)

In more complex robots the -trigonometric relationships become very complex, so
homogeneous transformations are used. A matrix is constructed to allow the transformation
between a coordinate frame located in the end effector and a coordinate frame located in the
base.

A combination or continuum of points is known as a path. However, point data alone
is not necessarily sufficient to define the path, as different robot motions can be characterized
by the same path. Thus, the path needs to be parameterized by a time variable, introducing
velocities. When velocity data is introduced, the path is called a trajectory.

In simple robots there are several classes of tasks. The most basic is the single chain
point-to-point. In these tasks the exact velocity or trajectory of the end effector is not
important. Some examples are pick-and-place, or machine loading/unloading operations where
the robot can take alternate paths dependent on acquired data (i.e., discard, or keep according
to quality control). Another class of robot task is that of the continuous path. In this type of
task the robot end effector is constrained to move along a specific path in either joint or world
coordinates. An example might be straight line motion with obstacle avoidance, where the path
is important but velocity is not. However, in some continuous path operations, such as
painting or welding, velocity is also important.

Robot teaching means providing complete point and velocity profile data to a computer
program that controls the performance of tasks. Teaching is the user- controlled part of the
task control program. There are many different methods in use today that allow the user to
impart task data to the robot.

The most elementary is manual guiding of the robot. In this method, the robot is
actually physically led through an operational sequence by a human teacher. This method is
sometimes preferred because of its low-technology simplicity, but it has many obvious
limitations. First, it is constrained by human speeds and accuracy. Second, it is not useful in

Copyright 2011, AHMCT Research Center, UC Davis

hazardous environments where the human teacher would be in danger. Finally, a skilled
human teacher who is familiar with the dynamics of the machine is necessary.

- A more common teaching method is guiding, using a teaching pendant. The pendant is
a hand-held device, such as a keyboard, that the human teacher can use as a remote controller.
Teaching with a pendant involves two fundamental steps. The first step is to move the robot
manipulator to a desired task point. The second step is to store that point in memory, usually
with a button press. These two steps are repeated until the entire desired task is learned [4].

Pendants can usually be used to manipulate the robot in both joint-level and Cartesian
motion. In joint-level mode, each joint of the robot is controlled individually. This method
tends to be inefficient as it is not very intuitive to a human operator. In Cartesian coordinate
mode, the reference frame’s origin is usually the robot base. This method is more convenient
to and easily understood by the average operator. Also, it allows the use of additional controls
such as joysticks to facilitate operation.

The main advantage to teaching a robot through guiding with a pendant is the method’s
simplicity. It is relatively inexpensive and does not require the operator to have extraordinary
skills. However, guiding with a pendant requires an interruption in normal operation while the
robot is being taught, resulting in a loss in productivity. Some applications, such as batch-
production for instance, require the robot to be reprogrammed regularly. In addition, guiding
with a pendant is very time consuming and inflexible, which also decreases productivity. In
fact, the time overhead in teaching a robot with a pendant may make it uneconomical [31.

With the development of more powerful and versatile computer control technology, off-
line programming became possible. Off-line programming allows the points and paths of the
robot task(s) to be specified through programming. No pendant is necessary. A successful
off-line programming system will include the following characteristics [3,6]:

o knowledge of the process or task to be programmed

e athree-dimensional world model

e kinematic and dynamic models of the robot

e agraphical or textual robot programming system

e methods for verifying the correctness of the programs

e interfaces to the robots for downline loading of programs and upline transfer of
process data :

e auser-friendly programming environment

Copyright 2011, AHMCT Research Center, UC Davis

The development of off-line programming systems has encountered a few problems.
One problem is that it is difficult to create a modeling and programming package that is
independent of both the robot and the application [3]. Also, there is a lack of a standard
interface between robots, sensors, and computers. Finally, is it very difficult, if not
impossible, to model the uncertainties involved in real-world operations.

The potential benefits of an off-line programming system however, are enormous.
First, the robot is free for use while programming is in progress, so the robot’s downtime is
greatly decreased. Second, off-line programming can be accomplished in a safe, remote
environment, reducing risk to the operator. Third, if many robots are being employed with the
same system, programs can be portable from one robot to another.

Probably the only disadvantage to off-line programming is that it requires a skillful
programmer who has excellent knowledge of the robot and its dynamics. However, an
advanced interface system with very user-friendly characteristics can greatly minimize this
problem.

The possibility of a direct computer interface with the robot while it is in operation
brings up the subject of on-line programming. On-line programming allows a programmer to
modify an existing taught program as the process occurs, to account for deviations or
irregularities. For example, if in a pick-and-place operation the manipulator begins to damage
the product, the programmer might reduce the gripping force on-line. This implies an operator
is monitoring the action of the robot continuously and able to correct misbehavior on-line
without stopping it.

Guiding with a pendant, off-line programming, and on-line programming are integrated
into the TAMER project. In this project, teaching will be done not by a specialized pendant,
but rather the actual vehicle remote controller while the vehicle is performing a task. The
sequence of motions taught will be stored in the LCC computer’s memory and can be replayed
at the push of a button. The important innovation is that the operator can “adjust” or “correct”
the program as it plays back. This allows productivity to continue while small corrections are
made to the memorized routine. Current teachable systems do not have this level of interactive
control. However, since the TAMER is operating in a dynamic and undefined environment,
this method of teaching appears to be necessary.

In addition, the TAMER system is designed so that the human operator can interactively
control the machine at every instant. This makes the operator responsible for the actions of the
machine and relieves the System designer liability in the unlikely event of a system failure. The
operator can always resort to the Emergency Stop switch, which brings the machine to a safe
condition.

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 3

System Description

3.1 HARDWARE

In order to present how teachable functions were incorporated into the TAMER system,
a discussion of the various components is necessary. In designing the TAMER system, the
goal was to minimize cost and complexity while maximizing performance and safety. To
accomplish this, off-the-shelf equipment was selected that would be powerful enough to
achieve the desired performance, with leftover capabilities to leave room for flexibility and
future developments. The following hardware was deemed necessary:

e Case 621 front end loader with a two yard bucket:
e Loader Control Computer (LCC)

e Operator Control Computer (OCC)

e hydraulic interface

e pneumatic interface

¢ RF communications link

o throttle controller

e remote controller units (stationary and portable)

The 621 is a diesel engine powered, hydraulically operated, four-wheel drive articulated
front-end loader that has built-in options for automatic travel and dump height control, and
automatic return to dig [7]. It is used extensively by Caltrans and others in the road
maintenance and construction businesses.

3.1.1 LCC Computer

The most important component of the TAMER system is the LCC computer. This
computer makes automatic decisions, realizes operator control movements, and provides loader
status feedback to the operator. The engine chosen for this task was the A-Drive™ analog
controller from TERN Inc. It was designed for industrial process control, automatic test
equipment, and data acquisition applications that require many channels of analog signal I/Os
[9]. It features 22 channels of 12-bit analog to digital conversion (ADC) inputs and 8 channels

9

Copyright 2011, AHMCT Research Center, UC Davis

of digital to analog conversion (DAC) outputs. Onboard is a V104™ that features a 16-bit
8MHz V25 CPU, 48 user-programmable I/O lines, three 16-bit timers, 3 serial ports, up to
512K battery backed-up SRAM, and a supervisor chip providing detection of power failure.
Integrated with the A-Drive™ is an interface board with 24 solid state relays, to switch various
loader functions. Figure 3.1 lists the I/O lines for the LCC.

Description Type Legend
1 Throttle AO
2 Steering Angle Al AO = Analog Output
3 Bucket Position Al Al = Analog Input
4 Arm Position Al DI = Digital Input
5 Neutral Sensor DI DO = Digital Output
6 Oil Pressure DI
7 AOK Di *go to transmission multiplexer, all else are
8 Return to Dig Sensor DI outputs to solid state relays (SSR’s)
9 Travel Height Sensor DI
10 Dump Height Sensor DI **RS-232 port 9600 baud rate
11 First Gear DI
12 Direction Neutral DO*
13 Remote Enable DO*
14 Clutch Engage DO*
15 Clutch Disengage DO*
16 Brake Level 0 DO
17 Brake Level 1 DO
18 Brake Level 2 DO
19 : Brake Level 3 DO
20 Arm Up DO
21 Arm Down DO
22 Arm Stop DO
23 Arm Float DO
24 No Float DO
25 Roll Bucket Back DO
26 Dump Bucket Forward DO
27 Throttle Power DO
28 Steer Right DO
29 Steer Left DO
30 Steer 0 DO
31 Emergency Stop DO
32 Transmission Enable DO
33 Engine Start DO
34 Communications D l/O0**

Figure 3.1 LCCV/O Lines

It should be noted that the LCC computer provides many more analog and digital
channels than are actually employed. This provides the system with the capability of being
upgraded with more sophisticated or numerous sensor inputs. Also, extra outputs could be
used to add on new components or adapt the computer control system to an entirely different
machine.

10

Copyright 2011, AHMCT Research Center, UC Davis

3.1.2 OCC Computer

Interfacing with the LCC through a radio frequency (RF) modem link is the Operator
Control Computer (OCC). The OCC has two major functions. The first is to take all the
operator control manipulations and transmit them to the LCC. The second is to display to the
operator the loader status on an LCD screen. The computer chosen to complete these tasks was
a Sensor Watch™ by TERN, Inc.. The Sensor Watch™ is designed for data-acquisition and
control applications. It features an analog signal conditioning circuit, eight channels of 12-bit

* ADC, seven channels of comparator inputs, three serial ports (RS-232, RS-485), one channel
of 10-bit DAC, seven solenoid drivers, three 16-bit high speed counters, seven digital inputs,
eight digital outputs, one power relay, a PDC (Portable Data Carrier) interface, 4x4 keypad,
character or graphic LCD interface, beeper, LEDs, and on-board power supplies. The CPU is
a 16-bit NEC V25 which runs at an 8MHz clock speed and is Intel 80x86 compatible [10].
The only output from the OCC is a data stream to the LCC through the RF modems. Figure
3.2 lists the /O lines for the OCC. Like the LCC, the OCC also has spare digital and analog
channels for future applications and advancements.

Function Type
1 Enable/Disable Keyboard - DI
2 Engine Start Keyboard - DI
3 Asterisk Keyboard - DI
4 Record Keyboard - DI
5 Play Keyboard - DI
6 Travel Height Keyboard - DI
7 Dump_ Height Keyboard - DI
8 Rattle Keyboard - DI
9 Float Keyboard - DI
10 Return to Dig Keyboard - DI
11 Gear 1 Switch - Keyboard - DI
12 Gear 2 Switch - Keyboard - DI
13 " Forward - Neutral - Reverse Switch - Keyboard - DI
14 Emergency Stop Switch Switch - DI
15 Brake Analog Input
16 Throttle Analog Input
17 Steering Analog Input
18 Joystick - Arm Control Analog Input
19 Joystick - Bucket Control Analog Input
20 Communications RS-232 9600 Baud
Figure 3.2 OCC I/O Lines

3.1.3 RF Communications

As mentioned before, communications between the OCC and LCC is accomplished
through an RF modem communication link connected to the respective computers’ RS-232
ports. Safety concerns make secure communications of paramount importance teleoperating
heavy earth moving equipment such as a front end loader. With this in mind, spread spectrum

11

Copyright 2011, AHMCT Research Center, UC Davis

technology RF modems (STI SpectraData Model 5500) were chosen. These modems are both
transceivers, meaning they can both transmit as well as receive data. In order to eliminate the
chance of interference or spurious signals, the modems talk to each other over a range of
frequencies. Information is transmitted redundantly on different frequencies in an apparently
random pattern, which only the modems can decrypt. In the rare case of interference with the
signal, unexpected control of the loader will not result. Instead a non-compatible signal will be
generated, causing the machine to be automatically stopped. Each modem communicates to its
corresponding computer (LCC or OCC) through an RS-232 port at a 9600 baud rate.

3.1.4 Machine Interfaces

In order for the LCC to directly control the front end loader’s various systems, two
different interfaces were developed. For the loader’s brakes, which are air pressure over
hydraulic, a pneumatic interface was constructed. In normal, non-remote, operation the brakes
are fully proportional with a theoretically infinite number of possible control levels. However,
electronic duplication of this is impractical as well as unnecessary. Instead, the pneumatic
interface has solenoid valves which allow the brakes to be applied at three preset levels (low,
medium, full). These solenoid valves are switched by solid state relays (SSR’s) in the LCC.

To control the loader’s hydraulic system, another interface was created. The hydraulic
system controls the arm and bucket motions, as well as the steering angle of the loader. Again,
in normal operation the arm and bucket motion controls are fully proportional. However, by
switching solenoid valves in the interface from SSR’s in the LCC, these controls become fixed
rate. This does not seem to reduce the level of control, requiring only an adjustment by the
operator. Also, the rate can still be modified through the use of the throttle by keeping the
engine revolutions up and thus, the hydraulic flow rate. Control of the steering angle is
slightly more complicated. Solenoid valves are used to dictate in which direction the vehicle
turns, and a potentiometer (measuring machine angle) provides feedback to the LCC to tell it
when the appropriate direction is reached. '

3.1.5 Throttle Controlier

The most important single control component on the loader is the throttle. Besides
determining the vehicle’s speed, it also effects all the hydraulically controlled systems. Thus, it
was decided that maintaining full proportional throttle control was necessary during
teleoperation. For this purpose a separate controller and actuator was selected. The throttle
controller takes an analog signal from the LCC and manipulates the actuator on the throttle
linkage to the desired level. '

3.1.6 Remote Operating Units

Two different remote operating units were created for teleoperation of the front end
loader. The first is a sit down unit (referred as SROU in the previous report) that features a
keyboard interface to the OCC, automotive steering wheel, steering column mounted shift

12

Copyright 2011, AHMCT Research Center, UC Davis

lever, joystick for bucket and arm control, pedals for brake and throttle control, and a 3-D
video system.

Figure 3.3 Sit-Down Workstation.

The three major design goals for the sit down station were to increase operator familiarity,
reduce fatigue, and integrate a 3-D video system that would not hinder direct line of sight
operation. Operator familiarity is enhanced by the fact that the layout of the controls on the
station accurately duplicates the front end loader’s actual controls. Thus, an operator can
quickly switch from manual to remote manipulation with minimal readjustment. Fatigue is
reduced on the sit down station because the operator is no longer subjected to the noise, dust,
and heavy jostling of the loader in manual operation.

In previous research it was determined that at increased operational distances (100°+) a
video system was necessary as depth perception and field of view were compromised [13].
The current video system consists of a 15 main monitor that displays a 3-D image through the
use of a Stereographics™ system. In addition, three 2-D views are provided on 6” active
matrix LCD screens for peripheral and rear vision.

For close-in teleoperation and portability there is a second remote controller. This unit
connects to a backpack and hangs comfortably over the operator’s shoulders in front of the
stomach. The challenge in designing this controller was that pedals were no longer an option.

13

Copyright 2011, AHMCT Research Center, UC Davis

Thus a unique throttle, brake, and steering control mechanism was constructed [7]. The
portable unit also has a keyboard interface to the OCC, a joystick for bucket and arm operation,

and a direction selector.

Figure 3.4 Portable Control Unit.

3.2 Software

In order to fully exploit the capabilities of an electronic system, the most advanced
software available must be used. The computer industry has a long history of software
development lagging behind hardware development. Since the TAMER system is a prototype,
a flexible computer language that could handle unforeseen developments was needed. The A-
Drive™ (LCC) and Sensorwatch™ (OCC) were chosen in Phase III of the TAMER project
partially because they are C/C++ programmable microcontrollers. C is a middle level
computer language that is flexible, easy to use, and widely known by many programmers.
Typical robot programming languages could not be used on the TAMER system because they
are not oriented towards a dedicated teleoperated mechanism. Also, RPL’s are usually written
with specific robots or classes of robots in mind. TAMER’s high level of machine-man
interface and variable operating environment are unique, and require a language such as C,
which is versatile enough to grow with the system.

Three software packages are necessary for programming the LCC and OCC computers:
1. Borland C/C++ 4.0/3.1 (or Microsoft Visual C/C++)
2. Paradigm LOCATE, PDREMOTE/ROM, DEBUG/RT
3. TERN C libraries

The following block diagram illustrates how they interact [11]:

14

Copyright 2011, AHMCT Research Center, UC Davis

Borland C/C++ OB
Turbo C/C++ .)
Turbo Assembler > Turbo Linker
TERN C libs
Paradi AXE| Paradigm
aradigm (3 DEBUG/RT
EXE L3 LOCATE
MS Visual C OBJ CFG __L_ RS-232
ot /. : i ’ Interface
Microsoft C/C++ —> M_lcrosoft
MS Assembler ' Linker <
TERN C libs Configuration PDREMOTE/
Instructions ROM

Target System

Figure 3.5 Software Utilities Interaction

(Borland C ver 3.1 was used to develop the program on a PC computer. The TERN C
libraries allow the programmer to easily access the capabilities of the microcontroller, such as
data acquisition functions or the switching of digital I/O lines. Paradigm’s software utilities
LOCATE, DEBUG/RT, and PDREMOTE/ROM allow the developer to transfer C code over to
the target microcontroller. LOCATE is designed to interact with Borland and Microsoft
language products, and is necessary to allow the use of DEBUG/RT. DEBUG/RT and
PDREMOTE/ROM work together as a state-of-the-art, source-level debugger system designed
to support embedded system applications designed around the popular 80x86 compatible
microprocessor families from Intel, AMD, and NEC [1 1].

3.2.1 LCC Program

The main control program of the TAMER system is the LCC program. It performs a
variety of important functions in determining the status of the loader, and realizing control
inputs. The LCC keeps the loader in one of two modes: Standby and Remote. In Standby,
the loader’s brakes are held on and the transmission in neutral while the LCC awaits a signal
from the OCC to go into Remote mode. In Remote mode, the teleoperator has active control of
the loader. In addition to these general modes, the LCC also monitors communications and
checks for valid command codes. If the communications check fails, the LCC program
automatically puts the loader back into Standby. :

Most importantly, the LCC program sends back status information to the OCC so that it
can be displayed to the operator. For instance, when the loader is in Standby, the message
“Loader in Standby” is shown, while “OCC in Control” is displayed during Remote mode. In
the case where the operator suspects that the loader is behaving incorrectly, there is an

15

Copyright 2011, AHMCT Research Center, UC Davis

Emergency Stop switch on the OCC. When this is activated, the LCC puts the loader in
Standby, and kills the engine for safety. A general block diagram of the LCC program is as
follows:

3.2.2 OCC Program

While the OCC program does not make the important automatic decisions that the LCC
program does, it performs several significant tasks. First, it takes all the control position
information from the operator and converts it into a data string to be sent to the LCC. In the
‘case of the analog inputs from the brakes, throttle, and steering potentiometers, the OCC
program must also scale the data appropriately. The raw data from these sensors is converted
to an 8-bit (0-255) scale. The slope and intercept necessary to scale each sensor is determined
in a calibration mode. Thus, if a new sensor is installed or a sensor is adjusted, the new output
voltage range can be handled by software, and there is no need for re-downloading the entire
program. Since the RF modems transmit 4-bit numbers, the OCC program also breaks up all
the 8-bit numbers into their 4-bit components prior to transmission.

The second major task of the OCC program is to display information to the operator on
an LCD screen. These messages fall into three major categories: loader control status,
teachable function status, and error messages. Loader control status can be either STANDBY
or REMOTE. Teachable function status is either Normal (teachable function not being used),
Record (session being stored in memory), or Playback (recorded operations being repeated).
Error messages warn of communications problems or improper control settings.

16

Copyright 2011, AHMCT Research Center, UC Davis

Yes

Initialize
Variables

— %

Enter
STANDBY
mode

v

Af

Put controls in
safety positions|

Initialize
variables

Send loader
status msg
to OCC

Y

received from

¢Yes

Call decode
input function

¢

Get OCC
control
information

v

Determine
control
commands

‘L<

A cquire sensor
Data

Cmnd.
msg. timer
e xpired?

No

r_f__

Activate output
control
solenoids

Figure 3.6 LCC Program Block Diagram

Copyright 2011, AHMCT Research Center, UC Davis

17

Chapter 4

Program Design

As mentioned in Chapter 1, this phase of the project involves the incorporation of
“teachable functions” into the TAMER front-end loader’s control programs. These functions
were developed to improve productivity by faster operation and reduce operator fatigue.
Important factors in evaluating any teachable program include accuracy of playback and ease of
use. In order to fully explore all possibilities for the Record And Play (RAP) program, three
different control strategies were attempted. The first strategy featured a time-based program,
which was basically synchronous open loop control. The second strategy featured a position-
based program that integrated sensor data feedback and asynchronous control. The third and
final strategy was developed after both the first two programs had been created and tested;
taking the best qualities of both.

4.1 TIME-BASED PROGRAM

The first “teachable function” program developed was a time-based one. The basic
philosophy was that the program would watch and record how long in duration each control
input was operated. Then, during synchronized playback, the program would execute the
same control sequence for the same time durations. This program would not allow any
feedback, either automatic or from the operator. The control method is open loop where the
loader navigates by dead reckoning.

4.1.1 Time-based Recording

The record sequence for the time-based program is relatively simple. The operator
initiates recording by merely pressing a button on the OCC keypad. The LCC enters record
mode and starts a counter. It then sends a message back to the OCC indicating the change in
status, so that the OCC can display “Recording!” on the LCD screen. The operator proceeds to
manipulate the loader in the desired sequence, and terminates with a push of the same button to
start recording.

The most difficult task for the time-based program is determining what information to
store and when. Ideally, just enough information will be stored in order to complete the task,
so that memory space can be conserved. Thus, the program watches the OCC controls for
operator changes, and only stores new information when changes are observed. Since many
of the controls are different, detection ranges had to be set for each control. When a change is
detected, all the current positions of the OCC controls are assembled into a state vector along
with the current counter value. These state vectors together make up a recording array. Each
state vector is composed of eight parts, representing individual control positions.

18

Copyright 2011, AHMCT Research Center, UC Davis

1. Steering

2. Brakes
3. Throttle
4. Arm

5. Bucket

6. Automatic function keys

7. Automatic function keys

8. Counter value

The recording can be terminated three different ways. When the Start/Stop key is
pressed. When the counter reaches a preset limit which, for the purpose of this project, was
set at 90 seconds. (However, this limit is constrained only by the amount of memory the
computer has.) And when the number of state vectors reaches a preset limit. (This limit was
introduced, again, with memory usage in mind.) A flowchart of how the record mode works
in the time-based program is as shown in Figure 4.1.

4.1.2 Time-based Playback

The playback sequence is also keypress initiated. When this is done, the LCC enters
playback mode and sends a message to the OCC, causing a “Playback” message to be
displayed to the operator. The program then starts a counter and begins substituting in the
recorded control values from the state vector -array. The state vector is incremented when the
counter value exceeds the recorded counter value. Thus, the loader operates according to the
state vector for the same amount of time that was recorded. The playback is terminated when
the program successfully reaches the recorded maximum counter value, or when the Start/Stop
key is pressed.

An obvious drawback to the time-based program is that the operator has no way of
adjusting the playback if it becomes inaccurate. Also, the program itself does not have any
position feedback to tell it if the loader is playing back correctly. The only recourse the
operator has is to terminate or discontinue the playback entirely, and assume normal
teleoperated control. A flowchart of how the playback works in the time based program is as
shown in Figure 4.2.

19

Copyright 2011, AHMCT Research Center, UC Davis

Get initial
cntrl info.

Yes

Stop
record?

of allowable
pperations?

Yes

eypress or
cntrl mvmnt
detected?

Yes

Increment
state

Y

Record control
settings and
counter value

Max
counter
eached?

No

Stop record

Figure 4.1 Time Based Flowchart - Record.

20

Copyright 2011, AHMCT Research Center, UC Davis

Start playback

Start counter

Counter >
recorded
value?

e

Record control
settings and
counter value

Increment
state

Max No

counter
eached?)

Stop playback

Figure 4.2 Time Based Flowchart - Playback.

21

Copyright 2011, AHMCT Research Center, UC Davis

4.1.3 Prelimiﬁary Testing and Evaluation

Initial testing of the time-based program revealed that it performed as intended: the
operator was able to record and playback relatively complex sequences involving all the
different loader functions. The playback was shown to accurately repeat functions for the same
amounts of time, and in a smooth manner indistinguishable from an actual operator. A sample
sequence is as follows:

1. Move the loader forward (performed w/ steering changes)
2. Lift the bucket to dump height

3. Dump the bucket

4. Return the bucket and arm to travel conditions

5. Back the loader up (performed w/ steering changes)

However, the limitations of open-loop control soon became evident. In order to
reproduce the playback accurately, it was necessary to re-position the loader in exactly the
configuration it was in at the start of the recording. Also, different weights of dirt would cause
subsequent playbacks to differ, due to the variation in load. So, even though the program was
performing the playback in the correct sequence and amount of time, the result was not
necessarily what the operator intended.

4.2 POSITION-BASED PROGRAM

A position-based program was developed as an alternate approach to the time-based.
The goal of this program was to introduce feedback control in the form of position sensors on
the loader. To accomplish this, a rotary potentiometer was mounted on the bucket, and a linear
potentiometer was mounted on the arm of the loader. Together with the existing steering
sensor, the LCC program could now monitor steering angle, bucket angle, and arm position.
Now, instead of monitoring OCC control positions as was done in the time-based program, the
program looks at the actual positions of the components on the loader. Then, during playback,
the program can manipulate the loader to move between those positions according to an
asynchronous control algorithm known as a finite state machine [12]. A finite state machine
runs according to the guiding principle that the system can only advance to the next future state
when all conditions for the current state are met, independent of the time it takes.

The position-based program also introduced the concept of trimming the playback.
Trimming allows the operator to make small modifications to the recorded sequence while it is
playing back. This may be necessary when boundary conditions change. If a recorded
sequence was lifting and dumping into a truck, trimming would allow the operator to change
the playback so that different truck side heights could be accommodated, without completely

22

Copyright 2011, AHMCT Research Center, UC Davis

re-recording. Since the operator is now only required to make minor corrections, his task
difficulty is greatly reduced.

However, the position-based program was designed to only record bucket, arm, and
steering movements. All of the other controls, such as brakes and throttle, did not lend
themselves to simple position recording. Also, the position of the loader would require a
sophisticated Global Positioning System (GPS), or wheel speed sensors (not accurate).
Ideally, knowledge of the loader and the position all of its components would allow fully
automatic control. That was determined to be beyond the scope of this project, which has as its
real goal to develop a human-machine interactive teachable function.

4.2.1 Position-based Recording

Record mode begins, as in the time-based program, when the operator pressed the
Start/Stop button. Once in record mode, the LCC starts a counter and begins storing
information from the position sensors in state vectors. Each state vector is comprised of data
from the steering, bucket, and arm potentiometers. A new state is stored after a specified time
interval of one second. (The one-second interval was chosen after testing of shorter periods
resulted in jerky playbacks.) All of the state vectors together comprise the record array.
Record is terminated when the operator presses the Start/Stop button or by a specified time
limit of 90 seconds. A flowchart of the recording process is as shown in Figure 4.3.

4.2.2 Position-based Playback

The first task the LCC performs upon entering the playback mode is to examine the
current positions of the loader components (steering, bucket, arm). Then the program looks at
the first state vector from the recorded array and determines what control inputs are necessary
to move from the current loader state to the recorded one. Those inputs are carried out while
the program monitors whether the next state has been reached or not. When all the components
have satisfied the next state’s requirements, the process is repeated. Note that the various
components move from state to state at their own individual rates, depending on loading and
environmental conditions. For example, steering might be reaching each state more quickly
than other components, resulting in a delay as the steering waits for the other components to
catch up. The result is jerkiness in the playback. This can be minimized by choosing an
appropriate time interval to store the information.

Although the position-based program was originally intended to move from state to state based
strictly upon satisfying the position criteria, time proved to be an important factor. If a
recorded sequence of operations had a period where none of the recorded components were
changing, it might not be desirable to neglect that period. For instance, if the loader is recorded
moving forward in a straight line with the arm and bucket in constant positions, the recorded
states do not change. Thus, when the playback reaches a state it automatically looks ahead to
the next state to see if changes occur. If not, the playback is paused for an equal amount of
time to the recorded time interval between states. In effect, the position-based playback utilizes

23

Copyright 2011, AHMCT Research Center, UC Davis

asynchronous control for micro-motions (bucket and arm movements) and synchronous
control for macro-movements (navigation under direct teleoperation).

Stop Get final
record? state info.
Save original
Get initial recording
catrl info.
Increment
state
Update state
vector array
@ time interval

Stop record

Figure 4.3 Position Based Flowchart - Record.

If the operator observes that the playback needs to be adjusted due to changing
boundary conditions, etc. , he has the option of trimming. Trimming is accomplished by
manipulating the OCC control for the desired component to be modified. For instance, if the
operator wanted the arm of the machine to be a little higher, he would use the bucket/arm
joystick control. The program detects the operator’s control movement and pauses the

24

Copyright 2011, AHMCT Research Center, UC Davis

playback while the trimming operation takes place. When the control is returned to its neutral
position, the program assumes the trimming operation is complete and calculates the amount
the component was moved. This frim value is then applied to all the following states. If the
downstream state data was not modified, then the machine would merely return to the original
playback instantly and negate the purpose of trimming in the first place. State component
values are only modified up to their range limits so that incorrect operation does not occur. For
example, if the arm is trimmed upward 100 points on a 0-255 scale, all subsequent states are
also increased by 100. If the resultant sum is greater than 255, then it is set to 255 (and vice
versa for 0).

One concern with trimming was that if the operator needed to make a lot of corrections,
the recording would become too corrupted. To compensate, it was decided to restore the
original recording, without the trimming corrections, at the end of any playback. This control
policy makes each playback independent of previous actions. Thus, if subsequent playbacks
require the same trim at the same time in the playback sequence, the operator may decide to re-
record the states to minimize the needed trim. Of course, he can continue operation and
trimming if he wishes. Each playback is terminated when the Start/Stop button is pressed or
when the final recorded state is reached. The following flowchart depicts the operation of
playback for the position-based program: ‘

4.2.3 Preliminary Testing and Evaluation

Initial testing of the position-based program showed that it performed as intended: the
machine moved through the recorded states and allowed trimming operations. Also, planned
periods where none of the recorded components were moving were reproduced accurately.
The testing did, however, reveal the importance of the choice of recording time interval. Short
intervals (.5 seconds) were tried with the idea of reducing discrete error, but resulted in very
jerky playbacks due to the closeness of states. Long intervals (2+ seconds) were also tried, but
resulted in unacceptable discrete error and problems due to the varying movement rates of the
different components.

The main limitation of the position-based program is that it does not record all the loader
components (for reasons mentioned in sec. 4.2). However, the simultaneous meshing of
active human control and recorded sequences may be the most viable option for real field use.

25

Copyright 2011, AHMCT Research Center, UC Davis

Start playback

Start counter

Trim Yes
operation
occurring}

vNo

[Set trim flags = 0|

Set related
trim flags = 1

No Trim
operation

ompleted)

.Calculate trim

]

Modify)downstream
data, set boundary

Set related play flags =0
& determine
required movements

Fct play flags = ll

®)

Figure 4.4 Position Based Flowchart - Playback.

26

Copyright 2011, AHMCT Research Center, UC Davis

Timeout
counter

Yes
the operator
trimming?

State
satisfied?

¢Yes

Increment state,
reset counter

Restore original
@"") recording

Stop playback

4.3 Hybrid Program

The third program developed for teachable functions incorporates characteristics from
both the time- and position-based programs. The goal was to create a control program that
would take the most successful methods from previous attempts and meld them together.
Essentially, the “hybrid” program copies the time-based control structure, but with two
important additions from the position-based program. First, the hybrid program records initial
position data from the sensors on the machine so the machine’s components can be properly
arranged at the start of a playback session. Second, the hybrid program allows feedback
correction (trimming) by the human operator for all recorded controls. The hybrid program
was based more upon the time-based program than the position-based program mainly because
of the time-based program’s ability to control all loader functions.

The initial positioning capability was added for several reasons. It added greatly to the
playback’s convenience by freeing the operator from having to accurately position all the loader
components (bucket, arm, steering angle) at the start of the playback. Also, initial positioning
was added with the intent to improve the accuracy of playback. Preliminary testing of the time-
based program revealed that the replication of the starting position of the machine was crucial if
the recorded sequence was to be duplicated. The starting point in any open-loop motion
controlled process is important, since any initial errors will be propagated as the process is
executed.

Preliminary testing also revealed the benefits of a method of feedback. However,
because the time-based control structure does not allow for the correction of position as the
position-based program does, a new method of trimming was developed. In the new method,
the operator can override and correct the recorded controls individually. The program
substitutes the desired control corrections in for the recorded ones, and does not modify future
control state data.

An automatic position control system was rejected because of the manner in which
teleoperation of the hydraulic controls works. As mentioned in Ch. 3, the bucket, arm, and
steering operations of the loader are fixed rate, except when engine speed is changed. Thus, if
the program detected that the component was falling behind in position during playback, it
would be unable to make it move faster to compensate unless throttle was increased.
However, the throttle change would impact all other loader components as well. It should be
noted that this problem is only a factor during a playback where control states are determined
by time (e.g., time-based). The “finite state machine” concept employed in the position-based
program, by its very nature, obviates the need for position correction since each state vector
must be completed before continuing.

4.3.1 Hybrid Program Recording
As mentioned in Sec. 4.3, the hybrid program borrows heavily from the time-based

program’s methods. This is especially true in the record mode. Again, the process is initiated

27

Copyright 2011, AHMCT Research Center, UC Davis

by pressing the Start/Stop button on the OCC, and the operator moving the loader through the
desired sequence. While the movements are occurring, the LCC stores the OCC control
positions in a state vector array, with each vector consisting of all the recorded controls and a
timer counter value. New state vectors are stored only when changes in the operator’s
movement of controls are detected in order to minimize unnecessary use of memory. The
hybrid program additionally records the data from the arm position, bucket position, and
steering angle sensors at the start of the recording. The record process is terminated by either
pressing the Start/Stop button, time limit, or state vector number limit. A flowchart of the
hybrid program’s record mode is as in Figure 4.5.

4.3.2 Hybrid Program Playback

Like the other programs, the hybrid’s playback mode is started by pressing a key on the
OCC. Before starting a counter and progressing with the playback, however, the program
enters an initial positioning mode. In this mode, the program first looks at the position data for
the bucket, arm, and steering that was stored at the start of the recording. This data is then
compared to the current component positions so that the required movements to get to the initial
position can be determined. Once the movements are executed and the initial position state of
all three components is satisfied, the program enters normal playback mode.

In the normal playback mode, the hybrid program acts like the time-based and
substitutes the recorded control position states for actual movements of controls made by an
operator. Each state is kept until the time duration with which it was recorded elapses.
However, the hybrid program also allows the operator to trim each control individually, so that
the human provides continuous position feedback. This is accomplished in different manners
for each control.

The arm and bucket controls are fixed rate and not proportional. They are either on or off.
Thus, if the program detects movement on the OCC controls by the operator (i.e. a trimming
operation is occurring) it uses the current OCC control value instead of the recorded one. Once
the control is put back in its neutral position, the recorded values for that control are used
again.

The throttle and brakes are more proportional controls in that they have many possible levels.
Again, the program watches the OCC controls during playback to see if trimming is desired.
However, the current OCC control value is used only if it exceeds the recorded brake or throttle
values.

28

Copyright 2011, AHMCT Research Center, UC Davis

Get initial

Start Record component
positions,

Start counter

Y
Get initial
cntrl info.

Yes

Stop
record?

Yes

Keypress or\ No
cntrl mvmnt

Increment
state

Y

Record control
settings and
counter value

Y

Figure 4.5 Hybrid RAP Program - Record.

29

Copyright 2011, AHMCT Research Center, UC Davis

The last control that allows trimming is steering. Steering is very different in that it is
fixed rate and based upon position. Input from the OCC’s steering potentiometer determines
what angle the loader will adopt. So, in order to adjust the angle of the machine during
playback, the range of the steering control on the OCC is modified. Instead of the normal full
range of values, the steering sensor data is set into 3 regions; left, right and neutral. If no
corrections to the steering are desired, the control is left in neutral. However, if an adjustment
is needed, the operator moves the control in the desired direction, left or right. When the
program detects the operator’s movement of the control, it interprets it as either a full left or full

‘right turn and starts moving the machine. When enough correction is accomplished, the
operator moves the steering control back into the neutral position and the program restores the
machine to the recorded steering angle. While the recorded control data has not been changed,
the path of the machine has.

Playback for the hybrid program terminates when the final counter value is reached, or
when the operator presses the playback button a second time. A flowchart of how the hybrid
program’s playback works is as shown in Figure 4.6. '

4.3.3 Preliminary Testing and Evaluation

Initial testing of the hybrid program showed that it performed all functions as intended.
It properly executed the initial positioning phase and proceeded into normal playback. During
normal playback, all the loader functions were able to be trimmed as they were designed to be.
Variable recorded sequences were all repeated properly in the correct amount of time.

In testing it was immediately apparent that initial positioning is a great benefit. The
operator no longer had to worry as much about how the loader was positioned, because this
was done automatically. Also, because the automatic initial positioning was more accurate than
initial positioning dependent upon the operator’s memory, the resultant playback was more
consistent than the time-based program’s. The addition of trimming capability aided playback
accuracy as well. This form of feedback by the operator is essential to the concept of semi-
automatic teleoperation, where the human operator remains an integral part of the control loop.
However, the operator’s tasks are relieved so that less concentration and action is required.

30

Copyright 2011, AHMCT Research Center, UC Davis

Start playback

Yes

Initial

>

condition?

Trim
operation
gccurring?

Substitute
recorded control
values

Set related
trim flags = 1

3

Counter >
recoreded
value?

No

Yes

Increment state

Counter

Yes ¢
—>(Stop playback

No : .
Max?

Initial condition
set on

Compare current
component position:
to desired

Y

Determine required
movements

Initial
conditions
atisfied?

Start counter

v

Initial condition

set off

Figure 4.6 Hybrid RAP Flowchart - Playback.

31

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 5
Testing and Results

The motivating goal of the TAMER project is to remove the operator of a front end
loader from a possible hazardous environment. This was accomplished through the
construction of a sophisticated teleoperation system. Because teleoperation imposes different
tasks and demands on an operator, the teachable functions were incorporated into the loader’s
control programs to increase productivity and decrease the operator’s fatigue. Three different
control programs were developed to realize these goals.

In order to compare the different control programs, a test was developed that would be
sufficiently difficult to reveal limitations, but easy enough to generate consistent data. The test
was to meet the following objectives:

e Demonstrate the possibility of teachable functions within the framework of the TAMER
system.

e Evaluate the most accurate and easiest to use control method.

e Demonstrate the benefit of having a man-machine interactive feedback in semi-automatic
functions.

e Identify which (if not all) loader components should be involved in teachable functions.
5.1 TEST LAYOUT AND PROCEDURE

The test was designed to require the use of all loader components, movements, and
possible operational sequences, so that real-world application could be seen. The site chosen
for the test was a field on UC Davis grounds, with the following layout.

In order to involve all the loader functions in a continuous loop test that could be
repeated easily, the following sequence was selected. (Steps correspond to numbers on Fig
5.1.):

1. Position the loader at the start line; facing the pile of dirt and square to the line between the
double cones. '

2. Move forward into the pile of dirt and attempt to acquire a full load in the bucket.
3. Back up, holding the load at a safe travel height, and turn to face left towards dump area.

4. Pull forward to dump area; lift, and dump load.

32

Copyright 2011, AHMCT Research Center, UC Davis

Pile of dirt

@® Cones

*All figures not to

nnnla

Figure 5.1 Test Layout
6. Move forward and turn so that loader has returned to start position and orientation; stop.

To complete a single test, the loader performed this sequence twice. The loader was

restrained to first gear only, in order to keep the data consistent and promote safety. Also, five
different modes of operation were tried:

1.

2.

Manual

Normal teleoperation
Time-based
Position-based
Hybrid

In manual mode the operator is physically on the machine, with no teleoperation or

teachable function capability. In normal teleoperation mode the operator manipulating the

33

Copyright 2011, AHMCT Research Center, UC Davis

loader via remote control and also with no teachable function capability. All teleoperation
during testing was done with the backpack portable unit.

In the case of time-based, position-based, and hybrid modes, there were a few more
considerations. In these modes the operator would first record half of a complete test (one
complete loop of starting and finishing at the same line). Then the actual test would be
performed with the previously made recording for both loops. This meant that at the halfway
point of the test, the operator had to position (if necessary) and restart a new playback. The
time-based mode (3) used the time-based program with open-loop control and the ability to
record and play all functions of the loader. The position-based mode (4) used the position-
based program that used feedback from the sensors. However, this mode only operated on the
bucket and arm functions. All other operations (throttle, direction, steering, etc.) had to be
performed by the operator just as in normal teleoperation mode. The hybrid mode (5) used the
hybrid program, which was essentially the time-based program with the added initial position
and trimming capabilities.

A large variety of data was collected during each test, so that the different control
methods could be analyzed for their benefits and limitations. The following variables were
recorded: :

1. Total time from start to finish of the test.
i. Amount of dirt transported in percentage of full loads.
3. Amount of cones knocked down or contacted.
4. Accuracy of dumping.
5. Final position accuracy.
" 6. Record time (if applicable).
7. Number of trimming operations (if applicable).

The total time for the loader to complete two loops was recorded in seconds. The clock
was started when the operator first moved the loader and stopped when a satisfactory final
position was reached at the start line. The amount of dirt transported was recorded in
percentages of full loads. (For one test, the maximum amount of dirt transported that could be
achieved would be 200%). The amount of cones knocked down or contacted was recorded for
the complete test. If the same cone was hit more than once because the test is two loops, then it
was counted each time.

The accuracy of dumping the second load on top of the first was determined by a 1-5
scale where:

34

Copyright 2011, AHMCT Research Center, UC Davis

1. Way off. Second load not in vicinity of first.

2. Two loads are in'vicinity of each other (within 10°).

3. The loads are at least partially overlapping.

4. The second load is at least half on the first (50%+ overlap).

5. Near perfect dumping of the second load on top of the first (90%-+ overlap).

It should be noted that this scale does not take into account whether the loads are
dumped within the dump area or not; it merely indicates how well the test is reproduced.

The final position accuracy was applicable only to those modes that used teachable
functions (3-5). It refers to the ability of the playback to place the loader back at the start
position and is also ranked on a 1-5 scale where:

1. Way off. Loader is not even close to starting position, and lots of correction was necessary
between playbacks.

2. Orientation off (not square to start line) and within 5’ of start line.
3. Within 5’ of start line, and orientation is on.

4. Within 1’ of start line, but orientation is off.

5. Within 1’ of start line, orientation is on.

This quantity was recorded twice; once for each loop during the test.

The record time was kept for the amount of time in seconds that the operator took when
completing the pre-test recording (one loop). This involved transporting one load of dirt and
making sure the loader finished in a satisfactory final position (5 on the final position scale).

The last value to be recorded was the number of trims during the test. This quantity
was only relevant for the hybrid and position-based programs as they are the ones that have
trimming capability. It reflects the level of feedback necessary from the operator to keep the
playback accurate.

The terrain the test was layed out on was an uneven dirt field with some slight elevation
changes. This site was chosen because it represented fairly the environment a front-end loader
often operates in.

The cones used to delineate the area in which the loader was allowed to operate were
large orange, 10-pound traffic cones. They were chosen because they were easily visible to the
. operator and durable enough to be run over by a 14-ton loader. Spacing in between the cones

35

Copyright 2011, AHMCT Research Center, UC Davis

and the size of the operating environment were determined by considering the loader’s extreme
size and allowing it room to maneuver.

The size of the dump area was set at approximately 30" x 30’ to satisfy two objectives.
First, it was desired that the space be large enough for the operator to be able to easily dump
there. Too small an area might “guide” the operator to dump in a specific spot, when part of
the purpose of the test is to promote variability. Second, too large an area would not define the
test well enough.

The pile of dirt constructed for the testing was approximately 20 cubic yards. A
smaller pile of dirt would be too susceptible to the loader just pushing through it, because of its
insufficient mass. The large pile assured uniformity and consistency for the tests.

As can be seen in Fig. 5.1, the operator for the testing occupied a strategic position that
would allow a clear view of the loader during all phases of the test. This also helped contribute
to consistent testing. Testing of other systems on the loader demonstrated that the learning
curve for operating all this equipment was significant and unquantifiable. When novice
operators were used, their performance often changed drastically from one test to another as
they became more proficient with the system, and did not necessarily have anything to do with
the different conditions they were supposed to be testing. Thus, to help minimizing the effect
of the learning curve, all tests were run by the team member who developed the teachable
programs and also is an experienced loader operator.

5.2 RESULTS

The results for the tests mostly turned out following expected trends. The time-based
(TB) program behaved poorly, but this was not surprising considering it does not involve any
correctional feedback. The hybrid program (RAP), with its initial positioning and “human-in-
the-loop” feedback, was dramatically better than the TB program. However, the RAP program
was also proved to have serious limitations. The position-based (PB) program probably had
the most interesting results of all even though it was only operating on bucket and arm
controls. The steering control was removed from the PB program for final testing after
preliminary testing showed it to be unfeasible.

Figure 5.2 shows the averaged results for each program.

36

Copyright 2011, AHMCT Research Center, UC Davis

Normal TB RAP PB Manual
Total Time (secs) 149.67 189.14 154.6 111.67 120.67
Record Time (secs) N/A 69.86 62.6 58 .67 N/A
Cones Hit 0 4.14 .6 0 0
- Load Size 1 (%full) 100 92.86 100 98.33 100
Load Size 2 (%full) 100 78.57 93 91.67 100
Dump Accuracy 4.67 2.57 4 5 5
Final Pos. Accuracy 1 5 3.71 3.4 5 5
Final Pos. Accuracy 2 5 - 2.86 3 5 5
Trim Operations N/A N/A 6 1.33 N/A
Time Differential N/A 49 29 -5.7 N/A
Composite Score .943 .376 627 .949 | .97

Figure 5.3 Test Results

The total time figures are somewhat misleading in their significance. However, some
gross observations can be made. In comparing them, it should be noted that the order in which
the modes are listed above is the order in which they were tested. While using one experienced
operator helped eliminate the steep learning curve associated with novices, there is still some
impact when the test is repeated many times and the operator becomes more familiar with the
procedure, terrain, etc.

Three conclusions can be drawn from the time data. First, the TB and RAP programs
take significantly longer to perform the test than other modes. This is due to the fact that the
total time for these modes includes maneuvering time between the two playbacks. If the
program did not return the loader to the starting line at the end of the first playback, the
operator had to take time to position the loader for the start of the second playback. The
amount of correction time varied with each of the teachable function programs as seen in Figure
5.4.

37

Copyright 2011, AHMCT Research Center, UC Davis

50

40 -

E] 1
B rar
B e

304

20 -

Time (sec.)

10 -

 ——

-10

y—

Control Mode

Figure 5.4 Correction Time

As this graph shows, the TB program required the most correction time in between
playbacks and to position the loader properly at the end of the test. The RAP program showed
significant improvement over the TB, demonstrating the benefits of initial positioning and
trimming. The initial positioning was especially crucial to reducing the correction time
because, even if the loader’s final position accuracy was the same for the TB and RAP, the
latter required far less time to put the arm, bucket, and steering angle in acceptable positions.
Also, even if the loader’s global position was not perfect, the RAP program allowed the
operator to adjust during the playback through trimming, whereas with the TB program the
operator had to take care that everything was as perfect as possible when initiating a new
playback. ‘

Unlike TB and RAP, the PB program consistently saved time during the test. Since the
PB program was only controlling bucket and arm operations, the operator had full normal
control of navigating the loader. Thus, when the loader was performing the dump sequence,
the operator could start moving as soon as the dirt was out of the bucket without concentrating
on the bucket and arm movements. In fact, the operator consistently moved the loader to the
dump area so fast that he had to wait for the dump sequence to begin. If the load acquisition
and dumping had been two different recordings activated by separate keys, even more time
might have been saved.

The last conclusion to be drawn from the time data is that the manual operation of the
loader appeared to be slower than the PB controlled. The reason for this is twofold. First,
when the operator is not physically on the loader he is less subject to the bouncing around from
rough terrain and is more likely to go faster. Second, the PB program required less
concentration on the part of the operator, because it was handling the bucket and arm

38

Copyright 2011, AHMCT Research Center, UC Davis

movements. It was easier to move the loader quickly when the operator had fewer objects to
pay close attention to.

The number of cones knocked down or contacted during the test really showed the
importance of feedback. As expected, all three of the non-automatic navigation modes
(Normal, Manual, PB) avoided cones entirely. However, there was a large difference between
the TB and RAP programs. The TB program knocked down significantly more cones than the
RAP program, because it does not offer any form of feedback correction. With the RAP
program the operator could observe the impending cone contact and adjust the loader’s path to
avoid them. This again illustrates the benefit of having human-interactive feedback control.

As mentioned in Section 5.1, the dirt pile was sized such that acquiring a full load of
dirt should have been easy. However, as Fig. 5.5 shows, this is not necessarily the case.

< I
S T————
o~ Rrrerrrreren TB
e Rerrrrrerey
Perenr ey
® Iy
N LLnsuiaLL
— — GReR iRy RAP
2] 75 N
PRy
o) YNNI,
AN]
3] PRRLLRLLLLEL
S e PB
I3
- VA NLVNVNY
VYNV Y)
(0] 50 - B | R
> i ™ Normal
g i orma
[0 RRrER iRy
S ReRR ey
PR Ry
< Ry E Manual
25 - R
VARV,
Ry
NN
S
NSV,
Y]
0 YY)

o

Control Mode

Figure 5.5 Load Acquisition Data

Again, the normal and manual modes performed perfectly as expected. The three
teachable function modes did encounter problems. The primary problem was that the second
load size consistently decreased. This was due to the fact that the original recording and the
first playback were performed with a similar pile, while the second playback bad to deal with a
pile modified by one load of dirt already removed. The TB program, with no feedback, was
affected the most by this. Also, during at least one test, the TB program procured a full load,
but then did not dump it out completely at the dump site. The RAP program performed better
because the operator was able to trim the arm and bucket while acquiring the load. While the
PB program appeared to also suffer in performance, on the day it was tested the pile was

39

Copyright 2011, AHMCT Research Center, UC Davis -

smaller (courtesy of UC Davis Yard Services), making it more difficult to get a full load. If the
pile had been full size, the results likely would have been close to the normal teleoperation’s.

The accuracy of the dump measured the ability of the control mode to accurately place
the second load of dirt on top of the first. Figure 5.6 shows the results.

) . - TB

8 4 0,

e f// RAP
>

O

£ 34 M B

8 .)‘/

< // [] Normal
£ 24 NN

a [/ B Manual

—

Control Mode

Figure 5.6 Accuracy of Dump Data

This figure clearly shows a trend of increasing accuracy with increased levels of
feedback. Also, it is clear that all the modes that do not involve automation of navigation and
steering have perfect or near perfect accuracy, while the other modes do not. This indicates
that the man-interactive feedback for navigation and steering, though somewhat effective, falls
short of expected performance. To emphasize how poorly TB performed in this test, the
accuracy was only measured by the two piles’ proximity to each other and did not take into
account where the two piles were dumped. In more than one TB test, the loads were dumped
completely outside the dump area because minor course corrections could not be made during
the test.

The accuracy of the final position was measured twice for each test. For the normal,
manual, and PB modes the accuracy was assumed to be perfect as the operator was in full
control of navigating the machine. Somewhat surprisingly, however, the RAP program
performed as poorly as the TB. The first reason for this is that since the RAP program allows
trimming, this might induce error due to the effect on hydraulic pressure and hence, engine
RPM. For instance, if the operator corrects the steering angle slightly, the hydraulics load the

40

Copyright 2011, AHMCT Research Center, UC Davis

engine more and effect anything that depends on engine RPM. And the second reason is that if
the playback is going to stop short of the finish line, the operator has no way of knowing
beforehand and cannot act to correct it. The human brain is not smart enough to compute how
well the playback has been progressing and determine if corrections need to be made in the
present to avoid future problems. This is not necessarily true for all recorded sessions, but
was a problem here because of the complex nature of the test.

The number of trimming operations made per test revealed a few things. It made it

. obvious that, in the modes where it was available, the operator needed the trimming capability.

However, the RAP program used far more corrections than the PB. While this might be

assumed to be because the RAP is recording all functions, most of the RAP corrections were

steering corrections. This indicates that the automatic navigation of the loader requires the
highest level of feedback. In fact, 75% of all trimming operations were steering.

A final piece of data that was more subjective was fatigue level. Of the four control
modes, TB was the easiest. After a recording was made, the operator merely had to position
the loader properly and push a button. However, the inaccuracy of this method makes the low
fatigue level a moot point. The next easiest method to use was the PB mode. The operator had
only to concentrate on moving the machine from the pick-up to the dump area, and supervise
the arm and bucket operations. Behind PB came normal teleoperation. In this mode the
operator felt relaxed by being in control of all of the loader’s functions at all times. However,
stress levels were increased when multiple motions were being performed simultaneously. The
worst method for fatigue was the RAP program. While the trimming concept proved a good
one, when the operator had to worry about correcting all the loader functions, especially
steering, it was mentally very stressful. Ranking the manual mode is more difficult. Because
of the high level of feedback of actually being on the machine, mental stress while operating the
loader manually is minimal. However, the operator is physically stressed by being subjected
to far more noise, vibrations, and harshness (NVH) than in the teleoperated modes, to say
nothing about dust and heat. Severe jostling by the loader will often cause the operator to slow
down when it is not actually necessary, and tire him out sooner.

In order to directly compare all the control modes, a composite scoring was developed.
The following five categories were all weighted equally:

1. Number of cones contacted
2. Loads transported

3. Dump Accuracy

4. Final Position Accuracy

5. Time difference (see Fig. 5.4)

41

Copyright 2011, AHMCT Research Center, UC Davis

The raw data for each individual category was combined into an array for all modes.
Each data point was then given a percentage statistical rank based upon its position in that
array. Figure 5.7 shows the results.

6
5

. ™

5 4-]

@ 1 RAP

o)

E 3 [eB

£

8 2 - B Normal
- E Manual
; HIHIHHNS

—

Control Mode

Figure 5.7 Composite Testing Scores

From this chart, it can easily be seen that the PB mode far outperforms the other two teachable
function programs and even approaches manual operation. While normal teleoperation is
ranked nearly as high as PB, the PB mode is better because of the reduced operator fatigue
level.

5.3 Summary

From the testing and results, some important conclusions can be drawn. First, while
the time-based program (TB) performed synchronous playback of all loader functions as
intended, the lack of feedback rendered it inaccurate and unfeasible. Second, the hybrid
program (RAP) substantiated the concept of man-machine interactive semi-automatic control.
It demonstrated a dramatic improvement in accuracy over the TB program. However, RAP
still did not perform accurately enough to be considered as a production possibility. -In
addition, the RAP program showed that with the man as the feedback controller in navigation
maneuvers, operator stress levels were too elevated to make it a viable option. Third, the
position-based program (PB), with control over only bucket and arm functions, proved to be
the highest performing teachable function program as far as accuracy, productivity, and fatigue
are concerned. In fact, if the factor of fatigue is taken into account, the PB program
outperforms both normal teleoperation and manual operation.

42

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 6

Conclusion and Recommendations

The TAMER project was conceived with the idea of improving heavy earth moving
equipment operator safety in hazardous environments. This goal was accomplished by
removing the operator from the machine and making it teleoperated.

This phase of the TAMER project introduced “teachable functions” to the TAMER
system. These functions allow an operator to “record” and “play back” sequences of
movements on the loader, with the goal of reducing operator fatigue and increasing
productivity. In addition to the existing manual operation and normal teleoperation modes,
three new control programs incorporating “teachable functions” were developed. All five
modes were field tested and evaluated for accuracy, productivity, and operator fatigue level.
The new control programs are time-based (synchronous), position-based (asynchronous), and
hybrid.

»”

The time-based program records operator control inputs, durations, and sequences and
stores them in memory. To play a sequence back, the program substitutes in the stored control
values for the same amount of time that they were recorded. This program does not allow the
operator any form of feedback during playback. Testing showed that while this method
repeated recorded sequences, the lack of feedback rendered it unacceptably inaccurate.

The position-based program records data from position sensors on the loader’s bucket
and arm. This program only controls the bucket and arm components, so navigation of the
machine is still completely controlled by the operator. During playback, the program moves
the bucket and arm between positions according to the concept of the “finite state machine”.
Testing of this program showed it to be very promising. Operator fatigue was reduced since he
did not have to manipulate the loader’s arm and bucket continuously. Also, accuracy and
speed of this method were excellent. One reason for the improved accuracy of this method is
that it allowed feedback from the operator during playback. If the operator sensed the playback
needed to be changed he could make corrections.

The hybrid program takes characteristics from both the time-based and position-based
programs. From the time-based it takes the ability to record and play all loader functions in a
synchronous manner. From the position-based it takes the ability to record position sensor
data from the machine components. It also incorporates the feature of man-machine interactive
feedback during playback. Testing of this mode demonstrated it to be much more accurate than
the time-based program, but still short of the other modes. Also, while the man-machine
interactive feedback was shown to be effective, the mental stresses it place upon the operator
were deemed unacceptable.

43

Copyright 2011, AHMCT Research Center, UC Davis

Of the three teachable function programs, the position-based should be the one
implemented in any production capacity. While the other programs controlled more loader
functions, they would require a much greater level of feedback and control than exists now in
order to become feasible. A simple upgrade of the position-based program to include multiple
recorded sequences. It was noted during testing that if the program had had this capability it
would have been even faster and more convenient. If there is a great desire to have recorded
navigation of the machine, a much more sophisticated sensor network with a very accurate
Global Positioning System (GPS) would be needed. However, a system like this would be

 drastically more complicated (and costly) than the existing one.

The TAMER system has the capability to improve safety and reduce injuries by
removing the operator from the machine. The addition of teachable function programming to a
teleoperated system would help improve productivity and reduce operator fatigue. In fact, with
teachable functions, a teleoperator should be able to just as productive as an operator on the
machine, but with a much reduced fatigue level.

Copyright 2011, AHMCT Research Center, UC Davis

SECTION I

TELEPRESENCE AND AUDIO/VIDEO SYSTEMS
FOR REMOTE OPERATION

45

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 7

Introduction

For the proper operation of a remotely operated vehicle where the human is part of the
closed loop control of the machine, the operator needs to be supplied with necessary
information on the operation being performed. The attempt to artificially supply these senses is
referred to as telepresence. During phase II of the TAMER project, a three dimensional color
video/audio system developed at Metron Optics was integrated into the teleoperated front-end
loader. The 3D video/audio feedback system consists of a camera subsystem on the loader and
a viewing system that is mounted on the remote operating station. The video/audio feedback
system enables the operator to regain the major senses, as to the status of the vehicle and
position of the vehicle relative to the points of operation, which are lost during remote
operation from a distance greater than 200 ft. Field test evaluations showed the advantages of
using three dimensional video display system over two dimensional systems. It is clear that
three dimensional color systems offer better object recognition such as identification of bumps
and ruts that could potentially cause the rollover of a loaded front-end loader, and give the
remote driver an accurate driving and manipulating capability.

However, the system has several disadvantages. First, its relatively large size (66 cm x
81 cm x 64 cm) and high cost made it impractical for Caltrans field use. Furthermore, the head
movement of the operator has to be limited in order to maintain the three dimensional image.
Base on the feedback collected from Caltrans operators during the field tests, side mounted two
2D cameras with corresponding secondary monitors mounted at the workstation is
recommended to allow for a duplicated peripheral view for the remote operator. Since the
front-end loader is frequently engaged in driving in reverse, a back up camera view is also
suggested.

The purpose of this phase was to further investigate the feasibility of using a
telepresence system for the teleoperated front-end loader. This section of the report presents
the research resulting in an improved operation of the teleoperated front-end loader. The
telepresence system that was created utilizes a stereoscopic front view with monoscopic side
and rear views. Another major effort of this research involved the enhancement of the
stereoscopic system by empirically evaluating the relationship between stereo camera spacing
(interocular viewing distance) for a parallel camera configuration and object distance.

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 8
System Design

The telepresence feedback system requires three main subsystems which include: an

acquisition system, transmittal system, and finally, a display unit. See figure 8.1.

Video / Audio
acquisition system

RF Link

L h L Video / Audio

transmittal
system

Video / Audio
display system

Figure 8.1 Telepresence System Diagram.

There exists several standard options in the selection of display units. The
transmittal system can either be hard wired or RF link system available off the shelf. The
video audio acquisition system requires attention to stereo camera configuration as well as

horizontal field of view.

Copyright 2011, AHMCT Research Center, UC Davis

47

8.1 VIDEO AUDIO ACQUISITION SYSTEM

8.1.1 Design Consideration

It may be possible to acquire a full 360 degree stereoscopic image to supply an
immersive telepresence environment for the operator. A full 360 degree stereoscopic image
would be substantially more expensive and more difficult to maintain than a simpler system
while supplying depth cues in views that may not be necessary. For practical remote
operation, only the most important and useful locations of views should be acquired for
operator feedback.

Investigation on audio feedback during Phase II revealed that stereo audio is not
necessary for teleoperation of heavy earthmoving equipment. Initial trials prove mono
audio to enhance teleoperation control and will therefore mono audio feedback was be
included in this design.

During remote operation of a front loader, where object manipulation as well as
driving navigation takes place in the front of the machine, visual depth cues are necessary
in a front view. On the sides and rear of the machine where no object manipulation but
vehicle navigation is required, simple monoscopic images are necessary and sufficient. In
hazardous terrain locations such as mountain slopes where mud slides have occurred, it
may be necessary to navigate the vehicle along cliff sides in both forward and reverse
directions. These maneuverability requirements necessitate video object recognition in the
form of monoscopic side and rear views. See figure 8.2.

48

Copyright 2011, AHMCT Research Center, UC Davis

Stereo front Cameras

| Loader Roof

———StereoGrap hics
VideoEncoder

| _—Video
Multiplexer

\3o°

Side ard Red N Atenna

(P::;pheral Transmittd
aas System

Figure 8.2 Vehicle Camera Positioning (Loader Roof).

As previously mentioned, it may be possible to increase the HFOV by incorporating
a single camera system on a slaved rotating mechanism. Previous attempts at creating such
systems have had problems with lag time for rotation (Kruetzfeldt, 1995). Kruetzfeldt
reports that operators became frustrated with latency and simply stopped using the slaving
mechanism. Another detriment to the slaved system is that it may necessitate the operator
to toggle a switch for the rotation, thereby, requiring attention by the operator, taking
attention away from the other controls of the machine. Due to these detriments, the
multiple camera system was selected over the slaving system for effectively increasing the
HFOV.

~ 8.1.2 Camera location and configuration

After choosing the multiple camera system for increasing the effective HFOV, care
and consideration had to be given for optimal camera placement. Originally, it was
believed that supplying the view from within the cab where the normal manual operators
head was located would be favorable. It was soon determined that bucket operations block
the normal operators view and that a better view could be obtained from a higher location
up on top of the cab. A second benefit of placing the cameras up on top of the cab was
realized. The original configuration (cameras in the same place as the normal operators
head) required that the cameras physically be located inside the cab. In the case that the
vehicle was to be operated manually, the driver had to move the camera system out of the
cab so as to allow room for the operator to work. The benefit with the second camera

49

Copyright 2011, AHMCT Research Center, UC Davis

configuration was that the loader could be operated manually without moving the cameras
in and out of position, effectively leaving them in a semi- permanent position. See figure
8.2.

In the literature, there is some debate over the optimal stereoscopic camera
configuration for various viewing conditions. Shields et al., and Pepper et al., suggest
orthostereoscopy while Diner et al., and Yamanoue argue that optimal camera configuration
changes depending on the viewing conditions.

A somewhat orthodox configuration was selected for the initial trials of the
telepresence system (orthostereoscopy). Human eyes are spaced at 2.5 inches, therefore,
the standard camera inter-viewpoint distance (IVD) was selected as 2.5 inches. In order to
minimize the problems of reverse parallax and concave planes of equal depth, a parallel
camera configuration was selected at this IVD. See figure 8.3.

Figure 8.3 Stereoscopic cameras

8.1.3 Description of The Telepresence Acquisition System

The stereoscopic camera system was placed in a semi weather proof housing up on
top of the cab as shown in figure 3.2. The two stereo front cameras (Sony SSC-C370)
were configured with 6 mm lenses. The signal from the two stereo cameras was sent to the
StereoGraphics video encoder which compresses the two images vertically into one video
signal. The single video signal was then wired to the RF video antenna.

The two side cameras (Cohu 1300) with 6 mm lenses were mounted in Pelco
weather proof camera housings and attached to the loader roof as in figure 8.2. The
cameras were angled (roughly 30 degrees) so that during a full turn, the respective side
camera would be facing forward. The video signal from the left side camera was led into
the video multiplexer while the signal from the right camera was led directly to the RF
antenna.

50

Copyright 2011, AHMCT Research Center, UC Davis

The rear camera (Sony SSC-C370) with a 6 mm auto iris lens was mounted on the
roof of the loader facing directly to the rear of the machine (figure 8.2). The rear camera
video signal was wired into the video multiplexer just as the left camera signal.

The video multiplexer accepted the left and rear camera video signal as well as a
digital signal from the Loader Control Computer (LCC). An integrated circuit in the video
multiplexer output the left camera signal when the LCC signal was high and the rear camera
signal when the LCC signal was low. The LCC signal was toggled when the machine
switched from forward to reverse gear. The output from the video multiplexer was then
sent to the RF antenna.

8.2 VIDEO AUDIO DISPLAY UNIT

8.2.1 Stereo display selection
Three stereo display systems were examined during the investigation. -

The Concave Mirror Hologram (CMH) system developed by Metron Optics was
tested during phase I and was found to give adequate depth perception. However, several
problems became apparent. One problem was that the CMH afforded a very narrow
HFOV. Secondly, the mirror required for the CMH system was extremely expensive and
delicate to handle. The most noticeable disadvantage of the CMH system was the large and
bulky size of the implement. Two monitors and a concave mirror are required to be placed
in specific locations in order for the image to be clear and produce retinal disparity.

The Head Mounted Display (HMD), an I-glasses Personal Display system from
Virtual 10 corp. was also tested in field by Caltrans operators. Depth perception was
afforded, however, several problems soon became apparent. While the operator is wearing
the HMD, his vision is restricted to only the view displayed on the HMD and he/she can
not look at the teleoperation control unit, other display monitors, or the direct line of sight
to the machine. Due to the fact that the multiple camera system was selected, multiple
display units would have to be utilized. An HMD would restrict the viewer so as not to see
any views other than that on the HMD.

An Alternating Liquid Crystal (ALCS) system. The ALCS system allows for depth
perception in the form of retinal disparity while not limiting the system to only one view as
is the case with the HMD alternative. The viewing area is only limited by the size of the
monitors used and is not restricted by a bulky mirror system as is found with the CMH
option.

The first ALCS system tried in the telepresence unit utilized a standard interlaced
television monitor for the display. The left camera image was displayed as the even
interlaced field and the right camera image as the odd interlaced field. In this fashion, only
30 full stereoscopic images per second could be displayed on a standard television

51

Copyright 2011, AHMCT Research Center, UC Davis

monitor. Studies have shown that the human visual system is sensitive to flicker at rate
less than 50 Hz (see Figure xxx). Therefore, The human observer can clearly detect flicker
at this rate of 30 frames per second, subsequently, the benefit of the depth perception in the
stereo system was overridden by the bothersome flickering of the slow alternating

frequency.

1.0

0.5

0.2
m—= === High Spatial
frequencies field

sensitivity

0.1

0.05 e LOW Spatial
frequencies field

Relative

0.02

0.01

1) 20 S0
Flicker frequency (Hz)

Reproduced from Jain 1989.

Figure 8.4 Threshold of Human Flicker Recognition.

The CrystalEyes system developed at Stereo Graphics Corporation takes in the
standard left and right camera images and holds them in video memory. By holding the left
and right images in video memory the two distinct images can be displayed multiple times
before the next set of images is supplied by the cameras. With the use of a high speed
computer monitor, 120 distinct non interlaced pictures can be displayed per second. The
effective full stereoscopic images are then displayed at 60 frames per second which is well
above the human flicker perception rate. This ALCS system does not limit the user to only
one view. Because the ALCS glasses flicker at such a high rate, when the observer views
another monitor or direct line of sight, he/she feels as though they are looking through
normal sun glasses. The ALCS glasses can also be designed to be light and compact in

order to minimize user fatigue.

52

Copyright 2011, AHMCT Research Center, UC Davis

8.2.2 Peripheral display selection

The peripheral camera system includes two monoscopic side views and one
monoscopic rear view. See figure 3.2. The two main factors in selecting the peripheral
view display system was size and human engineering. The monitors had to be small
enough so that they would not interfere with the stereoscopic and direct line of sight views
yet large enough to supply adequate object recognition on the sides and rear of the machine.
The first monitors selected where Sony 4" LCD displays. The two LCD monitors were
mounted on the remote driving station on either side of the stereoscopic monitor. See
figure 8.5.

Stereoscopic

ALCS front
2D Side & view
rear view

?I@ |

2D Side view

Figure 8.5 Telepresence display configuration

The left and right peripheral views were displayed on the respective LCD monitors.
When the machine switched into reverse gear, a video switch on board the loader switched
the left camera view to the rear camera view. By using this switching method, all three
peripheral views could be displayed on only two LCD monitors. The use of only two
peripheral display monitors reduced the total size of the telepresence display system in
addition to cost and complexity.

33

Copyright 2011, AHMCT Research Center, UC Davis

Early in preliminary testing, the 4" LCD monitors proved to be too small for their
location. In order to see the monitors properly, the operator had to lean in close to the
displays. An effective ergonomic telepresence system should not increase operator work
load but decrease it. In order to display a useful image to the operator, the monitors could
either be moved closer to the user or be replaced by larger monitors. It was decided that if
the monitors were moved any closer to the operator, they would interfere with the controls
of the remote driving station, therefore, larger 6" LCD monitors were selected. The bigger
LCD monitors displayed a large enough image to be useful to the user.

8.2.3 Description of Telepresence Display Unit

Three monitors were utilized in the Telepresence display unit. The stereoscopic
image was displayed on a 15 inch View Sonic non-interlaced monitor with a vertical refresh
rate of 120 frames per second. The two peripheral monitors were 6 inch Sharp LCD color
monitors.

The stereo image sent via RF link was received at the telepresence display unit as
two distinct images squeezed vertically into a single NTSC video signal. A StereoGraphics
video decoder takes the single signal and decompresses the two images and outputs the two
distinct images time sequentially for display on a high speed monitor at 120 frames per
second. '

CrystalEyes ALCS glasses are required for viewing the stereo image on the high
speed monitor. The CrystalEyes glasses are light and compact so as to reduce user fatigue.
The glasses are synchronized to the stereo monitor by an infrared signal sent out by the
StereoGraphics decoder. The glasses are designed to flicker only while receiving this
signal. If the user looks up away from the viewing center, the glasses stop receiving the
signal and go clear. By allowing the glasses to go clear, the direct line of sight can be
viewed completely unobstructed.

A special telepresence mount device was constructed in order to house all of the
video monitors on the remote driving station. The display mount was designed so that the
telepresence unit would not interfere with the normal operation of the controls of the
driving unit. The telepresence mount was also designed so as not to interfere with the
drivers ability to look up at the actual machine and obtain a direct line of sight to the loader.
See figure 3.6 for an actual photograph of the final telepresence display unit.

54

Copyright 2011, AHMCT Research Center, UC Davis

Figure 8.6 Final Telepresence display unit

The LCD monitors were rotated 90 degrees in the final configuration to eliminate
the conflict of polarization between CrystalEyes glasses and the LCD monitors. The
glasses for the ALCS system use liquid crystal panels for the electro shuttering of each eye.
LCD monitors produce polarized light on a liquid crystal panel. The polarized light from
the LCD monitors can only pass through the ALCS glasses if the polarization of the light
and that of the glasses are in phase. When the LCD monitors are in their normal upright
position and the glasses are worn normally on a persons head, the polarization of the ALCS
glasses are out of phase with the polarized light from the LCD monitors. A person wearing
the ALCS glasses looking at an upright LCD monitor sees a blank screen because all of the
polarized light from the monitor is blocked out. When the LCD monitor is turned 90
degrees, the polarized light is in phase with that of the glasses and the image can be viewed
normally. Therefore the LCD monitors were mounted sideways. Subsequently, the
cameras on board the loader had to be turned 90 degrees so that the final image on the LCD
monitors would be viewed vertical to the telepresence operator.

8.3 TELEPRESENCE TRANSMITTAL SYSTEM

At any one time, four distinct images (3D front, left, right and rear views) were
collected by cameras. Only three images were sent in parallel to the remote telepresence
unit in real time. As previously mentioned, the left and rear images share the same monitor
as well as the transmittal unit. Therefore the video transmittal system consists of three

55

Copyright 2011, AHMCT Research Center, UC Davis

Pelco wireless video transmittal units which operate at 2414, 2450, 2475 MHz
respectively. Pelco reports their wireless video transmission system to have a direct line of
sight range of 1000 feet. This range is acceptable as it exceeds the present range of the
remote communication system.

During initial trials, the three transmitters were mounted side by side up on top of
the roof of the machine. See figure 8.7. It was soon determined that the transmitters truly
needed a direct line of sight to the receivers in order to have a clear signal. Due to the high
frequency at which the transmitters operate, even the smallest physical object between the
transmitter and receiver can cause signal distortion, including the antennas of the other two
transmitters.

Figure 8.7 Initial (horizontal) configuration of the video transmitters.

In response to the signal distortion problem, the transmitters were mounted
vertically, one on top of the other. This tree mount configuration allows for the least
amount of obstruction to the two lower transmitters and no obstruction to the top
transmitter. See figure 8.6.

56

Copyright 2011, AHMCT Research Center, UC Davis

3/4" DIA.
Aluminum Rod

Figure 8.8 Vertical tree mount transmitter configuration.

57

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 9
Testing And Results

The objectives of the tests are to:

1. Test effectiveness of incorporating side peripheral views and rear view to the stereoscopic
front view for the teleoperated front-end loader.

2. Study the relationship of inter-viewpoint distance (IVD) of a pair of parallel cameras and the
object distance, and to optimize the camera configuration for best 3D images.

3. Evaluate overall performance of the telepresence feedback system developed in this phase
(TFS v.2).

The teleoperated front-end loader with the telepresence feedback system (refers to TFS
V2 hereafter) was tested in the open fields at UC Davis campus as well as at District 3,
operated by skilled heavy equipment operators and Caltrans maintenance crews, to evaluate the
overall performance of TES V2. In order to reduce the glare and ambient light wash out, an
enclosure with full roof and three side walls were used to host the remote operating station.
Feedback and comments collected through written and verbal questionnaires have indicated
that, since the system provided multiple telepresence views (front, left, right and rear) while
allowing for line-of-sight, operators felt relative comfortable and confident to remotely operate
the front-end loader. The CrystalEyes glasses was proved to be easy to use and “care-free” -
the infrared emitter automatically toggles the glasses between “stereoscopic” mode and “clear”
mode when the operator made his/her head movement as needed. When the glasses are in the
“clear” mode, the operator can see through the glasses for the peripheral views or line-of-sight.

In addition to the field tests, test procedures were developed to conduct two sets of
testing with better controlled parameters. The first set of tests, the telepresence operation tests
conducted in an open field at UC Davis campus was to determine the usefulness of the
telepresence system. The second set of tests, optimal inter-viewpoint distance (IVPD) tests
were designed to empirically evaluate the optimal inter-viewpoint distance as a function of
object distance for parallel camera configuration in the range of from ten to thirty feet as is
required for teleoperation of a front-end loader.

57

Copyright 2011, AHMCT Research Center, UC Davis

9.1 Telepresence operation Testing
9.1.1 Testing Setup

In order to verify the true usefulness of the telepresence system and all of the
components implemented, the testing of the system was created in a way that would simulate a
real world application of the loader. Precision bucket maneuvers as well as gross vehicle
navigation are required during actual loader operations and were included in the design of the
vehicle testing layout.

The telepresence testing was broken up into two distinct tasks. The first task required
that the operator attempt to make precision bucket placements by placing an extension of the
bucket in a specified location. The second task required the operator to navigate the machine
through gross vehicle movements in the attempt to move the largest amount of dirt possible in
two scooping operations while navigating through a specified course marked with construction
cones. All tests were done with the remote driving station placed at a distance of 250 feet from
the center of the test course. See figure 9.1 for the course setup. The remote operating station
was placed inside of a large trailer with its back door open to reduce the glare and wash out of
the monitors due to bright Sun light.

9.1.2 Testing Procedures
Task 1. Precision Bucket Placement

A vertical pole, one foot tall and two inches in diameter, was attached to the end of a
three foot long bar extending from the loader bucket. The objective of the first task was to
drive the machine from the start location over to two vertical poles standing six feet tall and
place the small vertical pole extending from the loader bucket directly in-between the two
vertical poles. The distance in inches between the true center of the poles and the actual
position of the operator positioned pole was measured. The two vertical poles were of the
same diameter as the small pole extending from the bucket and were spaced six feet apart. A
two inch orange stripe was painted at the top of each pole in order to enhance visual cues.

Task 2. Gross Navigation & Dirt Movement

The second task required that the operator navigate the loader from the start location
around to the front of the dirt pile, pick up two loads of dirt and dump them into a specified
dump area, and return back to the start location. The course was lined with construction cones
that the operator was instructed to avoid by staying within the specified course. Based on the
constant angle of repose of soil, the height of the dirt pile created by the two loads of dirt is

" used as an indicator of both the volume of dirt moved and the accuracy to which it was placed.
If two full loads were picked up but not placed one on top of the other, or if the operator were
not able to obtain full loads but did place them accurately, the recorded pile height would not be
as large as if two full loads were obtained and placed perfectly one on top of the other. During
the test, the number of cones hit, total time and the pile height were recorded.

58

Copyright 2011, AHMCT Research Center, UC Davis

In order to satisfy the two objectives listed above, the testing was broken down into
five treatments (3D+, 3D-, 2D+, 2D-, OD)* Due to the nature of the test, and the human
interaction, a repeated measures design was utilized. The order of the five treatments were
randomly assigned to one operator at a time and nine total operators were run through the
testing procedure over three days. Each operator was given about 25 minutes to become
familiar with the system before testing began. '

Start point

2.__20->i /
} . /

| ; o]
45 _L_O 3 o
28'
M TASK 1
EEE TASK 2
& Vertical Pole
® o Construction
Dump area Cone
Vertical poles

spaced six feet
apart

250"

Pick up truck l
with remote \

driving station D

Figure 9.1 Telepresence Test Course.

* (3D) refers to stereoscopic, (2D) refers to monoscopic, (+) refers to the addition of
peripheral views, (-) refers to the lack of peripherals, (0D) refers to no video
system, using simply direct line of sight (LOS). '

59

Copyright 2011, AHMCT Research Center, UC Davis

9.1.3 Telepresence Operating Testing Results

The raw data from the three telepresence tasks can be found in the appendix section.
The data from the three vehicle telepresence tasks were compared and the results are as
follows. The 3D vs. 2D vs. OD distinction was most clear in the precision bucket placement
task. The peripheral view comparison became clear by comparing the number of cones hit for
each treatment throughout both task one and task two. The pile height indicator in task two
showed no difference between 3D and 2D but did show a statistical difference between tests
done with no video system (0D) and with video systems (2D/3D).

1 Precision Bucket Placement

The precision bucket placement (task 1) proved to be a good indicator for the
comparison of the 3D, 2D and OD feedback front view. A graphical representation of the
absolute error for each of the feedback systems is depicted in figure 9.2.

(in)

Absolute error

Form of
Subject # 8 Feedback

Figure 9.2 Precision Bucket Placement With Various Video Feedback.

An analysis of variance using SAS statistical software was conducted on the data
displayed above. All three of the feedback systems were proven to be statistically different by
the Duncan test. The normalcy and F value assumptions for ANOVA were valid.

2 Gross Vehicle Navigation

60

Copyright 2011, AHMCT Research Center, UC Davis

The Gross Vehicle Navigation test (Task 2) proved to be a good indicator of the
comparison between the telepresence system with peripheral views and the system without
peripheral views. The second task did not show much of a distinction in stereoscopic versus
monoscopic front views. The utility of the peripheral views can be seen when comparing the
number of cones hit with the peripherals as to the number of cones hit without the peripherals.
Table 9.1 depicts the number of cones hit under the two differing components for all nine
drivers. Nine cones total were hit without the peripheral views while only one cones were hit
with the peripheral views.

Table 9.1 Number of cones hit with and without the peripheral views.

Subject # 1 2 131415 6 7 8 19

of Cones hit w/ Peripherals 0 0 0| O 0 0 1 0] 0

of Cones hit w/o Peripherals 1 0 2 1 1 1 1 1 1

3. Pile height

The pile height indicator during task two had very little difference between 3D and 2D
but did show a difference between the treatments with video feedback (Stereoscopic and
Monoscopic) and no video feedback (OD). See Figure 9.3.

32+
304
28
264
24-

22 L] L) L]
3D 2D oD

Pile Height
(in)

Feedback Systerr

Figure 9.3 Pile height under the three front view systems.

Both the Duncan and Tuckey tests in an ANOVA procedure showed statistical
difference between the tests run with the video feedback systems (Stereoscopic and
Monoscopic) and without (OD). The normalcy and F value assumptions for ANOVA were
valid.

During field tests, all of the test subjects indicated that both peripheral camera views
and the stereoscopic front view afforded the most useful telepresence information. The test

61

Copyright 2011, AHMCT Research Center, UC Davis

subjects indicated that they felt reasonably comfortable operating the large machine with such a
system.

9.2 Optimal Inter-Viewpoint Testing

The second set of tests were designed to empirically evaluate the theory that optimal
inter-viewpoint distance (IVD) is a function of the object distance for parallel camera
configuration. If a relationship exists then the clear objective would be to design a model for
the IVD spacing in the range of from ten to thirty feet such as is required for teleoperation of a
front loader.

9.2.1 IVD Test Set Up

A test site was constructed in order to test the theory for a relationship of IVD and
object distance. The driving station used in the telepresence testing was used for ease of test
set up. The Stereoscopic cameras were placed on a specially designed mount so that the IVD
could be altered at will. Precision machined spacing bars were created so that the cameras
could be spaced consistently at 2.5, 5.0, and 7.5 inches. In addition to the three stereoscopic
distances, the spacing of 0" was also included by turning off one of the cameras in the stereo
system, effectively creating a monoscopic system.

Three poles, each one foot tall and two inches in diameter were used. Two of the poles
spaced four feet apart were placed at any of five distances 10, 15, 20, 25, or 30 feet from the
stereoscopic cameras. The third pole was placed on a sliding car mechanism that could be slid
along a track in-between the two stationary poles. Figure 9.4 shows the test site with the
viewing station placed behind a barrier perpendicularly with respect to the stereoscopic
cameras and pole placement track.

A barrier was constructed so as to hide the base of each pole in order to eliminate depth
cues by shadows. In addition, the stereoscopic camera assembly was placed at the same
elevation (one foot high) as the poles so as to restrict any plan view from supplying depth cues.

9.2.2 Procedures

In order to eliminate the variance between people, a split plot design was used with the
subject (person) blocked. For each of six subjects, the sub-effect of object distance (10', 15',
20", 25' or 30") was randomly assigned within the main-effect of IVD (0", 2.5", 5.0", 7.5") .
Each subject repeated the entire set of tests three times for a total of 18 replicates. ~

62

Copyright 2011, AHMCT Research Center, UC Davis

Object Distance Stationary

Vertical Reference
Poles

el

C%:as
<

e ol I’

Pulley @ Vertical
Apparatus Reference Pole

on Sliding Car

Viewing Center

Visual Barriers

Figure 9.4 IVD Test Set Up.

During each testing replicate, the subject was informed how to maneuver the center pole
by pulling on the line connected through pulley system to the center pole sliding car. Each
person was given several minutes to become familiar with maneuvering the pole under each of
the camera IVD's. The center pole was placed at random starting positions roughly five feet
either in front or behind the stationary poles for each test. The operator was informed to place
the center pole directly in line with (in-between) the two outer reference poles. Once the
operator felt comfortable with the system, testing began. Each treatment was applied and the
error between the perceived center and the actual center of the two stationary poles was
recorded.

9.2.3 Optimal Inter-Viewpoint Results

A strong relationship between optimal camera inter-viewpoint distance and object
distance was found. The results also showed a strong absolute difference between monoscopic
and stereoscopic viewing.

1. vision error for each IVD setting varies with the object distance.

At the 2.5 inch IVD a dramatic and constant increase in error was observed from ten
feet object distance up to the maximum error occurring at the furthest object distance of thirty
feet. Figure 9.5 shows the increase in error as object distance increased.

63

Copyright 2011, AHMCT Research Center, UC Davis

50.00 -

—~ 40.00 4+

£

~ 30.004

S 20.00 4 -
10.00 4+ - I H

g 1§ b
0.00 i a]
0.00 10.00 20.00 30.00

Distance (ft)

Figure 9.5 2.5 inch IVD Error.

At the 5.0 inch IVD a constant error was observed from ten feet object distance up to
the furthest object distance of thirty feet. Figure 9.6 shows the relative constant error as object
distance increased.

50.00

40.00 -

(in.)

30.00 -

20.00 -

Error

10.00 A

|
n i
0.00 l ; i
0.00 10.00 20.00 30.00
Distance (ft)

Figure 9.6 5.0 inch IVD Error.

It should be noted here that a large majority of the test subjects complained of some eye strain
and general discomfort while viewing at the near object distances with both the 5.0 and 7.5
inch IVD. No discomfort was reported at object distances of greater than 15 feet with either the
5.00r 7.5 1VD."

64

Copyright 2011, AHMCT Research Center, UC Davis

The Tuckey test in an ANOVA procedure showed no statistically differing groups. The 10',
15', 20", 25' and 30' object distances were classified into one group. This grouping was found
only after one outlier was removed from the data set. The normalcy and F value assumptions
for ANOVA were valid.

The 7.5 inch IVD showed an interesting anomaly. Other than the ten foot object
distance, a dramatic and constant decrease in error from the 15 foot object distance down to the
minimum error occurring at the furthest object distance of thirty feet was observed. Figure 9.7
shows the decrease in error as object distance increased from 15' up to 30"

50.00 -

40.00

(in)

30.00 -
20.00 A

Error

10.00 1

0.00 i

0.00 10.00 20.00 30.00
Distance (ft)

|
PeioE =
 Jssl]
ol n

Figure 9.7 7.5 inch IVD Error.

In comparison with the three IVD's selected during stereoscopic viewing, zero camera
spacing or monoscopic viewing was a dramatic change. As has been shown by several
previous researchers, the benefit of stereoscopy over simple monoscopy can be seen in figure
9.8. The error variance for OD is much greater at all distances than for any of the stereoscopic
systems and the error generally increases with greater object distances.

The statistical data have indicated that there is some relationship between inter-
viewpoint distance and accuracy of perceived depth, it is obvious that the next step should be to
somehow quantify this relationship so as to be able to predict an “optimal” inter-viewpoint
distance for any particular object distance.

65

Copyright 2011, AHMCT Research Center, UC Davis °

=

50.00 -

[|
E 40.00 “T u . -
—]
30.00 + u g |
S 20.00 1 | u
e
w 10.00 4+ - l ,
B & r
0.00 g i

0.00 10.00 20.00 - 30.00
Distance (ft)

Figure 9.8 Monoscopic (0D) Error.
2. The optimum IVD for various object distances

Figure 9.9 depicts the average error for each of the IVD's versus the object distance. It can
been seen that the average error for all three of the IVD’s at small object distances shows small
error. As mentioned previously, however, both the 5.0 and 7.5” IVD’s caused discomfort to
the viewers for short object distances. For this reason of “Human Factors” both of the larger
spacings were considered non-optimal for the short viewing distances. The IVD of 2.5 inches
yielded good perceived depth accuracy without the user fatigue and nausea. The 2.5 inch IVD
was chosen as the optimal IVD for the short object distances.

Avg. Error (in)
» o

F-N

10 15 . 4] % 0
Object Distance (ft)

Figure 9.9 Avg. error of each IVD vs. Object Distance

As the object distances increased, the 2.5 inch IVD error had a constant trend towards
greater error. The 5.0 inch IVD error seemed to start with a high error, dip to a minimum, and
then start an upward trend as the object distance increased. This minimum error for the 5.0

66

Copyright 2011, AHMCT Research Center, UC Davis

inch IVD (which is lower error than the other IVD’s at 20 ft) indicates that the optimal distance
for the 5.0 IVD was at the 20 foot object distance.

For the higher object distances, both the 2.5 and 5.0 inch IVD’s display trends toward
increased error. The 7.5 inch IVD has a consistent trend towards decreased error with
increasing object distance. At the highest object distance of thirty feet, the 7.5 inch IVD had a
minimum value that was less than the 2.5 and 7.5 IVD’s. The 7.5 inch IVD actually yielded
errors at 30 feet comparable to the other IVD’s at their respective optimal object distances.

‘3. Linear relationship between optimized IVD and object distance

By extracting the optimized IVD vs. object distance for each of the individual IVD’s from
figure 9.9, one can determine the optimal IVD as a function of average object distance (Figure
9.10). If this linear relationship can be verified by further tests, it can be used as a guideline
for determining an optimum camera setting for a specified viewing (focusing) distance.

Optimized IVD vs. Object
Distance

Optimized IVD
(in)
O N O

0 10 20 30
Object Distance (ft)

Figure 9.10 Optimal IVD As A Function Of Object Distance.

67

Copyright 2011, AHMCT Research Center, UC Davis

Chapter 10

Conclusion - Telepresence

This phase of research project has further identified the benefits of incorporating
and optimizing a telepresence feedback system in order to artificially supply the operator
necessary information for a teleoperated Case 621 front end loader.

An improved video/audio feedback system was integrated into the teleoperated
front-end loader. The system is compact and low cost compare to the previous system
developed in Phase II. The system employed an ALCS stereo display system developed by
StereoGraphics Corp. for the front view and two LCD monitors by Sharp for side and rear
views.

Field test evaluations demonstrated usefulness of incorporating both side and rear
monoscopic peripheral views in addition to the stereoscopic front view. Peripheral visions
enable operators to identify obstacles to the sides and the rear of the vehicle which could be
dangerous to both the machine and the operator. The flicker-free stereoscopic front view
proved to allow for depth perception in the form of retinal disparity which led to more
precise control of the vehicle and bucket operations when compared to the monoscopic
system. Much energy and effort was placed into designing and constructing an ergonomic
and effective telepresence display unit. Consideration had to be given to allow for a direct
line of sight to the machine while still presenting multiple telepresence views to the operator
which would not interfere with the standard controls of the driving station. The system
which Allows for both multiple telepresence views and line-of-sight has greatly enhanced
the telepresence performance and increased operators’ confidence of teleoperating a heavy
duty equipment.

A relationship between optimal parallel stereo camera separation (Inter-Viewpoint
Distance, IVD) and object distance was determined. For the range of from 10 - 30 feet an
IVD of 5.0 inches was found to present large enough retinal disparity with minimal
distortion to allow for optimal depth perception cues as opposed to the previous standard of
2.5 inch IVD. The (IVD) investigation concludes that an optimum spacing versus range
can be determined. Future research may involve the design and construction of a system
which may be automatically or perhaps manually adjusted to optimize IVD for the task at
hand.

The use of telepresence feedback systems has proven to allow for improved
teleoperation of highway maintenance vehicles. Not only can such systems improve safety
to the operator but potentially could improve productivity by reducing the fatiguing nature
of the on board operation environment.

68

Copyright 2011, AHMCT Research Center, UC Davis

REFERENCES

Section I

1 Craig, John J., 1989. “Introduction to Robotics, Mechanics and Control.” 2nd.
Ed., Addison-Wesley Pub. Comp.

2 Dorf, Richard C., 1990. “Concise International Encyclopedia of Robotics,
Applications and Automation.” John Wiley & Sons, Inc.

3 Frank, Andrew A., “Automatic Control Systems for Legged Locomotion
Machines”, Electronics Sciences Laboratory, USC, 1968.

4 Kruetzfeldt, Keith J., “Remote Vehicle Telepresence & Three-Dimensional
Video Systems for Use in Heavy Earth Moving Equipment Operations”.
M.S. Thesis Paper, Univ. of CA, Davis, 1995.

5 McKerrow, Philip J., 1991. * Introduction to Robotics.” Addison-Wesley Pub.
Comp.

6 Nakamura, Yoshihiko, 1991. “Advanced Robotics, Redundancy and
Optimization.” Addison-Wesley Pub. Comp.

7 Nieminen, Turo J., Sampo, Mikko, 1993. “Unmanned Vehicles for Agricultural
and Off-Highway Applications”, SAE Paper 932475. '

8 Paul, Richard P., 1981. “ Robot Manipulators, Mathematics, Programming, and -
Control.” MIT Press, 1981. _

9 Paradigm Systems, “Paradigm Reference Manual”, Paradigm Systems, 1995.
10 Sun, S., Mehlscau, J., Smith, N., Kruetzfeldt, K., Chen, P., Frank, A., Chang,
T., 1994. “Teleoperated and Automated Maintenance Equipment Robotics (Phase
1).” AHMCT Research Report, UCD-SEP-94-09-30-01, 1994.
11 TERN, Inc. “A-Drive Technical Manual”, TERN, Inc., 1995.
12 TERN, Inc. “Sensor Watch Technical Manual”, TERN, Inc., 1994,

13 Wolovich, William A., 1987. “Robotics: Basic Analysis and Desigh.” Holt,
Reinhardt and Winston.

Section I

14. Blais, C., R. D. Lyons, 1988. “Telepresence: Enough is enough.” Teleoperation
and Control Proceedings of the International Symposium, IFS Publications,
Bedford, UK. pp. 217-226

69

Copyright 2011, AHMCT Research Center, UC Davis

15.

16.
17.

18.
19.

20.
21.
22.

23.

24,
25.
26.
27.
| 28.

29.

30.

Crooks, H., L. Freedman, P. Coan, 1975. “Television Systems For Remote
Manipulation.” Human Factors Society, ProceedingsHuman Factors Society 19th
Annual Meeting pp. 428-435.

Diner, B., D. Fender, 1993. “Human Engineering in Stereoscopic Viewing
Devices.” Plenum Press, New York.

Diner, D. B., M. Sydow, 1988. “ Stereo Depth Distortions in Teleoperation.” Jet
Propulsion Laboratory, NASA-CR-180242.

Dumbreck, A., E. Abel, 1988. “ A 3-D television system for remote handling.”
Teleoperation and Control Proceedings of the International Symposium, IFS
Publications, Bedford, UK. pp. 197-208

He, D., T. Xu, Y. Wang, H. Hua, Y. Hu, 1996. “A head mounted display system
for virtual reality.” SPIE Proceedings Display Devices and Systems. vol. 2892 pp.
126-128.

Hermann A., Vu-Han, V., Pirschel, H., 1985. “Occupant Protection in Earth-
Moving Machines”, Institute Automotive Engineering, Berlin, SAE #840202.

Jain, A. K., 1989. “Fundamentals of Digital Image Processing.” Prentice Hall,
Englewood Cliffs, NJ.

Jensen, J. F., J. Hill, 1996. “Advanced Telepresence Surgery System
Development.” Proceedings of Medicine Meets Virtual Reality 4 pp. 107-117.

Kruetzfeldt, K., 1995. “Remote Vehicle Telepresence & Three Dimensional Video
Systems for Use in Heavy Earth Moving Equipment Operations.” Master’s Thesis.
University of California Davis.

Lessard, J., J. Robert, P. Rondot, 1994. “Evaluatioﬁ of working techniques using
teleoperation for power line maintenance.” SPIE vol. 2351 pp. 88-98.

Lin, Q., C. Kuo, 1997. “Virtual Teleoperation of Underwater Robots.” IEEE 25
International Conference on Robotics and Automation vol. 2 pp. 1022-1027.

Lipton,L., 1989. “Selection Devices for Field-Sequential Stereoptic Displays: a
Brief History.” Stereographics Corporation, SPIE vol. 1457 pp. 274-281.

Lipton,L., 1990. “Stereo Vision on Your Workstation.” Mechanical Engineering
March, 1990 pp. 36-39.

Lipton, L., 1992. “The Future of Autostereoscopic Electronic Displays.”
StereoGraphics Corporation, SPIE vol. 1083 pp. 53-58.

Miller, D. P., D. E. McGovern, 1988. “A Laboratory simulation approach to the
evaluation of vision systems for teleoperated vehicles.” Teleoperation and Control
Proceedings of the International Symposium, IFS Publications, Bedford, UK. pp.
85-91

Pepper, R. L., 1986. “Human Factors in Remote Vehicle Control.” Naval Oceans
Systems Center, Human Factors Society, pp. 417-421.

70

Copyright 2011, AHMCT Research Center, UC Davis

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Pepper, R. L., R. E. Cole, 1983. “ The Influence of Camera Separation and Head
Movement on Perceptual Performance Under Direct and TV-Displayed
Conditions.” Naval Oceans Systems Center, Proceedings of the SID, vol. 24 pp.
73-80.

Pepper, R. L., P. K. Kaomea, 1988. “Teleoperation: Telepresence and
performance assessment.” .” Teleoperation and Control Proceedings of the
International Symposium, IFS Publications, Bedford, UK. pp. 227-234.

Pichler, C., K. Radermacher, W. Boeckmann, G. Rau, G. Jakse, 1996. “Three
Dimensional versus Two-Dimensional Video Endoscopy.” Proceedings of
Medicine Meets Virtual Reality 4 pp. 667-674.

Robinson, M., P. Shuttleworth, 1988 “The development of stereoscopic vision
systems for use in hazardous environments.” Teleoperation and Control
Proceedings of the International Symposium, IFS Publications, Bedford, UK.
pp. 191-195

Sharkey, P., D. Murray, 1997. “Feasibility of Using Eye Tracking to Increase
Resolution for Visual Telepresence.” 1997 IEEE International Conference on
Systems, Man and Cybernetics. v2. pp. 1078-1083.

Sheridan, T. B. , 1988 “Teleoperation Scorecard: Deja vu and really new.”
Teleoperation and Control Proceedings of the International Symposium, IFS
Publications, Bedford, UK. pp. 3-9

Shields, N., M. Kirkpatric, T. Malone, C. Huggins, G. Marshall, 1975. “Design
Parameters for a Stereoptic System Based on Direct Vision Depth Perception
Cues.” ProceedingsHuman Factors Society 19th Annual Meeting pp. 423-435.

Schweiwiller, P., V. Reading, A. Dumbreck, E. Abel, 1988. “The effects of
display flicker on task performance.” Teleoperation and Control Proceedings of
the International Symposium, IFS Publications, Bedford, UK. pp. 249-260.

Yamanoue, H., 1997. “The Relation Between Size Distortion and Shooting
Conditions for Stereoscopic Images” SMPTE Journal, April. pp225-232.
Yeh, Y., L. Silverstein, 1992. “Spatial Judgments with Monoscopic and

Stereoscopic Presentation of Perspective Displays.” University of Wisconsin,
Human Factors Society, pp. 583-599.

71

Copyright 2011, AHMCT Research Center, UC Davis

Appendix A. : LCC Time Based Program

/* LCC.C LOADER CONTROL PROGRAM WITH RATTLE FEATURE */
#include *stdio.h"
#include *conio.h"
#include *"dos.h"
#include *string.h"
#include “stdlib.h"
#include "c:\stebc3l\ve.h"
#include *c:\stebc3l\ad.h"
#include "c:\stebc3l\serl.h"
#define QUTPUT_INTERVAL 300
#define INPUT_INTERVAL 1000
#define SSR 0xcl0l /*High current digital outputs*/
#define SSR2 0xcl00 /*More high current digital outputs*/
#define THROTTLE_DAC 0 // D/A channel for the throttle
#define POWER_FAIL 10
/> Machine input bit values */
#define LBRAKE 2
#define LNEU 1
#define OIL_PRESSURE 4
#define AOK 8
#define LCC_RTD 0x10
#defin= LCC_TH 0x40
#define LCC_DH 0x20
#define FIRST_GEAR 0x10
/7 OCC Input Block bit wvalues
#define OCC_ENG_START 1
#define OCC_RTD 8
#define OCC_TH 4
#define OCC_DH 4
#define OCC_FLOAT 0x40
#define RATTLE 0x80
//#define OCC_VUP 8
//#define OCC_VDOWN 4
#define PLAYBACK 8
#define REC_STFIN 4
#define OCC_VRIGHT 2
#define OCC_VLEFT 1
#define GEAR_MASK * 0x30
#define GEAR_1 0x10
#define DIRECTION_MASK O0Oxc0
/* Transmission output bits) */
#define DIR_NEUTRAL 8
#define REMOTE_ENABLE 0x40
#define CLUTCH_ENGAGE 0x20
#define CLUTCH_DISENGAGE 0xdf
#define DIR_REV 4
#define DIRECTION 0x0e
/* SSR outrput bits */
#define BRAKE_O Ox£8
#define BRAKE_1 1
#define BRAKE_2 3
#define BRAKE_3 5
#define ARM_UP 8
#define ARM__DOWN 0x10
#define ARM_STOP Oxe?7
72

Copyright 2011, AHMCT Research Center, UC Davis

#define ARM_FLOAT 0x30

#define NO_FLOAT Oxdf
#define ROLL_BACK 0x40
#define DUMP 0x80
#define BUCKET_STOP Ox3f
/* SSR2 output bits */
#define - THROTTLE_POWER 4
#define STEER_RIGHT 1
#define STEER_LEFT 2
#define STEER_O Oxfc
#define EMERG_STOP 0x20
#define XMISSION_EN 0x40
#define ENG_START 0x80
#define VIDEO_SWITCH 8
#define NO_VIDEO_SWITCH Ox£7
/* Switching parameters for analog functions */
#define UP_SWITCH_0 200
#define DOWN_SWITCH_O 50
#define RB_SWITCH_O 200
#define DUMP_SWITCH_O 50
#define BRAKE_1_SWITCH 80
#define BRAKE_2_SWITCH 140
#define BRAKE_3_SWITCH 200

// serial port 1 variables
extern COM serl_com;
extern COM *cl=g&serl_com;
unsigned char serl_in_buf[1024],serl_out_buf[1024] ,mode,baud;

/* GOLBAL VARIABLES : */

int desired_steering,steering_angle,desired_brake,desired_throttle;

int arm_angle,bucket_angle,pf;

int desired_arm,desired_bucket,desired_gear,desired_direction;

int status_output,t,v;

float steering_slope=-.2623,steering_offset=607.44;

unsigned int i,input_timer,output_timer,aux_timer,rattle_timer,rtd;
unsigned int up_switch=UP_SWITCH_O0, down _switch=DOWN_SWITCH_O;

char input_buffer[30],input_block_buffer([31],output_block buffer(30];
char *output_msg="s0172\n\0";

char *out_buf_ptr_;

char *block_char_1;

unsigned char pt;

unsigned int input_count,block_count, loop_timer,max_loop_time;

unsigned int ssr,ssr2,xmission;

unsigned int rb_switch=RB_SWITCH_0,dump_switch=DUMP_SWITCH_0,brake_level=3;
unsigned int arm_height,desired_height,auto_arm,float_flag,rattle_flag;
int playkey,recordkey, inc,change, keychangel, keychange2, changeflag, incmax;
unsigned record,play, stoprecord, stopplay;

unsigned long int rec_counter,rec_counter_max;

unsigned rec(200}([7];

unsigned long state_counter[200];

void interrupt far tb_isr(void);
void power_fail(void);

int ser_inp(void);

void ser_out{void);

int decode_input(void);

main ()
{
- int s;
unsigned arm_sensor;
/* INITIALIZE VARIABLES */
ve_init();

ad_init();
outportb(0xcl03,0x80);

73

Copyright 2011, AHMCT Research Center, UC Davis

NN N

outportb(0xcl00,0x£ff);
outportb(0xcl0l,0x£ff);
for(i=1;i<8;i++)ad_hv(i,0);
portt_wr(8);

mode=0xc9;

baud=8; //9600 baud

s1l_init (mode,baud,serl_in_buf,1024,serl_out_buf,b1024,cl);
time_base_init{l);
time_base_interrupt(l,tb_isr);
ssr=0;

block_count=0;
block_char_l=&input_block_buffer(0};
input_timer=INPUT_INTERVAL;
output_timer=0OUTPUT_INTERVAL;
aux_timer=5000;

rattle_timer=0;

rattle_flag=0;
out_buf_ptr_=output_mnmsg;
pt=portt_rd();

BEGIN PROGRAM FUNCTIONS

/* Wait for receipt of ‘Idle’ message while continuing to
monitor Remote switch and send ‘Standby’ message. */

/*Set full brakes, transmission neutral, remote mode */

STANDBY :

outportb(SSR, ~BRAKE_3); //Apply full brakes
outportb{SSR2, ~ (XMISSION_EN));//Send power to xmission mux
xmission= (DIR_NEUTRAL|REMOTE_ENABLE); //Set xmission to neutral
for(i=1;i<8;i++)ad_hv{i, (xmission>>1i)&l);
/* Wait for receipt of ‘command’ message and send ‘system OK’' message. */
v=0;
while((v1=2) || (portt_rd()&LNEU}) {
/* return value of 2 indicates valid ‘command’ msg
Wait for ‘command msg and loader in neutral */
//if loader not in neutral, send ‘n’
pt=portt_rd();
if (portt_rd()&LNEU)strcpy (output_block_buffer, "nOn");
// if loader is in neutral, send ‘s’
else strcpyl{output_block buffer, "sO0s");
if(serhitl(cl))ser_inp();
if (block_count) {
v=decode_input();
block _count=0;
}
if (output_timer==0) {
ser_out();
output_timer=0UTPUT_INTERVAL;

}
pokeb (Ox£££0,0x11,0x40); //set up to read the A/D
pokeb (Ox£££0, 0x10, 0x£7) ;
//if lcc power has failed, execute power fail routine
ad_adl2 (POWER_FAIL) ;
/*if (ad_adl2 (POWER_FAIL)<800) {
power_fail();
goto STANDBY;
Y*/
ad_init ();
}

WAITING_FOR_OCC:
strepy (output_block_buffer, "r0r*);
ser_out();
output_timer=0UTPUT_INTERVAL;
while(vi=3) {
// Waiting for OCC to take control
if (portt_rd()&LNEU)goto STANDBY;
if{serhitl{(cl))ser_inp();
if (block_count) {
if ((v=decode_input ())==1)goto STANDBY;
block_count=0;
}

74

Copyright 2011, AHMCT Research Center, UC Davis

if (output_timer==0) {
ser_out();
output_timer=0UTPUT_INTERVAL;
}

/> BEGINNING OF REMOTE MODE */

REMOTE_ENTRY_POINT:

max_loop_time=0;

input_timer=INPUT_INTERVAL;

rtd=0;

arm_height=0;

auto_arm=0;

float_flag=0;

strepy (output_block_buffer, "rOr*);

output_block_buffer[3]=0x04d;

output_block_buffer([4]=0;

£=20;

/*Stay in remote mode until vehicle transmission lever is moved or
OCC commands a return to standby */

while (! (portt_xrd()&LNEU)) {
if{loop_timer>max_loop_time)max_loop_time=loop_timer:
loop_timer=0;
// set up to read a/d converter
pokeb (0Ox£££0,0x11, 0x40) ;
pokeb{0xff£0,0x10,0x£7) ;

ad_adl2(6);
steering_angle=ad_adl2(7); //read ch 6, convert ch 7
arm_angle=ad_adl2(8); //read ch 7, convert ch 8

bucket_angle=ad_adl2 (POWER_FAIL); //read ch 8, convert ch 10
/*if ((ad_adl2 (POWER_FAIL)<800)&& (! ssr2&ENG_START)) {

power_fail();

goto STANDBY;

}*/

// return to original configuration
ad_init(); .
steering_angle=steering_angle*steering_slope+steering_offset;
if (steering_angle<0)steering_angle=0;
if (steering_angle>255) steering_angle=255;

/* If valid ‘command’ block is not received within 500 msec, goto STANDBY */
if (input_timer==0)goto STANDRBY;

/* Send ’‘system OK' message every 400 msec */
if (output_timer==0) {
if (record==2) strcpy (output_block_buffer,"t0t"); //recording
mode
else if(play==2) strcpy(output_block buffer,"101");:
/ /playback mode
else strcpy(output_block_buffer,"r0r"); //standard remote
mode
output_timer=0UTPUT_INTERVAL;
ser_out();
}
/* when a new message is received from the field unit, call decode_input */
if (serhitl{cl))ser_inp{():
if (block_count) {
/*if it is a valid ’‘command’ message, reset input timer */
if ({v=decode_input ())==3)input_timer=INPUT_INTERVAL;
1f(v==10){ :
record=0;
- play=0;
rec_counter=0;
inc=0;
stopplay=0;
goto STANDBY; //Emergency Stop

block_count=0;

75

Copyright 2011, AHMCT Research Center, UC Davis

if({v==3) outportb(0xcl02,1);
else outportb(0xcl(02,2);

/* set gear and direction */

xmission=desired_gear+desired_direction|REMOTE_ENABLE;

/* disengage clutch if brake level > 1, otherwise engage it */

if (brake_level>1l)xmission&=CLUTCH_DISENGAGE;

else xmission|=CLUTCH_ENGAGE;

for(i=1;i<8;i++)ad_hv (i, {xmission>>i)&l); /* activate desired
transmission bits */

/* check to see if steering angle is within 8 unit of correct
value.
- If so, disable both steering solenoids, otherwise do nothing.
. */
s=steering_angle-desired_steering;
1f((s<8)&&(s5>-8))ssr2&=STEER_O;

// Disengage starter if engine is running
if (! (portt_rd()&0IL_PRESSURE)) ssx2&={~ENG_START) ;

// This section checks to see if the loader’s arm should be moving
£ // automatically.

if (auto_arm==2) {
if (arm_height<desired_height)ssr=(ssr&ARM_STOP) |ARM_UP;
else
if(arm_height>desired_height)ssr=(ssr&ARM_STOP) | ARM_DOWN;
else ssr&=ARM_STOP,auto_arm=0;
}
arm_sensor=(portt_rd{)&{LCC_TH|LCC_DH));
if (arm_sensor==LCC_TH) arm_height=1;
else if(arm_sensor==LCC_DH)arm_height=3;
else{
if (arm_height==1) {
if (ssr&ARM_UP)arm_height=2;
else if (ssr&ARM_DOWN)arm_height=0;

}
else if(arm_height==3){
if (ssr&ARM_UP)arm_height=4;
else if (ssr&ARM_DOWN)arm_height=2;
}

}
if{(float_flag)&&! (auto_arm)) ssr=(ssr&ARM_STOP) | ARM_FLOAT;
if (! (float_flagq))ssr&=NO_FLOAT;

if ((xmission&DIRECTION) ==DIR_REV)ssr2|=VIDEO_SWITCH;
else ssr2&=NO_VIDEO_SWITCH;

outportb(SSR,~ssr); /* activate SSR bits */
outportb(SSR2, ~ssr2};
for(i=z1l;i<8;i++)ad_hv{i, (xmission>>i)&l);

/* send desired throttle position to DAC channel 0 */
ad_dal2(0,desired_throttle);
outportb(0xcl02,0);

/* When one of the conditions necessary for remote opperation is not
met, return to the STANDBY mode. */

goto STANDBY;
}

/* This is the timebase counter interrupt service routine.
Each of the timer variables is decremented every millisecond until
a value of 0 is reached. */

void interrupt far tb_isr(void)

- {
if (input_timer)input_timer--;
if (output_timer)output_timer--;
if (aux_timer)aux_timer--;
if(rattle_timer)rattle_timer--;
if(v==3)loop_timer++;
if (rec_counter)rec_counter++;
fint () :

76

Copyright 2011, AHMCT Research Center, UC Davis

} .
void power_fail (void)
(¢
int pwr_fail=0;
char ob_save([20];
outportb(SSR2, ~EMERG_STOP); //apply full brakes and kill engine
outportb(SSR, O0xff};
strcpy (ob_save, output_block_buffer);//save last output block
strcpy (output_block_buffer, "pOp");//signal LCC power failure
ser_out();//send power fail message to occ
pokeb(0xf£ff0,0x11,0x40);//set up to read A/D
pokeb (0xf££0,0x10,0x£7);
while(pwr_£fail<1600) {
while(output_timer);//wait for output interval to expire
output__timer=0QUTPUT_INTERVAL;
ser_out();
ad_adl2 (POWER_FAIL) ;
pwr_fail=ad_adl2 (POWER_FAIL);
}
strcpy (output_block_buffer,ob_save); //restore output_block_buffer
ad_init();
}

/* This is the serial input service routine. When a character is received,
it is placed in the input buffer. When the received character is a
new line character, or the input buffer is full, the characters received up
to that point are transferred to the block buffer and the block count is
set to show the number of characters in the buffer. The input count is
then set to 0 and the process starts over. */

int ser_inp(void)
{
while(serhitl(cl)){
if({input_buffer [input_count]=getserl(cl))==13){

block_count=input_count+1l;
input_count=0;
input_buffer[block_count]=0;
strcpy (input_block _buffer, input_buffer);

else input_count++;
}
return block_count;

}

void ser_out(void)

{
for(i=0;i<3;i++)while (! (putserl (output_block_buffer{il),cl}))):
while(! (putserl{0x0d,cl)));
}

/* The decode_input() function evaluates the received input block and returns
a value as follows: 1=valid ’'keep alive’' message, 2=0CC asking for control,
3=valid control message received, -l=incorrect character count, -2=checksum
error, -3=first character was not a legal command, l0=Emergency Stop.

If the input block is a valid command message, the function decodes it and
sets the appropriate bits in the system control variables . */

int decode_input(void)
{
unisigned return_val=0,checksum=0,1i,ary(20];

if ((block_count!=3)&& (block_count!=21))return -1;
for(i=0;i<(block_count-2);i++)checksum+=input_block_buffer(i];
if ({checksum&Oxf) !=(input_block_buffer{i]&0x£f))return -2;
switch(input_block_buffer[0]){

case ‘e’: //Emergency stop

- return_val=10;

break;

case ‘i’': //Keep Alive message
if(block_count==3)return_val=1l;
else return_val=-3;
break;

case ’'p': // OCC asking for control
if{(block_count==3)return_val=2;

77

Copyright 2011, AHMCT Research Center, UC Davis

else return_val=-3;

break;

case ‘c’: //Command message
if(block_count!=21)return_val=-3;
else{

return_val=3;
for(i=1;i<19;i+=2)ary((i~
1) /2]=((input_block_buffer[i]&0xf)<<4)| (input_block_buffer[i+1}&0xf);

/* Playback section - to repeat recorded operator
information */

switch{play) {
case 0: /* No play action -- wait for button press
*/
if(ary[7]&0xf&PLAYBACK) play=l;
break;
case 1: /* Play button pressed, wait for release */
if(ary[7)&0xf&PLAYBACK) break;
else(
play=2;
rec_counter=l;
}
break:;
case 2: /* Enter playback mode */
/* Terminate playback i1f playback button
presses */
switch(stopplay) {

case 0O:
if{ary[7}&0x£&PLAYBACK)
stopplay=1; ’
break;
case 1:
if (ary(7)&0x£&PLAYBACK) break;
else{
play=0;
rec_counter=0;
inc=0;
stopplay=0;
}
break;
default:
stopplay=0;
}
/*Check to see if it is time to step forward in the
recorded

array of operartions */
if ({inc<incmax) && (state_counter[inc+l]l<=rec_counter)) inc++;

/*Substitute recorded control values*/

for{i=0;1i<=6;i++) arylil=reclinc)[i};

/*If counter has reached the maximum value from the
record action, then stop playback */
if (rec_counter>=rec_counter_max) {

play=0;

rec_counter=0;

inc=0;

}

break;
default:
play=0;
}

- /* set desired control actions */
desired_steering=ary(0];
desired_brake=ary([1l];
desired_throttle=ary(2];
if (desired_throttle>180)desired_throttle=180;
desired_arm=ary(3]:;
desired_bucket=ary(4]:

78

Copyright 2011, AHMCT Research Center, UC Davis

/*Record section - OCC movements are monitored and stored in
an array */
switch(record) {

case 0: /*No record action -- wait for button press
*/
if(ary[7]&0x£&REC_STFIN) record=1;
break;
case 1: /*record button pressed, wait for release
*/
if(ary{7)&0x£&REC_STFIN) break:;
else{
rec_counter=1l;
record=2;
inc=0;
//get initial wvalues
for(i=0;i<=6;1i++)
reclinc] [il=aryli];
state_counter{inc]=rec_counter;
}
break;
case 2: /*enter record mode */

/*see if record start/finish button has been
pressed a second time */
switch(stoprecord) {

case 0:
if(ary (7] &0xf&REC_STFIN)
stoprecord=l;
break;
- case 1:
= if(ary[7]&0xf&REC_STFIN)
break;)
else{
incmax=inc;
record=0;
rec_counter_max=rec_counter;
rec_counter=0;
inc=0;
stoprecord=0;
}
break;
default:

stoprecord=0;
} .

//initialize flag
changeflag=0;

: /*if the maximum number of allowable
operation changes
has been reached, terminate recording */
if(inc>200) {
record=0;
incmax=inc;
rec_counter_maxsrec_counter;
rec_counter=0;
inc=0;

else if(rec_counter!=0){
/*check to see if operator is
changing anything,
and if so, update the rec{][]
array*/
keychangel=abs (rec{inc] [5]~ary[5]);
keychange2=abs (rec[inc] (6] -ary[6]);
if ((keychangel>=4) | | (keychange2>=4))
changeflag=1;
. for(i=0;i<=6;i++){
change=abs (rec{inc] [i]~-
ary([il}l);
if (change>=20) changeflag=1l;
}
if (changeflag==1){
inc++;

79

o Copyright 2011, AHMCT Research Center, UC Davis

for(i=0;i<=6;1i++)
reclinc] [i)=aryl(i}; ‘

state_counter{inc]=rec_counter;
}
/*check to see if rec_counter has
reached max
allowable value, terminate if so */
if (rec_counter>=90000) {
record=0;
incmax=inc;
rec_counter_max=rec_counter;
rec_counter=0;
inc=0;

}
break;
default:
record=0;
}

if{(ary[5)&GEAR_MASK)==GEAR _1l)desired_gear=FIRST_GEAR;
else desired_gear=0;

// Check desired direction
desired_direction=(ary[5]&DIRECTION_MASK)>>5;

/* if neither FWD or REV selected, set direction NEUTRAL */
if(desired_direction==0)desired_direction=8;

/*Joystick function selection.

If the command value is between the switch points, the solenoids
are disabled. If the value exceeds one of the base switch points,
the switch point is moved 2 units toward the center to provide
hysteresis and the appropriate solenoid is activated. */

if (desired_arm>up_switch) {
up_switch=UP_SWITCH_0-10;
down_switch=DOWN_SWITCH_O;
ssr=(ssr&ARM_STOP) | ARM_UP;
auto_arm=0;
float_flag=0;
}

else if(desired_arm<down_switch) {
up_switch=UP_SWITCH_0;
down_switch=DOWN_SWITCH_0+10;
ssr=(sSr&ARM_STOP) | ARM_DOWN;
auto_arm=0;
float_£flag=0;
}

else(
up_switch=UP_SWITCH_O;
down_switch=DOWN_SWITCH_0O;
ssr&=ARM_STOP;
}

if (ary[6) &RATTLE) {
if({(rattle_timer)){
if (rattle_flag)ssr=ssr~0xc0;
else(
rattle_flag=1l;
ssr=(ssr&BUCKET_STOP) |ROLL_BACK;

rattle_timer=200;

}

}

else(
. rattle_£flag=0;

if (desired_bucket>rb_switch) {
rb_switch=RB_SWITCH_0~2;
dump_switch=DUMP_SWITCH_O;
ssr:(ssr&BUCKET_STOP)|ROLL_BACK;
rtd=0; /*terminate return to dig if enabled */
}

else if (desired_bucket<dump_switch) {

80

Copyright 2011, AHMCT Research Center, UC Davis

rb_switch=RB_SWITCH_O;
dump_switch=DUMP_SWITCH_0+2;
ssr={ssr&BUCKET_STOP) | DUMP;
rtd=0; /*terminate return to dig if enabled */
}
else{
rb_switch=RB_SWITCH_O;
dump_switch=DUMP_SWITCH_O;
ssr&=BUCKET_STOP;
}
}
switch(rtd) {
case 0: /*No return to dig action--wait for button press */
if(ary[5)&0CC_RTD)rtd=1;
break;
case 1: /*rtd button pressed, wait for release */
if(ary[5]&0CC_RTD)break;
/*determine if bucket should roll back or dump */
if{(portt_rd()&LCC_RTD))rtd=2; /*dump */
else rtd=3; /*roll back */

case 2: /*bucket must first dump to clear sensor and then roll
back */ .
if((portt_rd()&LCC_RTD))ssr:(ssr&BUCKET_STOP)IDUMP:
else rtd=3;
break;

case 3: /*bucket must roll back until sensor encountered */
if{(portt_rd()&LCC_RTD)) {
ssr&=BUCKET_STOP;
rtd=0; /* bucket in dig position */
}
else ssr=(ssr&BUCKET_STOP) |ROLL_BACK;
break;
default:
rtd=0;
ssr&=BUCKET_STOP;
}

switch(auto_arm) {
case 0: /*No movement--wait for TH or DH to be pressed */
if((ary[5]&0CC_TH) | (ary[6)&OCC_DH)) {
’ auto_arm=1;
if (ary[5]1&0OCC_TH) {
if (arm_height)desired_height=0;
else desired_height=1;

}
else if(arm_height<3)desired_height=3;
else desired_height=2;
}
break;
case 1: /*TH or DH pressed, wait for release */
if (! {(ary[5)&0CC_TH) | (ary (6] &0OCC_DH) })auto_arm=2;
break;
case 2: /*in motion */
break;
default:
auto_arm=0;
}
if((ary[6])&0OCC_FLOAT)&&! (float_flag)) {
float_flag=1;
if (arm_height) { .
desired_height=0;
auto_arm=2;
}
}

/*Brake Level Selection
The variable brake_level determines the current braking level.
The
. switching points of that level are adjusted so as to widen
the current level to provide hysteresis. If the value of
desired_brake is outside of one of these switch points, the
value of brake_level is incremented or decremented by 1.*/

switch(brake_level) {
case 3: /* Highest level, check lower switch point only. */

81

Copyright 2011, AHMCT Research Center, UC Davis

if (desired_brake< (BRAKE. 3_SWITCH-10}) {
brake_level=2; /*move to brake level 2 */
ssr=(sSSr&BRAKE_0) |BRAKE_2;
}
/* otherwise, remain in level 3 */
else ssr=(ssr&BRAKE_0) |BRAKE_ 3;
) break:
case 2:
if (desired_brake< (BRAKE_2_SWITCH-10)) {
brake_level=1;/* move down to level 1 */
ssr=(SSr&BRAKE_0) |BRAKE_1;
}
. else if(desired_brake>=(BRAKE_3_SWITCH+5)){
3 : brake_level=3; /* move up to level 3 */
ssr=(ssr&BRAKE_0) | BRAKE_3;
}
/* otherwise, remain in level 2 */
else ssr=(ssSr&BRAKE_0) |BRAKE_2;
break;
case 1:
if (desired_brake< (BRAKE_1_SWITCH-10)){
brake_level=0; /*move down to level 0 */
ssr=sSr&BRAKE_O;
}
else if(desired_brake>=(BRAKE_2_SWITCH+5)) {
brake_level=2;/* move up to level 2 */
ssr=(Ssr&BRAKE_() | BRAKE_2;
}
/* otherwise, remain in level 1 */
else ssr=(ssr&BRAKE_0) |BRAKE_1;
break;
case 0: /* no braking action at all */
if (desired_brake> (BRAKE_1_SWITCH+5)) {
brake_level=1l; /*move up to level 1 */
ssr=(sSsr&BRAKE_0) |BRAKE_1;
}
/* otherwise, remain in level 0 */
else ssr=ssr&BRAKE_0;
. break;
default:brake_level=3;
}

=4

/* Compute throttle position value */
desired_throttle=4095-(desired_throttle*6);
// send power to throttle actuator and transmission mux

$sr2 | =THROTTLE_POWER | XMISSION_EN;
/* Check engine start switch (transmission must be in neutral) */
if

((ary (6] &OCC_ENG_START) && (desired_direction==8)&& (portt_rd () &0IL_PRESSURE))ssr2=E

NG_START;

else ssr2&=(~ENG_START);

/* if desired steering differs from machine angle by 20 units
or more, activate appropriate steering solenoid. */
if((desired_steering-steering_angle)>20) {
ssr2=(sSsSr2&STEER_0) | STEER_RIGHT;
}
else if((desired_steering-steering_angle)<-20){
ssr2=(ssr2&STEER_0) | STEER_LEFT;
}
}
break;
default:return_val=-3;}
return return_val;

}

82

Copyright 2011, AHMCT Research Center, UC Davis

Appendix B: LCC Position Based Program

% /* LCC.C LOADER CONTROL PROGRAM WITH RATTLE FEATURE */
#include "stdioc.h"
#include “conio.h"
#include "dos.h"
#include *string.h"
#include . *stdlib.h"
#include "c:\stebc3l\ve.h"
#include "c:\stebc3l\ad.h"
#include "c:\stebc3l\serl.h*
#define OUTPUT_INTERVAL 300
#define INPUT_INTERVAL 1000
#define SSR 0xcl01 /*High current digital outputs*/
#define SSR2 0xcl00 /*More high current digital outputs*/
#define THROTTLE_DAC 0 // D/A channel for throttle control
#define POWER_FAIL 10 // A/D channel for power fail detect
/* Machine input bit values */
#define LNEU 1
#define LBRAKE 2
#define OIL_PRESSURE 4
#define AOK 8
#define LCC_RTD 0x10
#define LCC_TH 0x40
#define LCC_DH 0x20
#define FIRST_GEAR 0x10
// OCC Input Block bit wvalues
#define OCC_ENG_START 1
#define OCC_RTD 8
#define OCC_TH 4
#define OCC_DH 4
#define OCC_FLOAT 0x40
s, #define RATTLE 0x80
o #define REC_STFIN 4
#define . PLAYBACK 8
#define GEAR_MASK 0x30
#define GEAR_1 0x10
#define DIRECTION_MASK Oxc0
/* Transmission output bits */
#define DIR_REV 4
#define DIR_NEUTRAL 8
#define DIRECTION 0x0e
#define REMOTE_ENABLE 0x40
#define CLUTCH__ENGAGE 0x20
#define CLUTCH_DISENGAGE 0xdf
/* SSR output bits */
#define . BRAKE_O 0ox£8
#define BRAKE_1 1
#define . BRAKE_2 3
. #define BRAKE_3 5
#define ARM_UP 8
#define ARM_DOWN 0x10
) #define ARM_STOP Oxe7
#define ARM_FLOAT 0x30
#define NO_FLOAT Oxdf
#define ROLL_BACK 0x40
83

Copyright 2011, AHMCT Research Center, UC Davis

#define DUMP 0x80
#define BUCKET_STOP 0x3£
/* SSR2 output bits */
#define STEER_RIGHT 1
#define STEER_LEFT 2
#define STEER_O Oxfc
#define THROTTLE_POWER 4
#define VIDEO_SWITCH 8
#define NO_VIDEO_SWITCH Ox£f7
#define EMERG__STOP 0x20
#define XMISSION_EN 0x40
#define ENG_START 0x80
/* Sswitching parameters for analog functions */
#define UP_SWITCH_O 200
#define DOWN_SWITCH_O 50
#define RB_SWITCH_O 200
#define DUMP_SWITCH_O 50
#define BRAKE_1_SWITCH 80
#define BRAKE_2_SWITCH 140
#define BRAKE_3_SWITCH 200
// serial port 1 variables
extern COM serl_com;
extern COM *cl=&serl_com;
unsigned char serl_in_buf[1024},serl_out_buf[1024]) ,mode, baud;
/* GOLBAL VARIABLES */

int desired_steering,steering_angle,desired_brake,desired_throttle;
int arm_position,bucket_position,pf;
int desired_arm,desired_bucket,desired_gear,desired_direction;
int status_output,t,v;
o float steering_slope=-.2623,steering offset=607.44;
e unsigned int i,input_timer,output_timer,aux_timer,rattle_ timer,rtd;
unsigned int up_switch=UP_SWITCH_O, down_switch=DOWN_SWITCH_O;
char inputubuffer[BO],input_blockﬁbuffer[Bl],output_block.buffer[BO];
char *output_msg="s0172\n\0";
char *out_buf_ptr_;
char *block_char_1;
unsigned char pt: .
unsigned int input_count,block_count, loop_timer,max_loop_time;
unsigned int ssr,ssr2,xmission;
unsigned int rb_switch=RB_SWITCH_O,dump_switch=DUMP_SWITCH_O,brake_level=3;
unsigned int arm_height,desired_height,auto_arm, float_flag,rattle_flag;
int
check_steering,check_bucket,check_arm,arm_flag,bucket_flag,steering_flag,pause_fla
g;
int steering_trim_check,arm_trih_check,bucketﬁtrim_check;
int steering_trim_flag,arm_trim_flag,bucket_trim_ flag, trim flag;
int steering_trim,bucket_trim,arm_trim,templ, temp2,temp3;
int pause_checker_l,pause_checker_2,pause_checker_3;
unsigned record, stoprecord,play, stopplay,controls(20];
unsigned long rec_counter, check_counter,play_counter, pause_counter;
int state, final_state;
float bucket_slope=.0711,bucket_o£fset=33.137,arm_slope=.2037,arm_offset=284.74;
int rec[200)[6],rec_original[200]([6];

void interrupt far tb_isr{void);
void power_fail(void);
int ser_inp(void);
. void ser_out(void):;
int decode_input{void);

main()
{

int s;
unsigned arm_sensor;

84

Copyright 2011, AHMCT Research Center, UC Davis

/* INITIALIZE VARIABLES */

ve_init();

ad_init();

outportb(0xcl03,0x80);
outportb(0xcl00,0xff);
outportb(0xcl0l,0x£ff);
for(i=1;i<8;i++)ad_hv(i,0):
portt_wr(8);

mode=0xc9;

baud=8; //9600 baud
s1_init(mode,baud,serl_in_buf,1024,serl_out_buf,1024,cl);
time_base_init (1);
time_base_interrupt(l,tb_isr);
ssr=0;

block_count=0;
block_char_l=&input_block_buffer([0];
input_timer=INPUT_INTERVAL;
output_timer=0UTPUT_INTERVAL;
aux_timer=5000;

rattle_timer=0;

- rattle_flag=0;

o out_buf_ptr_=output_msg;
steering_trim_£flag=0;
arm_trim_£lag=0;
bucket_trim_£flag=0;
trim_£flag=0;
pause_flag=0;
pause_counter=0;
pt=portt_xrd();

/*
/
/ BEGIN PROGRAM FUNCTIONS
/
/* Wait for receipt cf ’'ldle’ message while continuing tc
monitor Remote switch and send ’‘Standby’ message. */
/*Set full brakes, transmission neutral, remote mode */
STANDBY :
outportb(SSR,~BRAKE_3); //Apply full brakes
outportb(SSR2, ~ (XMISSION_EN)) ;//Send power to xmission mux
xmission={DIR_NEUTRAL|REMOTE_ENABLE); //Set xmission te neutral
for(i=1;i<8;i++)ad_hv{i, (xmission>>i)&l);
/* Wait for receipt of ‘command’ message and send ’'system OK' message. */
v=0;
while((vi=2) || (portt_rd()&LNEU)) {
// return value of 2 indicates valid ‘command’ msg
// if loader not in neutral, send 'n’
pt=portt_rd{);
if (portt_rd()&LNEU)strcpy (output_block _buffer, "'nOn");
// if loader is in neutral, send ‘s’
else strcpy (output_block_buffer, "s0s"};
if (serhitl(cl))ser_inp();
if (block_count) {
v=decode_input();
block_count=0;
}
if (output_timer==0) {
ser_out(j;
output_timer=0UTPUT_INTERVAL;
}
. pokeb(0Oxf£f£f0,0x11,0x40); // set up to read A/D
4 pokeb(0OxXE££0,0x10,0x£7):;
// if lcc power has failed, execute power fail routine
ad_adl2 (POWER_FAIL) ;
/* if (ad_adl2 (POWER_FAIL)<800){
» power _fail();

goto STANDBY;
*/
ad_init();
: }
o WAITING_FOR_OCC:
strepy (output_block_buffer, "r0r");
ser_out();

85

Copyright 2011, AHMCT Research Center, UC Davis

output _timer=0UTPUT_INTERVAL;
while(vi=3){
// Waiting for OCC to take control
if(portt_rd()&LNEU)goto STANDBY;
if{serhitl(cl))ser_inp();
if (block_count) {
if {{v=decode_input())==1)goto STANDBY;
block_count=0;
}

if (output_timer==0) {
ser_out{});
output_timer=0UTPUT_INTERVAL;
}

/* BEGINNING OF REMOTE MODE */

REMOTE_ENTRY_POINT:
max_loop_time=0;
input_timer=INPUT_INTERVAL;
rtd=0;
arm_height=0;
auto_arm=0;
float_flag=0;
strepy (output_block_buffer, "r0r");
output_block_buffer [3]=0x0d;
output_block_buffer[4]=0;
t=20;
/*Stay in remote mode until vehicle transmission lever is moved or
OCC commands a return to standby */ '
while (! (portt_rd()&LNEU)) {
if (loop_timer>max_loop_ _time)max_loop_time=loop_timer;
loop_timer=0;
// set up to read a’/d converter
pokeb (0xEEF£0, 0x11,0x40);
pokeb{0Ox£ff£0,0x10,0x£f7);
ad_adl2(6);
steering_angle=zad_adl2(7); //read ch 6, convert ch 7
arm_position=ad_adl2(8); //read ch 7, convert ch 8
bucket_position=ad_adl2 (POWER_FAIL); //read ch 8, convert ch 10
Iad if ((ad_adl2 {POWER_FAIL)}<380C)&&{!ssxr2&ENG_START)) {
power_fail();
goto STANDBY;
} */
// return to original configuration
ad_init();

//convert raw steering data to 0-255 scale
steering_angle=steering_angle*steering_slope+steering offset;
if(steering_angle<0)steering_angle=0;
if (steering_angle>255)steering_angle=255;
//convert raw arm position data to 0-255 scale
arm_position=arm_position*arm_slope-arm_offset;
if(arm_position<0)arm_position=0;
if{arm_position>255)arm_position=255;

//convert raw bucket position data to 0-255 scale
if (bucket_position<0)bucket _position=0;
if (bucket_position>255)bucket_position=255;

/* If valid ‘command’ block is not received within 500 msec, goto STANDBY */
if (input_timer==0)goto STANDBY;

- /* Send ’'system OK’' message every 400 msec */
if (output_timer==0) {
if (record==2)strcpy(output_block_buffer, "t0t");//recording

mode
else if(play==2)strcpy(output_block buffer,"101");//playback
mode
else strcpy(output_block _buffer,"r0r"});//standard remote
mode

86

Copyright 2011, AHMCT Research Center, UC Davis

output_timer=0UTPUT_INTERVAL;
ser_out(});
}
/* when a new message is received from the field unit, call decode_input */
if(serhitl(cl))ser_inp();
if (block_count) {
/*if it is a valid ‘command’ message, reset input timer */
if ((v=decode_input())==3)input_timer=INPUT_INTERVAL;
if(v==10) {//Emergency Stop -reinitialize teachable functions
record=0;
play=0;
state=0;
stopplay=0;
goto STANDBY;
}
block_count=0;
}
if (v==3)outportb(0xcl02,1);
else outportb(0xcl02,2);
/* set gear and direction */
xmission=desired_gear+desired_direction|REMOTE_ENABLE;
/* disengage clutch if brake level > 1, otherwise engage it */
if (brake_level>1l)xmission&=CLUTCH_DISENGAGE;
else xmission|=CLUTCH_ENGAGE;
for(i=1;i<8;i++)ad_hv(i, {(xmission>>i)&l); /* activate desired
transmission bits */

/* check to see if steering angle is within 8 unit of correct
value.
If so, disable both steering solenoids, otherwise do nothing.
*
/
s=steering_angle-desired_steering;
if (({s<8) &&(s>-8))sSr2&=STEER_0;

// Disengage starter if engine is running
if (! (portt_rd()&OIL_PRESSURE))ssrZ&=(~ENG_START) ;

// This section checks to see if the loader’s arm should be moving
// automatically.

if (auto_arm==2) {
if (arm he1ght<de51red height)ssr=(ssr&ARM_STOP) | ARM_UP;
. else
if(arm"height>desired_height)ssré(ssr&ARM,STOP)IARM_DbWN;
else ssr&=ARM_STOP,auto_arm=0;
}
arm_sensor=(portt_rd{)&(LCC_TH|LCC_DH));
if (arm_sensor==LCC_TH)arm_height=1;
else if (arm_sensor==LCC_DH)arm_height=3;
else(
if (arm_height==1){
if (ssr&ARM_UP)arm_height=2;
else if (ssr&ARM_DOWN)arm_height=0;
X
else if (arm_height==3)
if (ssr&ARM_UP)arm_height=4;
else if(ssr&ARM_DOWN)arm_height=2;
}

}
if ((float_flag)&&! (auto_arm))ssr=(ssr&ARM_STOP) | ARM_FLOAT;
if (! (float_flag))ssr&=NO_FLOAT;

if { (xmission&DIRECTION)==DIR_REV)ssr2|=VIDEO_SWITCH;
else ssr2&=NO_VIDEO_SWITCH;

outportb(SSR,~ssr); /* activate SSR bits */
outportb(SSR2, ~ssr2);

for(i=1;i<8;i++)ad_hv(i, (xmission>>i)&l);

/* send desired throttle position to DAC channel 0 */
ad_dal2 (THROTTLE_DAC,desired_throttle);
outportb(0xcl02,0);

}

/* When one of the conditions necessary for remote opperatlon is not
met, return to the STANDBY mode. */

87

Copyright 2011, AHMCT Research Center, UC Davis

/*

goto STANDBY;
}

This is the timebase counter interrupt service routine.
Each of the timer variables is decremented every millisecond until
a value of 0 is reached. */

void interrupt far tb_isr{void)

{

if (input_timer)input_timer--;

if (output_timer)output_timer--;
if (aux_timer)aux_timer--;

if (rattle_timer)rattle_timer--;
if (v==3)loop_timer++;

if (rec_counter)rec_counter++;

if (play. counter)play._counter++;
if (pause_counter)pause_counter++;
fint();

void power_fail (void)

{

/*

int pwr_£fail=0;
char ob_save(20];
outportb(SSR2, ~EMERG_STOP); //Apply full brakes and kill engine
outportb (SSR, Oxff);
strcpy (ob_save, output_block_buffer);// save last output_block
strcpy (output_block_buffer,"pOp"); // Signal LCC power failiure
ser_out{); // Send power fail message to occ
pokeb (0xff£0,0x11,0x40);// set up to read A/D
pokeb (0xf££0,0x10,0x£7);
while{pwr_£fail<1600) {
while(output_timer); //wait for output interval to expire
output_timer=0UTPUT_INTERVAL;
ser_out();
ad_adl2 (POWER_FAIL) ;
pwr,_fail=ad_adl2 (POWER_FAIL);
strcpy toutput_block_buffer,ob_save); //restore output hlock kuffer
ad_init();
}

This is the serial input service routine. When a character is received,

it is placed in the input buffer. When the received character is a

new line character, or the input buffer is full, the characters received up
to that point are transferred to the block buffer and the block count is
set to show the number of characters in the buffer. The input count is
then set to 0 and the process starts over. */

int ser_inp(void)

{

while{serhitl(cl)){
if ((input_buffer{input_count)=getserl{cl))==13)({
block_count=input_count+1;
input_count=0;
input_buffer [block_count]=0;
strepy (input_block_buffer, input_buffer);
}

else input_count++;
}

return block_count;

}

void ser_out(void)

{

/*

for(i=0;i<3;i++)while (! (putserl (output_block buffer{i],cl})));
while (! (putserl(0x0d,cl)}):
}

The decode_input() function evaluates the received input block and returns
a value as follows: 1=valid ‘keep alive’ message, 2=0CC asking for control,
3=valid control message received, -l=incorrect character coun:, -2=checksum
error, -3=first character was not a legal command, l0=Emergency Stop.

.

88

Copyright 2011, AHMCT Research Center, UC Davis

If the input block is a valid command message, the function decodes it and
sets the appropriate bits in the system control variables . */

int decode_input (void)
{
unsigned return_val=0, checksum=0,1i,j,ary[20];
if ((block_count!=3)&&(block_count!=21))return -1;
for (i=0;i<(block_count-2) ;i++)checksum+=input_block_buffer[i];
if {{checksum&0xf) !'= (input_block_buffer[i]&0xf))return -2;
switch(input_block_buffer[0]){
case 'e’': //Emergency stop
return_val=10;
break;
case 'i’: //Keep Alive message
if (block_count==3)return_val=l;
else return_val=-3;
break;
case ‘p’': // OCC asking for control
if (block_count==3)return_val=2;
else return_val=-3;
break;
case ‘'c’: //Command message
if (block_count!=21)return_val=-3;
else(
return_val=3;
for(i=1;i<19;i+=2)aryl (i~
1)/2}=({input_block_buffer[i]&0xf)<<4) | (input_block buffer[i+1]&0xf);
" desired_steering=ary(0];
desired_brake=ary(l];
desired_throttle=ary[2];
desired_arm=ary({3];
desired_bucket=aryi{4];

/*Record Section - store component position data every
set time interval */
switch(record) {

case 0:/*No record action -- wait for button press*/
if(ary{7]&0xf&REC_STFIN)recoxd=1;
break;

case 1l:/*record button pressed, wait for release*/
if(ary[7]&0x£&REC_STFIN) break;

else(
record=2;
state=0;
//get intial state vector information
rec{state] [0]=steering_angle;
rec{state] [1]=arm_position;
recistate] [2]=bucket_position;
rec_counter=1;

}

break;

case 2: /*enter record mode*/
//see if record start/finish button has been
pressed
//a second time
switch{stoprecord) {
case 0:

if (ary[7]&0x£&REC_STFIN) stoprecord=1l;
break;
case 1:

if(ary[7)&0xf&REC_STFIN)
break;

else(

state++; //get final

state info

rec[state) [0} =steering _angle;
rec{state] [1]=arm_position;
rec(state] [2]=bucket_position;
final_state=state;

//save original
recording

89

Copyright 2011, AHMCT Research Center, UC Davis

for (i=0;i<=final_state;i++) {

for (j=0;3<=2;3++){

rec_original{il{jl=recl{i](j];
}

record=0;
rec_counter=0;
check_counter=1000;
state=0;
stoprecord=0;

}

break;

default:
stoprecord=0;
}

//update state vector array each second
oy if (rec_counter>=check_counter) {
. check_counter+=1000;
state++;
rec[state] [0]=steering. _angle;
rec[state] [1]=arm_position;
rec{state] [2]=bucket_position;
}
//stop record action if time limit is reached
if (rec_counter>=90000) {
state++; //get final state info
recistate] [0]l=steering_angle;
rec(state] [l}=arm_position;
rec{state) [2)=bucket_position;
record=0;
rec_counter=0;
check_counter=1000;
final_state=state;

state=0;
}
break;
default:
record=0;

}
if ((ary[5]&CEAR_MASK)==GEAR_l)desired gear=FIRST_GEAR;
else desired _gear=0;

// Check desired direction
desired_direction={ary{5]&DIRECTION_MASK}>>5;

/* if neither FWD or REV selected, set direction NEUTRAL */
if (desired_direction==0)desired_direction=8;

/*Playback Section - step loader through recorded state position
information*/
switch(play) {
case 0://No play action - wait for button press
if (ary17]&0x£&PLAYBACK)play=1;
break;
case 1://play button pressed, wait for release
if (ary[7)&0x£&PLAYBACK) break;
else{
play=2;
//get initial position of controls on 0OCC
controls(0}=128;
controls{3]=128;
controls{4]1=128;
}
- break;
case 2://enter playback mode
//check if terminate playback button has been
pressed
switch(stopplay){
case 0:
if(ary[7]&0xE£&PLAYBACK) stopplay=1;
break;

90

Copyright 2011, AHMCT Research Center, UC Davis

case 1:
if (ary[7)&0xf&PLAYBACK)break;

else{
play=0;
state=0;
stopplay=0;
//restore original recording
for(i=0;i<=final_state;i++){
for(j=0;3<=2;3++){
recfil}[j)=rec_original(il{3j};
}
}
}
break;

default:
stopplay=0;

}
play_counter=1l;
//determine if operator is attempting trim operation
steering_trim_check=abs(ary([0}-controls(0]);
if (steering_trim_check<=20)steering_trim_£flag=1;
else steering_trim_flag=0;

arm_trim_check=abs(ary(3)-controls(3]);
if (arm_trim_check>=20)arm_trim_flag=l;
else arm_trim_ flag=0;

bucket_trim_check=abs (ary[4]-controls[4]);
if (bucket_trim_check>=20)bucket_trim_flag=1;
else bucket_trim _flag=0;

//if operator has completed the trimming operation,
determine

//what was changed and modify downstream state data
accordingly

templ=!steering_trim_flag;

temp?=!arm_trim_flag;

tempi=!bucket_trim _flag;

if(trim flag&&templs&temp2&&temp3) {
trim_flag=0;
steering_trim=steering_angle-rec[state) (0];
arm_trim=arm_position-recistatej{l];
bucket_trim=bucket_position-rec(state] [2]};

for (i=state;i<=final_state-1;i++){
rec{i] [0l=rec{i] (0] +steering_trim;
rec(i] [1]l=rec[i] {1)+arm_trim;
rec(il(2)=rec[i][2]+bucket_trim;
if(rec[i]) [0]>255)rec(i] [0]}=255;
if(rec{i][1]1>255)rec{1][1]=255;
if(recli)(2]1>255)rec{i][2]=255;
if(rec[i)l[0)<0)rec{i} [0]=0;
if(rec[i}[1]1<0)rec[i]} [1]=0;
if(rec{i) [2]<0)rec(1]{2]=0;
}
play_counter=1;
}
//compare current component positions to desired
check_steering=rec[state] [0]-steering_angle;
check_arm=rec{state] {1)-arm_position;
check_bucket=rec[state] [2)-bucket_position;

//determine required arm movements, if necessary
if (check_arm>10){ //arm below desired
arm_£flag=0;
desired_arm=255;//move arm up

else if(check_arm<-10){ //arm above desired
arm_flag=0;
desired_arm=0; //move arm down
}
else(
arm_£flag=1;
desired_arm=127;//don’'t move arm

.

91

Copyright 2011, AHMCT Research Center, UC Davis

necessary

if (steering_trim_flag]

steer left

steexr right

playback

rec(state+1]{0]);
rec{state+1]1{1]));

rec[state+1][2]);

Copyright 2011, AHMCT Research Center, UC Davis

}

//determine required bucket movements, if

if {check_bucket>10)}{ //bucket below desired
bucket_flag=0;
desired_bucket=255;//move bucket up

}

else if(check_bucket<-10){ //bucket above desired
bucket_flag=0;
desired_bucket=0; //move bucket down

) i

else(
bucket_flag=1l;
desired_bucket=127;//don’t move bucket

}

//check if steering is in proper position

if ((check_steering>20) || (check_steering<-20)) {
steering_flag=0;
desired_steering=rec([state] [0];

}

else(
steering flag=1l;
desired_steerirg=rec(state] [0];

}

//suspend playback operation if operator is trimming

|arm_trim flag| |bucket_trim_flag) {
steering_flag=0;
arm_flag=0;
bucket_flag=0;
if(ary[01>170)desired_steering=255;//trim

elae if(aryl[0]}<90)desired_steering=0;//trim

else desired_steering=steering_angle;
desired_arm=ary[3];
desired_bucket=ary{4];
play_counter=0;
trim_£flag=1;
}
//terminate pause action if counter limit reached
if (pause_counter>=1000) pause_flag=0;
//pause playback operation if necessary
if (pause_flag) {
steering_flag=0;
arm_flag=0;
bucket_£flag=0;
play_counter=0;
}
//if all flags are on then the state vectcer has been
//satisfied and can be incremented
if (steering_flag&&bucket_flag&&arm_flag) !
//check to see if the next state is the same
//as the current state and if so, pause

//for the recorded time increment interval
pause_checker_l=abs(rec[state] [0]-

pause_checker_2=abs (rec[state] (1]~

pause_checker_3=abs (rec(state] [2]~

1f ((pause_checker_1<=5)&&
(pause_checker_2<=5) &&
(pause_checker_3<=5)) {
pause_flag=1;
pause_counter=1l;
}
state++;
play_counter=0;
if (state==(final_state+1)){
state=0;
play=0;
//restore original recording
for{i=0;i<=final_state;i++) {

92

for(3=0;3<=2;j++){

rec[i] [jl=rec_original(i][j];

}
}
//if timeout for current step is exceeded, terminate
//playback (exception for initial step)
if{state==0)play_counter=1l;
if (play_counter>10000) {
state=0;
play_counter=0;
play=0;
//restore original recording
for(i=0;i<=final _state;i++){
for(j=0;3<=2;j++}{
rec[ijfjl=rec_originallil(j];

}

}

break;
default:

play=0;

/*Joystick function selection.

If the command value is between the switch points, the solenoids
are disabled. If the value exceeds one of the base switch points,
the switch point is moved 2 units toward the center to provide
hysteresis and the appropriate solenoid is activated. =/

if (desired_arm>up_switch) {
up_switch=UP_SWITCH_0-10;
down_switch=DOWN_SWITCH_O;
ssr=(ssr&ARM_STOP) |ARM_UP;
auto_arm=0;
float_£flag=0:

5 else if(desired_arm<down_switch) {
o up_switch=UP_SWITCH_O;
down_switch=DOWN_SWITCH_0+10;
ssr={ssr&ARM_STOP) | ARM_DOWN;
auto_arm=0;
float flag=0;
}
else(
" up_switch=UP_SWITCH_O;
i down_switch=DOWN_SWITCH_0O;
ssr&=ARM_STOP;
}

if(ary[6]&RATTLE) {
if (! (rattle_timer)){
if(rattle_flag)ssr=ssr”~0xc0;
else(
rattle_flag=l;
ssr=(ssr&BUCKET_STOP)|ROLL_BACK;

rattle_timer=200;
}

}

else{

rattle_£flag=0;

if (desired_bucket>rb_switch) {
rb_switch=RB_SWITCH_0-2;
dump_switch=DUMP_SWITCH_O0;
ssr=(ssr&BUCKET_STOP)iROLL_BACK;
rtd=0; /*terminate return to dig if enabled */

else if(desired_bucket<dump_switch) {
rb_switch=RB_SWITCH_O;
dunp_switch=DUMP_SWITCH_0+2;
ssr= (ssr&BUCKET_STOP) | DUMP;
rtd=0; /*terminate return to dig if enabled */
}

else(

93

Copyright 2011, AHMCT Research Center, UC Davis

rb_switch=RB_SWITCH_O;
dump_switch=DUMP_SWITCH_O;
ssr&=BUCKET_STOP;
}
}
switch{(rtd) {
case 0: /*No return to dig action--wait for button press */
if{ary[5]&0CC_RTD)rtd=1;
break;
case 1: /*rtd button pressed, wait for release */
if (ary(5)&0CC_RTD)break;
/*determine if bucket should roll back or dump */
if ((portt_rd())&LCC_RTD)rtd=2; /*dump */
else rtd=3; /*roll back */
case 2: /*bucket must first dump to clear sensor and then roll

back */
if ((portt_rd())&LCC_RTD)ssr=(ssr&BUCKET_STOP) | DUMP;
else rtd=3;
break;
case 3: /*bucket must roll back until sensor encountered */

if{(portt_rd()&LCC_RTD)) {
ssr&=BUCKET_STOP;
rtd=0; /* bucket in dig position */
}
else ssr=(ssr&BUCKET_STOP) |ROLL_BACK;
break;
default:
rtd=0;
ssr&=BUCKET_STOP;
}

switch(auto_arm) {
case 0: /*No movement--wait for TH or DH to be pressed */
if ((ary[5]1&0CC_TH) | (ary [6]1&0CC_DH)) {
auto_arm=1;
if (axry{5]&0CC_TH) {
if(arm_height)desired_height=0;
else desired_height=1;

else if(arm_height<3)desired_height=3;
else desired_height=2;
}
break;
case 1: /*TH or DE pressed, wait for release */
if(! ((ary[5]&0CC_TH) | (ary[6]1&0CC_DH)))auto_arm=2;
break;
case 2: /*in motion */
break;
default:
auto_arm=0;

}
if((ary[6]1&0CC_FLOAT)&&! (float_flag)) {

float_flag=1l;

if (arm_height) { °
desired_height=0;
auto_arm=2;
}

}

/*Brake Level Selection
The variable brake_level determines the current braking level.
The
switching points of that level are adjusted so as to widen
the current level to provide hysteresis. If the value of
desired_brake is outside of one of these switch points, the
value of brake_level is incremented or decremented by 1.*/

- switch(brake_level) {
case 3: /* Highest level, check lower switch point only. */

if (desired_brake< (BRAKE_3_SWITCH-10)) {
brake_level=2; /*move to brake level 2 */
ssr=(ssr&BRAKE_0) |BRAKE_2,
}

/* otherwise, remain in level 3 */

else ssr=(ssr&BRAKE_O0) |BRAKE_3;

94

Copyright 2011, AHMCT Research Center, UC Davis

break;
case 2:
if (desired_brake< (BRAKE_2_SWITCH-10)) {
brake_level=1;/* move down to level 1 */
ssr=(ssr&BRAKE_0) | BRAKE_1;

}
else if(desired_brake>=(BRAKE_3_SWITCH+5)) {
brake_level=3; /* move up to level 3 */
ssr=(SSr&BRAKE_0) | BRAKE_3;
}
/* otherwise, remain in level 2 */
else ssr=(ssSr&BRAKE_0) |BRAKE_2;
 break;
case 1l:
if (desired_brake< (BRAKE_1_SWITCH-10)) {
brake_level=0; /*move down to level 0 */
ssr=ssr&BRAKE_O;
}
else if{desired_brake>=(BRAKE_2_SWITCH+5}){
brake_level=2;/* move up to level 2 */
ssr=(ssr&BRAKE_0) |BRAKE_2;
}
/* otherwise, remain in level 1 */
else ssr=(ssr&BRAKE_O) |BRAKE_1;
: break;)
case 0: /* no braking action at all */
if (desired_brake> (BRAKE_1_SWITCH+5)){
brake_level=1l; /*move up to level 1 */
ssr=(sSr&BRAKE_0) | BRAKE_1;
}
/* otherwise, remain in level 0 */
else ssr=ssr&BRAKE_O;
break;
default:brake_level=3;
}

/* Compute throttle pcsition value */
desired_throttle=4095-{desired_throttle*6);
// send power to throttle actuator and transmission mux
ssr2 | =THROTTLE_POWER | XMISSION_EN -
/* Check engine start switch {(transmission must be in neutral) */
if
((ary[6]&OCC_ENG_START)&&(desired_direction::B)&&(portt“rd()&OIL_PRESSURE))ssr2|=E
NG_START;
else ssr2&=(~ENG_START);

/* if desired steering differs from machine angle by 20 units
or more, activate appropriate steering solenoid. */
if ((desired_steering-steering_angle)>20){
ssr2=(ssr2&STEER_0)]STBER_RIGHT;
}
else if((desired_steering-steering_angle)<-20){
ssr2=(ssr2&STEER_O0) | STEER_LEFT;
) .
}
break;
default:return_val=-3;}
return return_val;

}

95

Copyright 2011, AHMCT Research Center, UC Davis

Appendix C : LCC Hybrid Program

/= LCC.C LOADER CONTROL PROGRAM WITH RATTLE FEATURE */
#include *stdio.h"
#include *conio.h"
#include "dos.h"
#include "string.h"
#include "stdlib.h"
#include "c:\stebc3l\ve.h"
#include *c:\stebc3l\ad.h"
#include *c:\stebc3l\serl.h"
#define OUTPUT_INTERVAL 300
#define INPUT_INTERVAL 1000
#define SSR Oxcl0l1 /*High current digital outputs*/
#define SSR2 0xcl00 /*More high current digital outputs*/
#define THROTTLE_DAC 0 // D/A channel for the throttle
#define POWER_FAIL 10
/* Machine input bit values */
#define LBRAKE 2
#define LNEU 1
#define OIL_PRESSURE 4
#define AOK 8
#define LCC_RTD 0x10
#define LCC_TH 0x40
#define LCC_DH 0x20
#define FIRST_GEAR 0x10
/7 OCC Input Block bit values
#define OCC_ENG_START 1
#define OCC_RTD 8
#define OCC_TH 4
#define OCC_DH 4
#define OCC_FLOAT 0x40
#define RATTLE 0x80
//#define OCC_VUP 8
//#define OCC_VDOWN 4
#define PLAYBACK 8
#define REC_STFIN 4
#define OCC_VRIGHT 2
#define OCC_VLEFT L1
#define GEAR_MASK .0x30
#define GEAR_1 0x10
#define DIRECTION_MASK O0xc0
/* Transmission output bits */
#define DIR_NEUTRAL 8
#define REMOTE_ ENABLE 0x40
#define CLUTCH_ENGAGE 0x20
#define CLUTCH_DISENGAGE O0xdf
#define DIR_REV 4
#define DIRECTION 0x0e
/* SSR output bits */
#define BRAKE_O Ox£f8
#define BRAKE_1 1
#define BRAKE_2 3
$define BRAKE_3 5
#define ARM_UP 8
#define ARM_DOWN 0x10
96

Copyright 2011, AHMCT Research Center, UC Davis

#define ARM_STOP Oxe7

#define ARM_FLOAT 0x30
#define NO_FLOAT Oxdf
#define ROLL_BACK 0x40
#define DUMP 0x80
#define BUCKET_STOP 0x3f
/* SSR2 output bits */
#define THROTTLE_POWER 4
#define STEER_RIGHT 1
#define STEER_LEFT 2
#define STEER_O Oxfc
#define EMERG_STOP 0x20
#define XMISSION_EN 0x40
#define ENG_START 0x80
#define VIDEO_SWITCH 8
#define NO_VIDEO_SWITCH Oxf7
/™ Switching parameters for analog functions */
#define UP_SWITCH_O 200
#define DOWN_SWITCH_O 50
#define RB_SWITCH_O 200
#define DUMP_SWITCH_O 50
#define BRAKE_1_SWITCH 80
#define BRAKE_2_SWITCH 140
#define BRAKE_3_SWITCH 200

// serial port 1 variables
extern COM serl_com;
extern COM *cl=&serl_com;
unsigned char serl_in_buf{1024],serl_out_buf [1024] mode, baud;

/* GOLBAL VARIABLES */

int desired_steering,steering_angle,desired_krake,desired_throttle,pf;

int desired_arm,desired_bucket,desired_gear,desired_direction;

int status_output,t,v;

float steering_slope=-.2623,steering_offset=607.44;

unsigned int i,input_timer,output_timer,aux_timer,rattle_timer,rtd;

unsigned int up_switch=UP_SWITCK_O, down_switch=DOWN_SWITCH_O;

char input_buffer(30],input_block_buffer(31],output_block buffer([30];

char *output_msg="s0172\n\0";

char *out_buf_ptr_;

char *block_char_1;

unsigned char pt;

unsigned int input_count,block_count, loop_timer,max_loop_time;

unsigned int ssr,ssr2,xmission;

unsigned int rb_switch=RB_SWITCH_0, dump_switch=DUMP_SWITCH_O,brake_level=3;
unsigned int arm_height,desired_height,auto_arm, floatz_flag,rattle flag;

int inc,change, keychangel, keychange2, changeflag, incmax;

unsigned record,play,stoprecord, stopplay;

unsigned long int rec_counter,rec_counter_max;

float bucket_slope:.O7ll,bucket_offset=33.137,arm_slope=.2037,arm_offset=284.74;
int check_bucket,check_arm,check_steering,arm_flag,bucket_flag, steering_£flag:;
int
initial_condition,arm_position,bucket_position,init_bucket,init_arm, init_steering;
int exit_initial_condition,steering_trim_flag,initial_angle,new_angle;
unsigned rec(200](7];

unsigned long state_counter[200];

void interrupt far tb_isr(veoid);
void power_fail(void);
int ser_inp(void);
. void ser_out({void);
int decode._input (void);

X main{)
g {
int s;
unsigned arm_sensor;

97

Copyright 2011, AHMCT Research Center, UC Davis

/* INITIALIZE VARIABLES */

ve_init();
ad_init();

outportb(0xcl03,
outportb{0xcl00,
outportb(0xcl01l,

0x80}) ;
Ox£ff);
Ox£ff);

for(i=1;i<8;i++)ad_hv(i,0);

portt_wr{8);
mode=0xc9;
baud=8;

/79600 baud

sl#init(mode,baud,serl_in_buf,1024,serl-out_buf,1024,01);
time_base_init(1l);
time_base_interrupt(l,tb_isr);

ssr=0;
block_count=0;

block_char_l=&input_block_buffer(0];
input_timer=INPUT_INTERVAL;
output_timer=0OUTPUT_INTERVAL;

aux_timer=5000;
rattle_timer=0;
rattle_flag=0;

out_buf_ptr_ =soutput_msg;
initial_condition=0;
exit_initial_condition=l;

pt=portt_rd();

/* Wait for receipt of ’'Idle’ message while continuing to
monitor Remote switch and send ‘Standby’ message. */

/*Set full brakes, transmission neutral, remote mode */

(SSR, ~BRAKE_3); //Apply full brakes

/*
/
/ BEGIN PROGRAM FUNCTIONS
/
STANDBY:
outportb
outportb

(SSR2, ~ (XMISSION_EN));//Send power to xmission mux

xmission:(DIR_NEUTRAL|REMOTE#ENABLE); //Set xmission to neutral
for (i=1;i<8;i++)ad_hv(i, (xmission>>i)&l);
/* Wait for receipt of ‘command’ message and send 'system OK’' message.

v=0;
while((v

1=2) | | (portt_rd()&LNEU)) {

/* return value of 2 indicates valid ’‘command’ msg
Wait for ‘command msg and loader in neutral */
//if loader not in neutral, send ‘n’

WAITING_FOR_OCC:

pt=portt_rd();
if (portt_rd()&LNEU)strepy (output_block buffer, "n0n");
// if loader is in neutral, send ‘s’
else strcpy(output_block_buffer,"s0s"};
if (serhitl{cl))ser_inp{);
if(block_count){
v=decode_input () ;
block_count=0;
}
if (output_timer==0) {
ser_out();
output_timer=0UTPUT_INTERVAL;

}
pokeb (0xf££0,0x11,0x40); //set up to read the A/D
pokeb (Ox£££0,0x10,0x£7);
//if lcc power has failed, execute power fail routine
ad_adl2 (POWER_FAIL) ;
/*if (ad_adl2 (POWER_FAIL)<800) {

power_faill();

goto STANDBY;

Y/
ad_init{);

}

strcpy (output_block_buffer, “r0r");

ser_out();

output_timer=0UTPUT_INTERVAL;

while(vi=3){

Copyright 2011, AHMCT Research Center, UC Davis

98

* /

// Waiting for OCC to take control .

if(portt_rd()&LNEU)goto STANDBY;

if (serhitl(cl))ser_inp();

if (block_count) {
if ((v=decode_input ())==1)goto STANDBY;
block_count=0;
}

if (output_timer==0)
ser_out();
output__timer=0UTPUT_INTERVAL;
}

/* BEGINNING OF REMOTE MODE */

REMOTE_ENTRY_POINT:
max_loop_time=0;
input_timer=INPUT_INTERVAL;
rtd=0;
arm_height=0;
auto_arm=0;
float_flag=0;
strepy (output_block_buffer, "rOr"};
output_block_buffer[3]=0x0d4;
output_block_buffer([4]=0;
t=20;
/*Stay in remote mode until vehicle transmission lever is moved or
OCC commands a return to standby */
while (1) {
if (loop_timer>max_loop_time)mex_loop_time=loop_timer;
loop_timer=0;
// set up to read a/d converter
pokeb (0Ox£££0,0x11,0x40);
pokeb (0xf££0, 0x20,0x£7) ;
ad_adl2(6);
. steering_angle=ad_adl2(7); //read ch 6, convert ch 7
arm_position=ad_adl2({8); //read ch 7, convert ch 8
bucket_position=ad_adl2 (POWER_FAIL}; //read ch 8, couvert ch 10
/*if ((ad_adl2 (POWER_FAIL)<800) && (! sSr2&ENG_START)) {
power_fail();
goto STANDBY;
Y*/
// return to original configuration
ad_init();
//scale steering data
steering_angle=steering_angle*steering_slope+steering_offset;
if (steering_angle<0)steering_angle=0;
if (steering_angle>255) steering_angle=255;
//scale bucket data
bucket_position=bucket_position*bucket_slope-bucket_offset;
if {(bucket_position<0)bucket_position=0;
if (bucket_position>255)bucket_position=255;
//scale arm data .
arm_position=arm_position*arm_slope-arm_offset;
if (arm_position<0)arm_position=0;
if (arm_position>255)arm _position=255;

/* If valid ‘command’ block is not received within 500 msec, goto STANDBY */
if{input_timer==0)goto STANDBY;

/* Send ’'system OK' message every 400 msec */
. if (output_timer==0) {
. if (record==2) strcpy{output_block _buffer,"t0t"); //recording

mode

else if (play==2) strcpy(output_block buffer,"101");
//playback mode

else strcpy(output_block_buffer,"rOr"); //standard remote
mode

¢ output_timer=0QUTPUT_INTERVAL;
ser_out();

99

Copyright 2011, AHMCT Research Center, UC Davis

}
/* when a new message is received from the field unit, call decode_input */
if(serhitl(cl))ser_inp();
if (block_count) {
// set bits 0 and 1 of port3 for timing purposes
outportb(0xcl02,3);
/*if it is a valid ‘command’ message, reset input timer */
if ({v=decode_input ())==3)input_timer=INPUT_INTERVAL;
if(v==10) {
record=0;
initial_condition=0;
play=0;
) rec_counter=0;
y inc=0;
stopplay=0;
goto STANDBY; //Emergency Stop
}
block_count=0;
}
//time check section
if{v==3) cutportb(0xcl02,1); // if valid cmd, turn off bit 1
else outportb(0xcl02,0); // if not valid, turn off both bits
/7

/* set gear and direction */
xmission=desired_gear+desired_direction|REMOTE_ENABLE;

/* disengage clutch if brake level > 1, otherwise engage it = */
if (brake_level>1l)xmission&=CLUTCH_DISENGAGE;

else xmission]|=CLUTCH_ENGAGE;

. for(i=1;i<8;i++)ad_hv(i, (xmission>>i)&1l); /* activate desired
. _) transmission bits */

/* check to see if steering angle is within 8 unit of correct
value.
If so, disable both steering solenoids, otherwise do nothing.
*/
s=steering_angle-desired_steering:;
if({s<B)&&(s5>-8) }ssr2&=STEER_O(;

// Disengage starter if engine is running
if (! (portt_rd()&0IL_PRESSURE)) ssr2&=(~ENG_S5TART) ;

// This section checks to see if the loader’s arm should be moving
// automatically.

if({auto_arm==2) {
if (arm_height<desired_height)ssr=(ssr&ARM_STOP) | ARM_UP;
else
if(arm_height>desired_height)ssr= (ssr&ARM_STOP) | ARM_DOWN;
else ssr&=ARM_STOP.auto_arm=0;
}
arm_sensor=(portt_rd()&{(LCC_TH|LCC_DH));
if (arm_sensor==LCC_TH)arm_height=1;
else if(arm_sensor==LCC_DH)arm_height=3;
else(
if(arm_height==1) {
if (ssr&ARM_UP)arm_height=2;
else if(ssr&ARM_DOWN)arm_height=0;
}
else if{arm_height==3) {
if (ssr&ARM_UP)arm_height=4;
else if (ssr&ARM_DOWN)arm_height=2;
}

}
if((float_flag)&&! (auto_arm))ssr=(ssr&ARM_STOP) | ARM_FLOAT;
if (! (float_flag))ssr&=NO_FLOAT;

if((xmission&DIRECTION)==DIR_REV)SSI2|=VIDEO_SWITCH;
. else ssr2&=NO_VIDEO_SWITCH;

outportb(SSR,~ssr); /* activate SSR bits */
outportb(SSR2, ~ssr2);
for(i=1;i<8;i++)ad_hv (i, (xmission>>i)&l);

/* send desired throttle position to DAC channel 0 */
ad_dal2 (0,desired_throttle);

100

Copyright 2011, AHMCT Research Center, UC Davis

outportb{0xcl102,0); // turn off timing bit 0
}

/* When one of the conditions necessary for remote opperation is not
met, return to the STANDBY mode. */

goto STANDBY;
}

/* This is the timebase counter interrupt service routine.
Each of the timer variables is decremented every millisecond until
a value of 0 is reached. */

void interrupt far tb_isr(void)

{.
if (input_timer)input_timer--;
if (output_timer)output_timer--;
if (aux_timer)aux_timer--;
if(rattle_timer)rattle_timer--;

if(v==3)loop_timer++;
if (rec_counter)rec_counter++;
fint ();

}
void power_fail (void)
{
int pwr_fail=0;
char ob_save(20]; :
outportb(SSR2, ~EMERG_STOP); //apply full brakes and kill engine
outportb(SSR,0xf£f);
strcpy (ob_save, output_block_buffer);//save last output block
strepy (output_block_buffer, “pOp®);//signal LCC power failure
ser_out();//send power fail message to occ
pokeb (Ox£££0,0x11,0x40);//set up to read A/D
pokeb (0xf££0,0x10,0x£7);
while(pwr_£fail<1600) {
while{output_timer);//wait for output interval to expire
output_timer=0UTPUT _INTERVAL;
ser_out () ;
ad_adl2 (POWER_FLIL};
pwr_fail=ad_adl2 (POWER_FAIL);
}
strepy (output_block _buffer,ob_save); //restore output_block _buffer
ad_init(); ’
}

/* This is the serial input service routine. When a character is received,
it is placed in the input buffer. When the received character is a
new line character, or the input buffer is full, the characters received up
to that point are transferred to the block buffer and the block count is
set to show the number of characters in the buffer. The input count is
then set to 0 and the process starts over. */
int ser_inp(void) ‘
{
while(serhitl(cl)){
if ((input_buffer{input_count}=getserl{cl)j==13){
block_count=input_count+1;
input_count:=0;
input_buffer[block_count]=0;
strepy (input_block_buffer, input_buffer) ;
) ;

else input_count++;
}
return block_count;

}

void ser_out(void)
L {
for(i=0;i<3;i++)while (! (putserl(output_block buffer{i],cl)));
while (! (putserl (0x0d,cl)));
}

/* The decode_input() function evaluates the received input block and returns
a value as follows: 1l=valid ‘keep alive’ message, 2=0CC asking for control,

101

Copyright 2011, AHMCT Research Center, UC Davis

3=valid control message received, -l=incorrect character count, -2=checksum
error, -3=first character was not a legal command, l0=Emergency Stop.

If the input block is a valid command message, the function decodes it and
sets the appropriate bits in the system control variables . */

int decode_input (void)
{
unsigned return_val=0,checksum=0,1i,ary(20];

if ((block_count!=3)&&(block_count!=21))return -1;
for (i=0;i<(block_count-2);i++)checksum+=input_block_buffer([i};
if { (checksum&0Oxf) !={input_block_buffer[i]&0xf))return -2;
switch{input_block_buffer[0]){
case ‘e’: /[//Emergency stop
return_val=10;
break;
case ‘'i’': //Keep Alive message
if{(block_count==3)return_val=l;
else return_val=-3;
break;
case ‘p’': // OCC asking for control
if{block_count==3)return_val=2;
else return_val=-3;
break;
case ’‘c’: //Command message
if(block_counti=21)return_val=-3;
else{

return_val=3;
for{i=1;i<19;i+=2)aryl[{i-
o 1) /2}={(input_block_buffer (i) &0xf)<<4) | (input_block buffer [i+1])&0xf);

/* Playback section -~ to repeat recorded operator
information */
exit_initial_condition=1;
switch(play){
case (G: /* No play action -- wait for button press
*/
if{ary{7]&0x£&PLAYBACK) play=1l:
break;
case 1: /* Play button pressed, wait for release */
if {ary(7]1&0xf&PLAYBACK) break;

else(
play=2;
initial_condition=1;
//rec_counter=1;

}

break;

case 2: [/* Enter playback mode */
/* Terminate playback if playback button
presses */
switch(stopplay) {
case 0:
if(ary[7)&0xf&PLAYBACK)

stopplay=1;
break;
case 1:
if(ary[71&0x£&PLAYBACK) break;
else(
play=0;
rec_counter=0;
inc=0;
stopplay=0;
initial_condition=0;
}
break;
default:
. stopplay=0;

/*if playback is just starting, initialize
the machine

components to their proper positions*/

if(initial_condition) {

102

Copyright 2011, AHMCT Research Center, UC Davis

check_steering=init_steering-
steering_angle;

check_arm=init_arm-arm_position;

check_bucket=init_bucket-
bucket_position;

//determine required arm movements,
if necessary
if (check_arm>10){ //arm below desired
arn_£flag=0;
desired_arm=255; //move arm up

}
: else if(check_arm<-10){ //arm above
; desired
arm_£flag=0;
desired_arm=0; //move arm down
}
elsef
arm_flag=1;
desired_arm=127; //don’'t move
arm
7y }

//determine required bucket
movements, if necessary
if (check_bucket<-10) {
bucket_flag=0;
desired_bucket=255; //roll
back bucket
}
. else if(check_bucket>10) {
w/ bucket_flag=0;
//move bucket if it does not
conflict with
//the current arm position

if ((arm_position<50)&&{arm_flag==0)) desired _bucket=127;
else desired_bucket=0; /,;dump
bucket
}
else/

bucket_flag=1l;
desired_bucket=127; //don’'t
move bucket

//check if steering is in proper
position

if{ (check_steering>20)]| (check_steering<-20)){
steering_flag=0;
desired_steering=rec(inc] [C];
}
else{
steering_flag=1;
desired_steering=rec{inc] [0];

//set throttle and brake to zero
during initial positioning
desired_throttle=0;
desired_brake=0;
//if initial positions are satisfied,
start playback
//and counter

if (steering_flag&&bucket_flag&&arm_flag) {
initial_condition=0;
exit_initial_condition=0;
rec_counter=1;

else{
exit_initial_condition=1;
//perform trimming operation, or
normal playback

//trim steering
if(aryl[0]1>167){

103

Copyright 2011, AHMCT Research Center, UC Davis

ary(0])=255; //steer right
//get steering angle at
beginning of trim operation
initial_angle=steering_angle;
//steering_trim_flag=1;

}
else if(ary(0]}<87){
ary[0]}=0; //steer left
initial_angle=steering_angle;
//steering_trim_flag=1;

elsef{
//if a trimming operation was

performed, get the
//new steering angle and
change downstream state
//data accordingly
//if (steering_trim_flag) {

new_angle=steering_angle; /"
for (i=inc;i<=incmax;i++){ "
rec[i][0]l=rec{i] {0]-initial_angle+new_angle; /Y
if(rec{i] {0]1>510) recl[i][0]}=0; Y
if((rec(i](0]>255)&&(rec[i][0]<=510})) rec[i][é{:ZSS;
jj ;teering_trim_flagzo;

17}
ary(0Ol=reciincliO}; //use
. recoxrded value
}

//trim brakes - use trim value only
if greater than
//recorded value

if(ary(l)}<{(rec[inc] {1]+10})aryl(ll=rec(inc] (1];

//trim throttle - use trim valve only
if greater than

//recorded value

if(ary[2]<(reclinc}{2]1+10))ary(2]=reclinc] [2];
//trim arm
i if(ary[3]1>147) ary([3])=255; //arm up
else if(ary{3]}<107) ary(3]}=0; //arm
down .
else ary[3l=reclinc] (3]); //use
recorded arm value
//trim bucket
if(ary(41>147) ary(4]1=255; //roll
back bucket
else if(ary(4]1<107) ary[4])=0; //dump
bucket
else aryl4)=reclincl(4]; //use
recorded bucket value
//set desired direction and
keypresses to recorded values
ary(S)=rec{inc} (5};
ary(6])=reclinc] {6];
/*Check to see if it is time to step
forward in the recorded ’
array of operations */

if { (inc<incmax)&& (state_counter|inc+l]<=rec_counter)) inc++;

. /*If counter has reached the maximum
value from the
record action, then stop playback */
if (rec_counter>=rec_counter_max) {
play=0;
rec_counter=0;
inc=0;

104

Copyright 2011, AHMCT Research Center, UC Davis

4

}

break;
default:
play=0;
}

/* set desired control actions =~/

if((linitial_condition)&&(exit_initial_condition)) {
desired_steering=ary(0];
desired_brake=ary(l];
desired_throttle=ary(2];
if (desired_throttle>180)desired_throttle=180;
desired_arm=ary[3];
desired_bucket=ary([4];

}

/*Record section - OCC movements are monitored and stored in
an array */
switch{record) {

case 0: /*No record action -- wait for button press
*
/
if(ary[7])&0x£&REC_STFIN} record=l;
break;
case 1: /*record button pressed, wait for release
*/
if(ary{7)&0xf&REC_STFIN) break:;
else{
//get initial position information
init_steering=steering_angle;
init_arm=arm_position;
init_bucket=bucket_positiocn;
rac_counter=l;
record=z;
inc=0;

. //get initial values
for(i=0;1i<=6;i++) reclinc] (il=aryl[i};
state_counter|inc]=rec_counter;

}
break;

case 2: /*enter record mode */
/*see if record start/finish button has been
pressed a second time */
switch(stoprecord) {

" case 0:
if(ary{7]&0x£&REC_STFIN)
stoprecord=1;
break;
case 1l:
if(ary(7]&0x£&REC_STFIN)
break;
else(
incmax=inc;
record=0;
rec_counter_max=rec_counter;
rec_counter=0;
inc=0;
stoprecord=0;
}
break;
default:

stoprecord=0;
}

//initialize flag
changeflag=0;

/*if the maximum number of allowable

operation changes
has been reached, terminate recording */

if (ine>=199) {
record=0;
incmax=inc;

105

Copyright 2011, AHMCT Research Center, UC Davis

rec_counter_max=rec_counter;
rec_counter=0;
inc=0;
}
else if(rec_counter!=0){
/*check to see if operator is
changing anything,
and if so, update the rec{][]
array*/
keychangel=abs(rec[inc] [5])-ary[5]);
keychangeZ2=abs (rec(inc) [6]-axry[6]);
if {(keychangel>=4) | | (keychange2>=4))
N changeflag=1;
for (i=0;i<=6;i++){
change=abs (rec{inc] (1]~

aryl[il):
if (change>=20) changeflag=1;
}
if (changeflag==1) {
inc++;
for(i=0;i<=6:i++)
oy reclinc] [il=ary(i]:

state_counter[inc]=rec_counter;
}
/*check to see if rec_counter has
reached max
allowable value, terminate if so */
if(rec_counter>=90000) {
record=0;

s incmax=inc;
rec_counter_max=rec_counter:
rec_count.er=0;
inc=0;

}

break:
default:

recoxrd=0;

%

}

if(({ary[51&GEAR_MASK)==GEAR_1l)desired_gear=FIRST_GEAR;
else desired_gear=0;

// Check desired direction
desired_direction=(ary[5]&DIRECTION_MASK)>>5;

/* if neither FWD or REV selected, set direction NEUTRAL */
if (desired_direction==0)desired_direction=8;

/*Joystick function selection.

If the command value is between the switch points, the solenoids
are disabled. If the value exceeds one of the base switch points,
the switch point is moved 2 units toward the center to provide
hysteresis and the appropriate solenoid is activated. */

if (desired_arm>up_switch) {
up_switch=UP_SWITCH_0-10;
down_switch=DOWN_SWITCH_O;
ssr={ssr&ARM_STOP) | ARM_UP;
auto_arm=0;
float_flag=0;

else if(desired_arm<down_switch) {
up_switch=UP_SWITCH_C;
down_switch=DOWN_SWITCH_0+10;
ssr= (ssr&ARM_STOP) | ARM_DOWN;

. auto_arm=0;

float_£flag=0;
}

else{
up_switch=UP_SWITCH_O;
down_switch=DOWN_SWITCH_O;
ssr&=ARM_STOP;
}

106

Copyright 2011, AHMCT Research Center, UC Davis

if (ary[6]&RATTLE) {
if (! (rattle_timer)) {
if(rattle_flag)ssr=ssr”0xc0;
else(
rattle_flag=1;
ssr=(sSr&BUCKET_STOP) |ROLL_BACK;

rattle_timer=200;
}

}

else(

rattle_flag=0; .

if{desired_bucket>rb_switch) {
rb_switch=RB_SWITCH_0-2;
dump_switch=DUMP_SWITCH_O;
ssr=(ssr&BUCKET_STOP) | ROLL_BACK;
rtd=0; /*terminate return to dig if enabled */

else if(desired_bucket<dump_switch) {
rb_switch=RB_SWITCH_O0;
- dump_switch=DUMP_SWITCH_0+2;
o ssr=(ssr&BUCKET_STOP)IDUMP;
rtd=0; /*terminate return to dig if enabled */
}
elsef
rb_switch=RB_SWITCH_O;
dump_switch=DUMP_SWITCH_O;
ssr&=BUCKET_STOP;
}

}
switch(rtd) {
case 0: /*No return to dig action--wait for button press */
if (ary[5]&0CC_RTD)rtd=1;
break; '
case 1: /*rtd button pressed, wait for release */
if (ary[5?&0CC_RTD)break;
/*determine if bucket should roll back or dump */
y if ((portt_rd()&LCC_RTD))rtd=2; /*dump */
e else rtd=3; /*roll back */
case 2: /*bucket must first dump to clear sensor and then roll
back */ '
if ((portt_rd()&LCC_RTD))ssr=(ssr&BUCKET_STOP) , DUMP;
else rtd=3;
break;
case 3: /*bucket must roll back until sensor encountered */
if ((portt_rd()&LCC_RTD)) {
ssr&=BUCKET_STOP;
rtd=0; /* bucket in dig position */
}
else ssr=(ssr&BUCKET_STOP){ROLL_BACK;
break;
default:
rtd=0;
ssr&=BUCKET_STOP;
}

switch{auto_arm) {
case 0: /*No movement--wait for TH or DH to be pressed */
if ({ary[5])&0CC_TH) | (ary[6]1&0CC_DH)) {
auto_arm=1;
if (ary{5)&0CC_TH) {
if (arm_height)desired_height=0;
else desired_height=1;

}
else if (arm_height<3)desired_height=3;
else desired_height=2;
}
. break;
case 1: /*TH or DH pressed, wait for release */ .
if (! ((ary[5]&0CC_TH) | (ary[6]&0CC_DH)))auto_arm=2;
break;
case 2: /*in motion */
break;
default:
auto_arm=0;

107

Copyright 2011, AHMCT Research Center, UC Davis

}
if{(ary[6]&0CC_FLOAT)&&! (float_flag)){

float_flag=1;

if (arm_height) {
desired_height=0;
auto_arm=2;
}

}

/*Brake Level Selection
The variable brake_level determines the current braking level.
The
switching points of that level are adjusted so as to widen
the current level to provide hysteresis. If the value of
desired_brake is outside of one of these switch points, the
value of brake_level is incremented or decremented by 1.*/

switch(brake_level) {
case 3: /* Highest level, check lower switch point only. */
if (desired_brake< (BRAKE_3_SWITCH-~10}){
brake_level=2; /*move to brake level 2 */
ssr=(ssr&BRAKE_O) | BRAKE_2;
}
/* otherwise, remain in level 3 */
else ssr=(sSr&BRAKE_0) |BRAKE_3;
break;
case 2:
if (desired_brake< (BRAKE_2_SWITCH-10)){
brake_level=1l;/* move down to level 1 */
ssr=(SSr&BRAKE_0O) | BRAKE_1;
Al

4

cloe if(decired_brake>~{(BRAKE_3_SWITCH+5)) {

* brake_level=3; /* move up to level 3 */

ssr=(ssr&BRAKE_O) | BRAKE_3;
}

/* otherwise, remain in level 2 */

eise ssr=(ssx&BRAKE_0) |BRAKE .2;

break:

case 1l:

if (desired_brake< (BRAKE_1_SWITCH-10)) {
brake_level=0; /*move down to level 0 =/
ssr=gsr&BRAKE_U;

}
else if(desired_brake>=(BRAKE_2_SWITCH+5))}{
brake_level=2;/* move up to level 2 */
ssr=(ssr&BRAKE_0) |BRAKE_2;
}
/* otherwise, remain in level 1 */
else ssr=(ssr&BRAKE_0) |BRAKE_1;
break;
case 0: /* no braking action at all */
if (desired_brake> (BRAKE_1_SWITCH+5)) {
brake_level=1l; /*move up to level 1 */
ssr=(sSr&BRAKE_0) | BRAKE_1;
}
/* otherwise, remain in level 0 */
else ssr=ssr&BRAKE_O;
break;
default:brake_level=3;
}

/* Compute throttle position value */
desired_throttle=4095- (desired_throttle*6);
// send power to throttle actuator and transmission mux
ssr2 | =THROTTLE_POWER | XMISSTON_EN;
/* Check engine start switch (transmission must be in neutral) */
if
. ((ary[6]&OCC_ENG_START)&&(desired_direction==8)&&(portt_rd()&OIL_PRESSURE))ssr2|=E
NG_START;
else ssr2&=(~ENG_START) ;

/* if desired steering differs from machine angle by 20 units
or more, activate appropriate steering solenoid. */

if ((desired_steering-steering_angle)>20}{
ssr2=(ssr2&STEER_0)|STEER_RIGHT;

108

Copyright 2011, AHMCT Research Center, UC Davis

else if((desired_steering-steering_angle)<-20){
ssr2=(ssr2&STEER_0) | STEER_LEFT;
}
}
break;
default:return_val=-3;}
return return_val;

}

109

Copyright 2011, AHMCT Research Center, UC Davis

Appendix D : OCC Control Program

/* OCC Program for remote control of the Case Loader */

#include <stdio.h>

#include <dos.h> /* Enable/disable functiouns */

#include <string.h>

#include "\STEBC31l\ve.h" /* V25_engine initialization */
#include "\STEBC31\sw.h" /* LCD function/data prototypes */

#include "\STEBC31l\lcd.h"
#include "\STEBC31l\serl.h"

// KEYBOARD INPUTS

#define EN_DIS 0x10
#define ASTR 0x100
#define RECORD 0x20
#define PLAYBACK 0x200
#define GEAR_1 0x1000
#define GEAR_2 0x2000
#define FWD 0x4000
#define REV 0x8000
#define CAL_MASK 0x110

// ANALOG INPUT CHANNELS

#define BRAKE 2

#define THROTTLE 4

#define STEERING 5

#defline V_Joy 6

#define H_JO0Y 7

#define QUTPUT_INTERVAL 50

#define INPUT_INTERVAL 1000

#define BLANK_LINE " "

float brake_slope, throttle_slope,steering_slope,h_ijoy_slope,v_joy_slope;

int brake_offset,throttle_offset,steering offset,h_joy_offset.v_ijoy offset;
int b0,t0,hj0,vi0,cal_1,cal_2,cur_brake,cur_throttle,cur steering:

int cvr_v_joy,cur_h_joy,m n,beep_time, input_timer,output_timer,timerl,timerZ;
int loader_status,comm_disp, in_blesk_counter, lcd_vee, learn_mode,power_fail;
float raw_atod;

int test;

unsigned char in_buf{1024],out_buf{1024],in _block[40],0out_block[50],in_char;
char display_1[22],display._2(22],display_3(22],display_4(22];

unsigned char* in_block_ptr,out_block_ptr;

extern COM serl_com;
COM* cl;

int kb_scan(void);

void calibrate{void);

void e_stop(void);

void interrupt far tb_isr(void);

void remote_control (void);

void get_serial_data(void);

void err_display(int error_number);

void send_data{void);

void display_out(void);

void main(void)

{
cl=&serl_com;
output_timer=OUTPUT_INTERVAL;

. input_timer=INPUT_INTERVAL;

ve_init();
lced_init();
time_base_init (1);
time_base_interrupt(l,tb_isr);
sw_dall (lcd_vee});
sl_init(0xc9,8,in_buf,1024,cut_buf,1024,cl);

110

Copyright 2011, AHMCT Research Center, UC Davis

if ((m=kb_scan())&ASTR)calibrate();
strcpy(display_1, "CASE LOADER CONTROL") ;
strepy{display_3,BLANK_LINE) ;

strepy (display. 4, BLANK_LINE) ;

comm_disp=10; //cause display to be updated
loader_status=0;

power_£fail=0;

learn_mode=0;

beep_time=50;

while(1){

// Clear emergency stop switch if activated
if () {port_rd(l)&2))e_stop();

// If serial data is present, get it.
if(serhitl(cl))get_serial_data(};

// Display current communication status if neceessary
if (loader_status!=comm_disp) {
comm_disp=loader_status;
switch(loader_status) {

case 0:
strcpy (display_2," No Communication *");:
if (power_fail) strcpyl(display_3," POWER FAILURE!
")
break;
case 1:
strcpy (display_2," ©Not in Neutral ")
break;
case 2:
strcpy (display_2," Loader in STANDBY ");
strepy (display_3.," This IS the ");
strepy{(display_4.," NEXT STEP ");
break;
case 3:

strepy (display_2," Loader in REMOTE "):
break;

}
display_out(); //update display
}

if ((m=kb_scan())&0x0££f) {
strepy(display_3, BLANK_LINE) ;
strcpy (display_4,BLANK_LINE);
display._out{); ’
}

if (m&EN_DIS)remote_control();

if (output_timer==0) {
output_timer=0UTPUT_INTERVAL;
putserl(’'i’,cl});
putserl(‘i’,cl);
putserl (0x0d,cl);
}

if (input_timer==0}{
input_timer=INPUT_INTERVAL;
loader_status=0;
}

}
/7
// CALIBRATION ROUTINE
/7
// Sets slope and offset paramaters for the analog inputs to
// normalize them to 256 units full scale.
// This section is entered by having the asterisk key pressed
P // when power is applied to the OCC unit.
// Pressing the EN/DIS key at any time will terminate the
// calibrate mode, saving the parameters that have been set
// up to that time.
/7
void calibrate({void)
{
int cal_flag=0;

111

Copyright 2011, AHMCT Research Center, UC Davis

lcdemd (0x01); // Clear display

lcdemd (0x80); //select line 1

printf(" OCC CALIBRATION Press EN/DIS at Press * to continue. any
time to exit. ");

while ((m=kb_scan())&ASTR); // Wait for * release

while (! ((m=kb_scan())&EN_DIS)) {
if{(m & ASTR)){
// if the * key is pressed, procede according to cal_flag
while((m=kb_scan())&ASTR); // Wait for * release
switch(cal_flag){
case 0: // Set lcd contrast using FWD/REV lever
lcdemd (0x94) ;
printf("to set LCD contrast Use FWD/REV lever
then press * ")
while (! ((m=kb_scan())&ASTR)) {
if (m&FWD) {
if(lcd_vee>0)lcd_vee-~;
sw_dall{lcd_vee};
}
if (M&REV) {
if(lcd_vee<254)1lcd_vee++;
sw_dall(lcd_vee);

timerl=10;
while(timerl);
}

cal_flag=1l;

beep_time=200;

break;

case 1: //Ask for controls in neutral
lcdemd (0x94) ;
printf (" throttle, and brake Release joystick,
and press * ")
cal_flag=2;
beep_time=200;
. break;
case 2: //Read neutral positions and ask for throttle
Y t0=sw_adl2a(adch (THROTTLE), 1) ;

o . t0=sw_adl2a{adch (THROTTLE) ,1);
bO=sw_adl2a{adch(BRAKE),1);
vj0=sw_adl2a(adch(V_JoY),1);
hjO0=sw_adl2a(adch (H_JOY),1);
lcdemd(0x94) :
printf(“to full throttle posDepress throttie bar"):
cal_flag=3;
beep_time=200;
break;

case 3: //Read full throttle and ask for full brake
cal_l=sw_adl2a(adch(THROTTLE), 1)

cal_l=sw_adl2a(adch (THROTTLE),1);

if({cal_1-t0)<20)({

beep_time=1000;

break;

}
throttle_slope=256.0/{cal_1-t0);
throttle_offset=(int) (-t0*throttle_slope);
lcdemd (0x94) ;
printf(" to full brake pos Squeeze brake lever ");
cal_flag=4;
beep_time=200;
break;

case 4: //Read full brake and ask for steering left
cal_l=sw_adl2a(adch(BRAKE),1);
if((cal_1-b0)<20){

beep_time=1000;

break;
}
. brake_slope=256.0/(cal_1-b0);
brake_offset=(int) (-bO*brake_slope};
lcdemd (0x94) ;
printf (" control full left Move steering)
cal_flag=5;
beep_time=200;

break; R
case 5: //Read steering left and ask for steering right

112

Copyright 2011, AHMCT Research Center, UC Davis

case 6:

case 7:

case 8:

7

case 9:

cal_l=sw_adl2a(adch (STEERING)},1);
lcdemd (0x94) ;
printf (" control full right
cal_flag=6;
beep_time=200;
break;
//Read steering right and ask for joystick forward
cal_2=sw_adl2a (adch (STEERING) ,1):
if((cal_2-cal_1)<20){

beep_time=1000;

break;

}
steering_slope=256.0/(cal_2-cal_1l):
steering_offset=(int) {-cal_l*steering_slope);
lcdemd (0x94) ;
printf(* forward (arm down) Move joystick fully ");
cal_flag=7;
beep_time=200;
break;
//Read joystick fwd and ask for joystick back
cal_l=sw_adl2a (adch(V_JOY),1);
lcdemd (0x94) ;)
printf (" back (arm up) ")
cal_flag=8;
beep_time=200;
break;
//Read joystick back and ask for joystick right
cal_2=sw_adl2a(adch(v_JoY),1);
if ({cal_2-cal_1)<20){

beep_time=1000;

break;

Move steering ")

}
v_jcy_slope=25€.0/(cal_2-cal _1);
v_joy_offset=(ant) (128-(vj0*v_joy_slope});
ledemd (0x94) ;

printf (" right (dump) Move joystick fully ");
cal_flag=9;

beep_time=200;

break;

//Read joystick right and ask for joystick left
cali_l=sw_adlZa{adch(H_JoOY),1);

lcdemd (0x94) ;

printf(* left (roll back) Move joystick fully ");
cal_flag=11l; :
beep_time=200;

break;

case 11: //Read joystick right and quit calibration routine

cal_2=sw_adl2a(adch(H_JOY),1);
if ((cal_2-cal_1)<20){
beep_time=1000;
break;

}
h_joy_slope=256.0/(cal_2-cal_1};
h_joy_offset=(int) (128-(hjO0*h_joy._slope));
lcdemd (0x01); // Clear display

lcdemd (0x94) ;

printf ("CALIBRATION COMPLETE");

lcdemd (0xd4) ;

printf (" Press * to exit*);

cal_flag=12;

beep_time=200;

break;

case 12: //return

return;

default:cal_flag=1;

}
}
}
void e_stop(void)
¢ int disp_flag=1;

lcdemd (0x01) ;
lcdcmd (0x94) ;

Copyright 2011, AHMCT Research Center, UC Davis

while(beep_time);

113

;

printf(* EMERGENCY STOP ")
beep_time=500;
timerl=1000;
putserl(’e’,cl);
putserl(‘e’,cl);
putserl (0x0d,cl);
output_timer=0UTPUT_INTERVAL;
while (! (port_rd(1)&2)) {
if (serhitl{cl))get_serial_data();
if ((loader_status==3)&&(timerl==0)&&(disp_£flag)){
sw_relay(l); //activate KILL transmitter
lcdemd (0xd4) ;
printf ("KILL xmtr activated ");
disp_£flag=0;
}
if (output_timer==0) {
putserl(‘e’,cl);
putserl(‘e’,cl);
putserl (0x04,cl);
output_timer=0UTPUT _INTERVAL;
}
}
sw_relay(0); //turn off KILL transmitter
comm_disp=10;

return;
}
int kb_scan{void)
{
int key,kl,k2,k3,k4;
// set all enable lines high
outportb(0xe0, 0} ;
cutpoertb(Oxel, 0);
outporth{0xe2,d);
outportb(Uxed, 0);

// set hl low and read keyboard
outportb(0xel, 1) ;
k1= (0xf0&peekb{0x£££0,0x10)) ;.
outportb(0xel,0);

// set h2 low and read keyboard
cutportb(0xel,l):;
k2= (0xf0&peekb (OxE£££0,0x10));
outportb(0xel, 0} ;

// set h3 low and read keyboard
outportb(0xe2,1);
k3=(0xf0&peekb (0xEf£f£0,0x10));
outportb(Oxe2,0);

// set kh low and read keyboard
outportb(0xed, 1);
k4=({0xf0&peekb (0x£££0,0x10));
outportb(0xe4,0);

// combine key presses and return

key=k2| (k1>>4) | (k3<<4) | (k4<<8);
return (~key);

}
void get_serial_data(void)
{
. int checksum,i;

while(serhitl(cl)){
in_block[in_block_counter++])=in_char=getserl{cl);
if (in_char==0x0d)serl_com.in_tail=serl_com.in_head;
}

if (in_char!=0x0d)return;

if (in_block_counter<3) {
in_block_counter=0;

114

Copyright 2011, AHMCT Research Center, UC Davis

return;

for (i=0, checksum=0; i<in_block_counter-2;i++)checksum+=in_block[i];

if ((checksum&0x0f) {={in_block[i]&0x0f)) {
in_block_counter=0;
return;
}

in_block_counter=0;

switch{in_block[0]) {

//not in neutral

case ‘n’':
loader_status=l;
input_timer=INPUT_INTERVAL;
break;

//standby mode

case ’'s‘:
loader_ status=2;
input_timer=INPUT_INTERVAL;
break;

//remote mode

case ‘r‘:
loader_status=3;
learn_mode=0;
inpuat_timer=INPUT_INTERVAL;
break;

//remote mode - recording

case ‘'t’:
loader_status=3;
learn_mode=1;
input_timer=INPUT_INTERVAL;
break;

//remote mode - playback

case '1’-
loader_status=3;
learn_mode=2:
input_timer=INPUT_INTERVAL;
rreak;

/ /power fail

case ’'p’:
loader_status=0;
power_fail=1l;
input_timer=INPUT_INTERVAL;

break;

default:
break;
}

}

void send_datal()
[

int i;
out_block[0]=‘c’; //first char signals ‘control’
// Read steering position and store as two 4-bit characters
i=(int) ((float)sw_adl2al{adch (STEERING), 1) *steering_slope+steering offset);
if(i>255)i=255;
if(i<0)i=0;
out_block({1]=(char) ({{i&0x£0)>>4) |0x30);
out_block[2}=(char) ((1&0x0£) | 0x30);

// Read brake position and store as two 4-bit characters
i=(int) ((float)sw_adl2a (adch (BRAKE), 1) *brake_slope+brake_offset);
if(i>255)1=255;
if(i<0)1i=0; :
out_block{3}=(char) ({ (i&0x£0)>>4) | 0x30);
out_block([4]=(char) ((i&0x0f) | 0x30);

// Read throttle position and store as two 4-bit characters
i={int) ((float)sw_adl2a(adch(THROTTLE), 1) *throttle_slope+throttle_offset);
if(i>255)1=255;
1f(i<0)i=0;
out_block(5]=(char) (((i&0x£0)>>4) |0x30);
out_block([6])=(char) ((i&0x0£f) | 0x30) ;

// Read arm position and store as two 4-bit characters ,
i=(int) ((float)sw_adl2a(adch(V_JOY), 1) *v_joy_slope+v_joy_offset);

115

Copyright 2011, AHMCT Research Center, UC Davis

if(i>255)1=255;

1f(i<0)i=0;

out_bBlock([7)=(char) (((1&0x£0)>>4) |0x30);
out_block{8]=(char) ((1&0x0f) |0x30) ;

// Read bucket position and store as two 4-bit characters
i=(int) ((float)sw_adl2a{adch(H_JOY), 1) *h_joy_slope+h_joy_offset);
if(i>255)1i=255;
if(i<0)i=0;
out_block([9]={(char) (({i&0x£0)>>4) |0x30);
out_block(10]=(char) ((i&0x0£f) |0x30);

// Scan keyboard and send four 4-bit characters
. i=kb_scan{() ;

out_block([11l]l=(char) (((i&0x£000)>>12) |0x30);
out_block[12]=(char) (({i&0x0£00)>>8) |0x30);
out_block[13]=(char) (({(i&0x0£0)>>4) {0x30);
out_block[14]=(char) ({i&0x0f) |0x30);
out_block[15)=out_block([16]=out_block([1l7])=out_block[18)=0x30;

// Read video joystick and set block 16 accordingly

if(sw_di(3)==0)out_block[16]|=1;

. if (sw_di(4)==0}out_block[16]|=2;
= if (sw_di(5)==0)out_block({16]|=4;
=

if (sw_di(6)==0)out_block[16]

// video keyboard patch--use 4 keyboard keys for video switches.
out_block(16]|=(i&3);
if (1&0x20)out_block([16]]|=4;
else 1f(i&0x200)out_block(16]|=8;

out_block{19]=0;
for(i=0;i<19;i++)out_biock(19])+=out_block!il;
our_block[19]=(out_block[19])&Uxf) |0x30;
osut_block({20]=0x04;

for{i=0;i<21;i++)putserl{(unsigned <har)out_block{irl,cl};
return;

}

void remote_control (void)

{

// Viait for EN/DIS button release
while((m=kb_scar ())&EN_DIS);

// Check to see if loader is in the Stardby Mode--if not then error #1
if ({1oader_status!=2)} {
err_display(l);
return;
}
// Check to see that direction lever is in Neutral-- if not then errcr#2
if (m& (FWD|REV)) {
err_display(2);
return;
}
// Check to see that gear selector switch is in the ’'1l’ positiocn--
// if not, error #3
if ({m&(GEAR_1|GEAR_2)) !=GEAR_1){
err_display(3);
return;
}
// Check to see if brake is fully applied--if not, error #4
raw_atod=sw_adl2a(adch(BRAKE), 1) ;
if (raw_atod*brake_slope+brake_offset<200) {
err_display(4);
return;
}
WAIT_FOR_REMOTE:
output_timer=0UTPUT_INTERVAL; // Send ‘CONTROL’ command
. putserl(’'p’,cl);
putserl(‘p’,cl);
putserl (0x0d,cl);
timerl=5000; // Allow 5 sec for the loader to respond
strcpy(display_2," Asking for Control “);
display_out();
while(loader_status!=3) {
if (loutput_timer) {

116

Copyright 2011, AHMCT Research Center, UC Davis

output_timer=0UTPUT_INTERVAL; // Send data block
putserl(‘p’,cl});
putserl('p’,cl);
putserl(0x0d,cl);
}
if (serhitl(cl))get_serial_data();
if(timerl==0) {
err_display(5);

break;
}
}
if (loader_status!=3)return;
lcdemd (0xc0) ;
strepy (display_2," 0CC IN CONTROL ");

lcdemd (0x94) ;

while (! { (m=kb_scan())&EN_DIS)){

if (! (port_xrd(1)&2)){
e_stop():
break;
}

if (output_timer==0) {
send_data();
output_timer=0UTPUT_INTERVAL;
}

if(serhitl(cl)){

if (learn_mode==0) {

strcpy(display._4.," NORMAL *);
if (learn_mode==1) {
strcpy{display_4," RECORDING! ")
}
if (learn_mode==2) {
strcpy{display_4," PLAYBACK! ")
}
display_out{);
7 get _sa-ial_datal);
.)

if (input_taimer==0} {
beep_time=500;
lcdemd {0x94) ;

printf(* 0SS OF ")
lcdemd (0xd4) ;
printf (" COMMUNICATION ")

loader_status=0;
goto WAIT_FOR_REMOTE;

if(loader_status!=3){

beep_time=500;

if (loader_status==2){
lcdemd (0x94) ;
printf (" Loader In Standby ");
lcdemd (0xd4) ;
printf (" "):
goto WAIT _FOR_REMOTE;
}

else break;

}

}
// Wait for EN/DIS release
while(kb_scan()&EN_DIS) ;
) comm_disp=10;
S return;

}

void err_display{int error_number)
. {

beep_time=500;
lcdemd (0x94) ;
printf (" ERROR! ")

b lcdemd(0xD4) ;
switch(error_number) {
case 1:

printf("Loader Not In Remote");

117

Copyright 2011, AHMCT Research Center, UC Davis

